Parental Transmission of Type 2 Diabetes Risk in Offspring: A Prospective Family-Based Cohort Study in Northern China
Abstract
:1. Introduction
2. Methods
2.1. Population
2.2. Exposure and Outcome
2.3. Measurements
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Study Population
3.2. Association of Parental T2D with Offspring Risk of T2D
3.3. Maternal vs. Paternal History of Diabetes
3.4. Results of Stratification Analysis
3.5. Results of Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, J.; Li, M.; Wang, T.; Wang, K.; Cao, Q.; Ding, Y.; Xiang, Y.; Wang, S.; Yang, Q.; et al. Diabetes in China part 1: Epidemiology and risk factors. Lancet Public Health 2024, 9, e1089–e1097. [Google Scholar] [CrossRef] [PubMed]
- Almgren, P.; Lehtovirta, M.; Isomaa, B.; Sarelin, L.; Taskinen, M.R.; Lyssenko, V.; Tuomi, T.; Groop, L. Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 2011, 54, 2811–2819. [Google Scholar] [CrossRef]
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; Chakravarti, A.; et al. Finding the missing heritability of complex diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef]
- Cheung, J.; Lau, E.; Tsui, C.; Siu, E.; Tse, N.; Hui, N.; Ma, R.; Kong, A.; Fu, A.; Lau, V.; et al. Combined associations of family history and self-management with age at diagnosis and cardiometabolic risk in 86,931 patients with type 2 diabetes: Joint Asia Diabetes Evaluation (JADE) Register from 11 countries. BMC Med. 2022, 20, 249. [Google Scholar] [CrossRef] [PubMed]
- Balkau, B.; Roussel, R.; Wagner, S.; Tichet, J.; Froguel, P.; Fagherazzi, G.; Bonnet, F. Transmission of Type 2 diabetes to sons and daughters: The DESIR cohort. Diabet. Med. 2017, 34, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.N.; Li, H.Y.; Wang, Y.C.; Chuang, L.M.; Lin, M.S.; Lin, C.H.; Sung, F.C. Detailed family history of diabetes identified children at risk of type 2 diabetes: A population-based case-control study. Pediatr. Diabetes 2010, 11, 258–264. [Google Scholar] [CrossRef]
- Razavi, L.N.; Ebenibo, S.; Edeoga, C.; Wan, J.; Dagogo-Jack, S. Five-Year Glycemic Trajectories Among Healthy African-American and European-American Offspring of Parents With Type 2 Diabetes. Am. J. Med. Sci. 2020, 359, 266–270. [Google Scholar] [CrossRef]
- Penesova, A.; Bunt, J.C.; Bogardus, C.; Krakoff, J. Effect of paternal diabetes on pre-diabetic phenotypes in adult offspring. Diabetes Care 2010, 33, 1823–1828. [Google Scholar] [CrossRef]
- Tam, C.H.; Wang, Y.; Luan, J.; Lee, H.M.; Luk, A.O.; Tutino, G.E.; Tong, P.C.; Kong, A.P.; So, W.Y.; Chan, J.C.; et al. Maternal history of diabetes is associated with increased cardiometabolic risk in Chinese. Nutr. Diabetes 2014, 4, e112. [Google Scholar] [CrossRef]
- Tang, X.; Hu, Y.; Chen, D.; Zhan, S.; Zhang, Z.; Dou, H. The Fangshan/Family-based Ischemic Stroke Study In China (FISSIC) protocol. BMC Med. Genet. 2007, 8, 60. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Tang, X.; Wu, Y.; Qin, X.; He, L.; Wang, J.; Li, N.; Li, J.; Zhang, Z.; Dou, H.; et al. Cohort profile: The Fangshan Cohort Study of cardiovascular epidemiology in Beijing, China. J. Epidemiol. 2014, 24, 84–93. [Google Scholar] [CrossRef]
- Poulsen, P.; Kyvik, K.O.; Vaag, A.; Beck-Nielsen, H. Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance--a population-based twin study. Diabetologia 1999, 42, 139–145. [Google Scholar] [CrossRef]
- Meigs, J.B.; Cupples, L.A.; Wilson, P.W. Parental transmission of type 2 diabetes: The Framingham Offspring Study. Diabetes 2000, 49, 2201–2207. [Google Scholar] [CrossRef] [PubMed]
- Lyssenko, V.; Almgren, P.; Anevski, D.; Perfekt, R.; Lahti, K.; Nissen, M.; Isomaa, B.; Forsen, B.; Homstrom, N.; Saloranta, C.; et al. Predictors of and longitudinal changes in insulin sensitivity and secretion preceding onset of type 2 diabetes. Diabetes 2005, 54, 166–174. [Google Scholar] [CrossRef]
- Portha, B.; Grandjean, V.; Movassat, J. Mother or Father: Who Is in the Front Line? Mechanisms Underlying the Non-Genomic Transmission of Obesity/Diabetes via the Maternal or the Paternal Line. Nutrients 2019, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Lora, A.L.; Vilchis-Gil, J.; Molina-Diaz, M.; Flores-Huerta, S.; Klunder-Klunder, M. Heritability, parental transmission and environment correlation of pediatric-onset type 2 diabetes mellitus and metabolic syndrome-related traits. Diabetes Res. Clin. Pract. 2017, 126, 151–159. [Google Scholar] [CrossRef]
- van Zon, S.K.; Snieder, H.; Bultmann, U.; Reijneveld, S.A. The interaction of socioeconomic position and type 2 diabetes mellitus family history: A cross-sectional analysis of the Lifelines Cohort and Biobank Study. BMJ Open 2017, 7, e15275. [Google Scholar] [CrossRef]
- Akbarzadeh, M.; Riahi, P.; Ramezankhani, A.; Dehkordi, S.R.; Roudbar, M.A.; Zarkesh, M.; Guity, K.; Khalili, D.; Zahedi, A.S.; Azizi, F.; et al. Parental Transmission Plays the Major Role in High Aggregation of Type 2 Diabetes in Iranian Families: Tehran Lipid and Glucose Study. Can J. Diabetes 2022, 46, 60–68. [Google Scholar] [CrossRef]
- Vassy, J.L.; Shrader, P.; Jonsson, A.; Fox, C.S.; Lyssenko, V.; Isomaa, B.; Groop, L.; Meigs, J.B.; Franks, P.W. Association between parental history of diabetes and type 2 diabetes genetic risk scores in the PPP-Botnia and Framingham Offspring Studies. Diabetes Res. Clin. Pract. 2011, 93, e76–e79. [Google Scholar] [CrossRef]
- Papazafiropoulou, A.K.; Papanas, N.; Melidonis, A.; Maltezos, E. Family History of Type 2 Diabetes: Does Having a Diabetic Parent Increase the Risk? Curr. Diabetes Rev. 2017, 13, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.A.; Langenberg, C.; Sharp, S.J.; Franks, P.W.; Rolandsson, O.; Drogan, D.; van der Schouw, Y.T.; Ekelund, U.; Kerrison, N.D.; Ardanaz, E.; et al. The link between family history and risk of type 2 diabetes is not explained by anthropometric, lifestyle or genetic risk factors: The EPIC-InterAct study. Diabetologia 2013, 56, 60–69. [Google Scholar] [PubMed]
- Annis, A.M.; Caulder, M.S.; Cook, M.L.; Duquette, D. Family history, diabetes, and other demographic and risk factors among participants of the National Health and Nutrition Examination Survey 1999–2002. Prev. Chronic Dis. 2005, 2, A19. [Google Scholar]
- Kral, B.G.; Becker, D.M.; Yanek, L.R.; Vaidya, D.; Mathias, R.A.; Becker, L.C.; Kalyani, R.R. The relationship of family history and risk of type 2 diabetes differs by ancestry. Diabetes Metab. 2019, 45, 261–267. [Google Scholar] [CrossRef]
- Fischbacher, C.M.; Bhopal, R.; Unwin, N.; Walker, M.; White, M.; Alberti, K.G. Maternal transmission of type 2 diabetes varies by ethnic group: Cross-sectional survey of Europeans and South Asians. Diabetes Care 2001, 24, 1685–1686. [Google Scholar] [CrossRef]
- Lyssenko, V.; Groop, L.; Prasad, R.B. Genetics of Type 2 Diabetes: It Matters From Which Parent We Inherit the Risk. Rev. Diabet. Stud. 2015, 12, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Gloria Bottini, F.; Antonacci, E.; Pietropolli, A.; Neri, A.; Magrini, A. Excess of Maternal Transmission of Type 2 Diabetes: Is there a Role of Biochemical Genetic Polymorphism? Clin. Res. Diabetes Endocrinol. 2019, 2, 1–4. [Google Scholar]
- Abbasi, A.; Corpeleijn, E.; van der Schouw, Y.T.; Stolk, R.P.; Spijkerman, A.M.; van der A, D.L.; Navis, G.; Bakker, S.J.; Beulens, J.W. Maternal and paternal transmission of type 2 diabetes: Influence of diet, lifestyle and adiposity. J. Intern. Med. 2011, 270, 388–396. [Google Scholar] [CrossRef]
- Abbasi, A.; Corpeleijn, E.; van der Schouw, Y.T.; Stolk, R.P.; Spijkerman, A.; van der A, D.L.; Navis, G.; Bakker, S.J.; Beulens, J.W. Parental history of type 2 diabetes and cardiometabolic biomarkers in offspring. Eur. J. Clin. Investig. 2012, 42, 974–982. [Google Scholar] [CrossRef]
- Meigs, J.B.; Shrader, P.; Sullivan, L.M.; McAteer, J.B.; Fox, C.S.; Dupuis, J.; Manning, A.K.; Florez, J.C.; Wilson, P.W.; D’Agostino, R.S.; et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N. Engl. J. Med. 2008, 359, 2208–2219. [Google Scholar] [CrossRef]
- Talmud, P.J.; Hingorani, A.D.; Cooper, J.A.; Marmot, M.G.; Brunner, E.J.; Kumari, M.; Kivimaki, M.; Humphries, S.E. Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ 2010, 340, b4838. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, B.D.; Valdez, R.; Hazuda, H.P.; Haffner, S.M.; Monterrosa, A.; Stern, M.P. Differences in the prevalence of diabetes and impaired glucose tolerance according to maternal or paternal history of diabetes. Diabetes Care 1993, 16, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Rampersaud, E.; Mitchell, B.D.; Naj, A.C.; Pollin, T.I. Investigating parent of origin effects in studies of type 2 diabetes and obesity. Curr. Diabetes Rev. 2008, 4, 329–339. [Google Scholar] [CrossRef]
- Silverman-Retana, O.; Hulman, A.; Nielsen, J.; Ekstrom, C.T.; Carstensen, B.; Simmons, R.K.; Bjerg, L.; Johnston, L.W.; Witte, D.R. Effect of familial diabetes status and age at diagnosis on type 2 diabetes risk: A nation-wide register-based study from Denmark. Diabetologia 2020, 63, 934–943. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Overall | Incident T2D | p | ||
---|---|---|---|---|---|
No | Yes | ||||
Number | 4508 | 3700 | 808 | ||
Sex (%) | Female | 2174 (48.2) | 1790 (48.4) | 384 (47.5) | 0.688 |
Male | 2334 (51.8) | 1910 (51.6) | 424 (52.5) | ||
Age (mean (SD)) | 56.4 (11.3) | 56.3 (11.6) | 56.7 (9.7) | 0.362 | |
BMI (mean (SD)) | 25.9 (3.6) | 25.7 (3.6) | 26.6 (3.6) | <0.001 | |
Smoking (%) | Never | 2361 (52.4) | 1938 (52.4) | 423 (52.4) | 1 |
Ever/current | 2147 (47.6) | 1762 (47.6) | 385 (47.6) | ||
Drinking (%) | Never | 2800 (62.1) | 2294 (62.0) | 506 (62.6) | 0.771 |
Ever/current | 1708 (37.9) | 1406 (38.0) | 302 (37.4) | ||
Sleep hour (mean (SD)) | 7.07 (2.37) | 6.98 (2.49) | 7.48 (1.72) | <0.001 | |
Diet score (%) | ≤2 | 2166 (48.0) | 1838 (49.7) | 328 (40.6) | <0.001 |
>2 | 2342 (52.0) | 1862 (50.3) | 480 (59.4) | ||
Exercise (%) | Unregular | 4034 (89.5) | 3314 (89.6) | 720 (89.1) | 0.748 |
Regular | 474 (10.5) | 386 (10.4) | 88 (10.9) | ||
Fasting glucose (mean (SD)) | 4.8 (0.9) | 4.8 (0.9) | 4.9 (1.0) | 0.006 | |
SBP (mean (SD)) | 137.3 (20.7) | 137.0 (20.9) | 138.8 (20.1) | 0.019 | |
DBP (mean (SD)) | 82.7 (14.7) | 82.6 (15.2) | 82.9 (11.9) | 0.56 | |
Antihypertension drugs (%) | No | 2686 (59.6) | 2311 (62.5) | 375 (46.4) | <0.001 |
Yes | 1822 (40.4) | 1389 (37.5) | 433 (53.6) | ||
Antidiabetic drugs (%) | No | 4508 (100.0) | 3700 (100.0) | 808 (100.0) | NA |
Antihyperlipidemic drugs (%) | No | 4087 (90.7) | 3394 (91.7) | 693 (85.8) | <0.001 |
Yes | 421 (9.3) | 306 (8.3) | 115 (14.2) | ||
Hypertension (%) | No | 1521 (33.7) | 1303 (35.2) | 218 (27.0) | <0.001 |
Yes | 2987 (66.3) | 2397 (64.8) | 590 (73.0) | ||
Stroke (%) | No | 2914 (64.6) | 2412 (65.2) | 502 (62.1) | 0.108 |
Yes | 1594 (35.4) | 1288 (34.8) | 306 (37.9) | ||
Paternal diabetes (%) | No | 4282 (95.0) | 3521 (95.2) | 761 (94.2) | 0.286 |
Yes | 226 (5.0) | 179 (4.8) | 47 (5.8) | ||
Maternal diabetes (%) | No | 4008 (88.9) | 3316 (89.6) | 692 (85.6) | 0.001 |
Yes | 500 (11.1) | 384 (10.4) | 116 (14.4) | ||
Parental diabetes (%) | No parents | 3845 (85.3) | 3184 (86.1) | 661 (81.8) | 0.011 |
Only maternal | 437 (9.7) | 337 (9.1) | 100 (12.4) | ||
Only paternal | 163 (3.6) | 132 (3.6) | 31 (3.8) | ||
Both parents | 63 (1.4) | 47 (1.3) | 16 (2.0) |
Variables | N/Cases | Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | |||
Paternal diabetes | ||||||||
No | 4282/761 | 1.00 | 1.00 | 1.00 | ||||
Yes | 226/47 | 1.54 (0.99, 2.39) | 5.40 × 10−2 | 1.36 (0.92, 2.01) | 1.50 × 10−1 | 1.27 (0.88, 1.84) | 2.10 × 10−1 | |
Maternal diabetes | ||||||||
No | 3508/692 | 1.00 | 1.00 | 1.00 | ||||
Yes | 500/116 | 2.38 (1.77, 3.21) | 1.20 × 10−8 | 2.15 (1.65, 2.80) | 1.50 × 10−8 | 1.89 (1.47, 2.43) | 7.00 × 10−7 | |
Combined | ||||||||
No parents | 3845/661 | 1.00 | 1.00 | 1.00 | ||||
Only maternal | 437/100 | 2.55 (1.87, 3.50) | 4.70 × 10−9 | 2.27 (1.72, 3.00) | 8.40 × 10−9 | 1.95 (1.50, 2.55) | 8.80 × 10−7 | |
Only paternal | 163/31 | 1.86 (1.12, 3.10) | 1.70 × 10−2 | 1.60 (1.00, 2.54) | 4.70 × 10−2 | 1.39 (0.89, 2.17) | 1.50 × 10−1 | |
Both parents | 63/16 | 2.54 (1.18, 5.51) | 1.80 × 10−2 | 2.23 (1.15, 4.32) | 1.70 × 10−2 | 2.07 (1.12, 3.83) | 2.10 × 10−2 |
Stratified Factors | Paternal Diabetes | Maternal Diabetes | |||||
---|---|---|---|---|---|---|---|
N/Cases | No | Yes | N/Cases | No | Yes | ||
Age | |||||||
≤55 | 175/39 | 1.00 | 1.49 (0.88, 2.54) | 325/67 | 1.00 | 2.81 (1.95, 4.05) | |
>55 | 51/8 | 1.00 | 1.83 (1.05, 3.17) | 175/49 | 1.00 | 2.02 (1.40, 2.93) | |
Sex | |||||||
Female | 124/24 | 1.00 | 1.27 (0.80, 2.00) | 246/62 | 1.00 | 1.90 (1.40, 2.56) | |
Male | 102/23 | 1.00 | 1.35 (0.82, 2.21) | 254/54 | 1.00 | 1.67 (1.19, 2.36) | |
BMI | |||||||
<24 | 61/10 | 1.00 | 1.72 (0.84, 3.52) | 149/27 | 1.00 | 2.06 (1.29, 3.30) | |
≥24 | 165/37 | 1.00 | 1.19 (0.80, 1.760) | 351/89 | 1.00 | 1.73 (1.32, 2.28) | |
Smoking | |||||||
Never | 143/30 | 1.00 | 1.21 (0.77, 1.91) | 280/76 | 1.00 | 2.21 (1.63, 3.02) | |
Ever/current | 83/17 | 1.00 | 1.42 (0.81, 2.50) | 220/40 | 1.00 | 1.41 (0.97, 2.07) | |
Drinking | |||||||
Never | 156/32 | 1.00 | 1.30 (0.85, 2.00) | 298/75 | 1.00 | 1.76 (1.31, 2.37) | |
Ever/current | 70/15 | 1.00 | 1.34 (0.73, 3.44) | 202/41 | 1.00 | 1.98 (1.34, 2.93) | |
Sleep hours | |||||||
<7 | 87/20 | 1.00 | 1.40 (0.73, 2.69) | 183/39 | 1.00 | 2.36 (1.47, 3.77) | |
≥7 | 139/27 | 1.00 | 1.15 (0.74, 1.79) | 317/77 | 1.00 | 1.55 (1.16, 2.08) | |
Diet score | |||||||
≤2 | 87/20 | 1.00 | 1.55 (0.79, 3.03) | 183/39 | 1.00 | 2.83 (1.83, 4.37) | |
>2 | 139/27 | 1.00 | 1.02 (0.65, 1.59) | 317/77 | 1.00 | 1.39 (1.02, 1.89) | |
Regular exercise | |||||||
Unregular | 87/20 | 1.00 | 1.25 (0.84, 1.88) | 183/39 | 1.00 | 2.10 (1.60, 2.75) | |
Regular | 139/27 | 1.00 | 0.84 (0.39, 1.98) | 317/77 | 1.00 | 1.13 (0.63, 2.01) |
Variables | N/Cases | Model 3 | Model 4 | Model 5 | Model 6 | |||||
---|---|---|---|---|---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | |||
Paternal diabetes | ||||||||||
No | 4282/761 | 1.00 | 1.00 | 1.00 | 1.00 | |||||
Yes | 226/47 | 1.27 (0.88, 1.84) | 2.10 × 10−1 | 1.30 (0.91, 1.87) | 1.50 × 10−1 | 0.91 (0.60, 1.39) | 6.70 × 10−1 | 0.89 (0.59, 1.37) | 6.20 × 10−1 | |
Maternal diabetes | ||||||||||
No | 3508/692 | 1.00 | 1.00 | 1.00 | 1.00 | |||||
Yes | 500/116 | 1.89 (1.47, 2.43) | 7.00 × 10−7 | 1.90 (1.48, 2.43) | 3.80 × 10−7 | 1.63 (1.24, 2.15) | 5.00 × 10−4 | 1.63 (1.24, 2.14) | 5.30 × 10−4 | |
Combined | ||||||||||
No parents | 3845/661 | 1.00 | 1.00 | 1.00 | 1.00 | |||||
Only maternal | 437/100 | 1.95 (1.50, 2.55) | 8.80 × 10−7 | 1.96 (1.51, 2.55) | 5.20 × 10−7 | 1.69 (1.26, 2.25) | 4.00 × 10−4 | 1.68 (1.26, 2.24) | 4.30 × 10−4 | |
Only paternal | 163/31 | 1.39 (0.89, 2.17) | 1.50 × 10−1 | 1.42 (0.92, 2.20) | 1.20 × 10−1 | 1.02 (0.61, 1.68) | 9.60 × 10−1 | 1.00 (0.60, 1.66) | 9.90 × 10−1 | |
Both parents | 63/16 | 2.07 (1.12, 3.83) | 2.10 × 10−2 | 2.15 (1.18, 3.92) | 1.30 × 10−2 | 1.26 (0.61, 2.56) | 5.60 × 10−1 | 1.23 (0.60, 2.51) | 5.80 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, H.; Wang, M.; Guo, H.; Hou, T.; Li, Y.; Zhang, H.; Tan, Y.; Qin, X.; Wu, Y.; Chen, D.; et al. Parental Transmission of Type 2 Diabetes Risk in Offspring: A Prospective Family-Based Cohort Study in Northern China. Nutrients 2025, 17, 1361. https://doi.org/10.3390/nu17081361
Peng H, Wang M, Guo H, Hou T, Li Y, Zhang H, Tan Y, Qin X, Wu Y, Chen D, et al. Parental Transmission of Type 2 Diabetes Risk in Offspring: A Prospective Family-Based Cohort Study in Northern China. Nutrients. 2025; 17(8):1361. https://doi.org/10.3390/nu17081361
Chicago/Turabian StylePeng, Hexiang, Mengying Wang, Huangda Guo, Tianjiao Hou, Yixin Li, Hanyu Zhang, Yinxi Tan, Xueying Qin, Yiqun Wu, Dafang Chen, and et al. 2025. "Parental Transmission of Type 2 Diabetes Risk in Offspring: A Prospective Family-Based Cohort Study in Northern China" Nutrients 17, no. 8: 1361. https://doi.org/10.3390/nu17081361
APA StylePeng, H., Wang, M., Guo, H., Hou, T., Li, Y., Zhang, H., Tan, Y., Qin, X., Wu, Y., Chen, D., Li, J., Hu, Y., & Wu, T. (2025). Parental Transmission of Type 2 Diabetes Risk in Offspring: A Prospective Family-Based Cohort Study in Northern China. Nutrients, 17(8), 1361. https://doi.org/10.3390/nu17081361