Unlocking the Power of the Mediterranean Diet: Two in One—Dual Benefits for Rheumatic and Thyroid Autoimmune Diseases
Abstract
:1. Introduction
2. Materials and Methods
3. Beneficial Effects of the Components of the Mediterranean Diet in Autoimmune Diseases
3.1. Dietary Fibers
3.2. PUFAs
3.3. Polyphenols
4. Beneficial Effects of Mediterranean Diet in Autoimmune Diseases: Evidence from Scientific Literature
4.1. Mediterranean Diet and Autoimmune Thyroiditis
Reference | Disease Type | Study Type | Number of Participants, Age, Gender Distribution | Diet Effects | Intervention | Summary of Results |
---|---|---|---|---|---|---|
Tonstad et al., 2013 [96] | Hypothyroidism | Observational study | 65,981 subjects belonging to the Seventh-day Adventist church aged >30 years | Positive | Comparison between vegetarians and omnivorous subjects | Reduced risk of prevalent (OR 0.89, 95% CI: 0.78–1.01) and incident (OR 0.78, 95% CI: 0.59–1.03) hypothyroidism in vegetarians |
Tonstad et al., 2015 [97] | Hyperthyroidism | Observational study | 65,981 subjects, members of the Seventh-day Adventist church aged >30 years | Positive | Vegetarian diets vs. omnivorous diets | Reduced risk of prevalent hyperthyroidism in vegan (OR = 0.49; 95% CI 0.33, diets compared to omnivorous diets |
Zupo et al., 2020 [108] | No diagnosed thyroid disease | Observational study | 324 euthyroid overweight/obese subjects from Southern Italy (228 F and 96 M, aged 14–72 years) | Uncertain | Assessment of MD adherence with the PREDIMED questionnaire Assessment of EVOO consumption | Inverse correlation between the MD score and serum fT3 (p < 0.01) and fT4 (p < 0.01) levels; no correlation with serum TSH levels. MD was associated with a slightly reduced thyroid function, within normal limits |
Liu et al., 2021 [105] | General population | Cross-sectional study | 2346 male subjects from U.S. aged ≥ 20 years (data from NHANES) | Positive | Dietary inflammatory index (DII) score | Positive correlation between DIP and serum total T4 levels (p = 0.0044); no association with serum freeT3, free T4 or TSH levels |
Chen et al., 2023 [106] | HT | Cross-sectional study | 964 subjects, 67.6% females. Mean age: 51.4 ± 16.2 years | Positive | Assessment of the relationship between dietary inflammation and thyroid function | Positive correlation between DII and TSH and total T4 levels |
Alijani et al., 2024 [109] | HT | Hospital-based case–control study | 230 participants (115 HT patients, 54.5% females and 115 controls, 5.5% females)Mean age 39.76 ± 9.52 years | Positive | Assessment of the relationship between DII and DTAC and thyroid autoantibodies | In the HT group, the DII level was higher (p < 0.001) and the DTAC level was lower than those in the healthy group (p = 0.047) DII had a positive correlation with TPOAb, TGAb and TSH levels, while DTAC had a negative correlation with anti-TPO and TG-Ab (p < 0.050). |
Giannakou et al., 2018 [110] | HT | Observational study | 218 euthyroid HT women with HT (102 with thyroxine replacement and 114 without) mean age 46.0 ± 12.7 years | Positive | Serum TOS measurement in relation to BMI and dietary habits | Low fruit and vegetable consumption and high BMI were associated with high TOS |
Kaličanin et al., 2020 [111] | HT | Observational study | 924 adult subjects: 491 HT patients (93% female, median age 38 years) and 433 controls (60% females, median age 51 years) | Positive | Assessment of consumption frequency of food groups | Increased consumption of animal fat (p < 0.0001) and processed meat (p = 0.0012) in HT pts. Increased consumption of red meat (p < 0.0001), non-alcoholic beverages (p < 0.0001), whole grains (p < 0.0001) and plant oil (p < 0.0001) in controls association of plant oil consumption with increased fT3 levels in HT patients (p < 0.0001) |
Ruggeri et al., 2021 [13] | HT | Observational study | 200 subjects: 81 (71 F) HT pts and 119 (102 F) controls from Southern Italy, median age, 37 years | Positive | Assessment of adherence to the MD with the PREDIMED questionnaire. Assessment of consumption frequency of food groups | Increased intake frequencies of animal foods (meat, p = 0.0001; fish, p = 0.0001; dairy products, p = 0.004) in HT pts Increased intake frequencies of plant foods (legumes, p = 0.001; fruits and vegetables, p = 0.030; nuts, p = 0.0005) in controls Lower adherence to the Mediterranean diet in HT pts compared to controls (p = 0.0001) PREDIMED score was an independent predictor of TPOAb positivity (OR 0.192, 95% CI 0.074–0.500, p = 0.001) |
Klobučar, S et al., 2024 [107] | HT | Observational Cross–Sectional Multicenter Study | 149 adults diagnosed with HT (140 females) aged 19 to 72 years | Positive | Assessment of DII using a 141-item FFQ Measurement of TFTs and autoantibodies | After adjustment for potential confounders, DII was positively correlated with TSH (p = 0.002) and BMI (p = 0.04) |
Corrias et al., 2024 [112] | HT | Observational study | 116 patients (96 F, aged 57.2 ± 13.1 years) affected by thyroid disorders (70%, autoimmune thyroid disease), all euthyroid, and 248 healthy adults (65% F, aged 53.1 ± 12.1), from Sardinia, Italy | Positive Neutral on QuoL | Assessment of adherence to the MD by means of both MDS and PREDIMED questionnaires Physical Activity Level (PAL), and Quality of Life (SF-12) were also assessed | Lower adherence to the MD (p = 0.003) and a significant increase of sitting time (p < 0.001), along with a not significantly reduced PAL, were reported in patients compared to healthy subjects No differences in QuoL scores |
Shady et al., 2024 [113] | HT | One-arm clinical trial | 40 female patients with HT, under L-Thyroxine therapy | Positive | Measurement of TFTs, thyroid autoantibodies and BMI at baseline and after 12 weeks of a modified MD plan. | Significant reductions in autoantibodies, TSH, fT3 and fT4 levels (p < 0.01) Significant reduction in BMI (p < 0.01) |
4.2. Mediterranean Diet and Rheumatic Diseases
4.2.1. Mediterranean Diet and Rheumatoid Arthritis
4.2.2. Mediterranean Diet and Spondyloarthritides
4.3. Mediterranean Diet and Connective Tissue Diseases
4.3.1. Systemic Lupus Erythematosus
4.3.2. Other CTDs: Sjögren’s Syndrome and Systemic Sclerosis
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Gerussi, A.; Soskic, B.; Asselta, R.; Invernizzi, P.; Gershwin, M.E. GWAS and autoimmunity: What have we learned and what next. J. Autoimmun. 2022, 133, 102922. [Google Scholar] [CrossRef]
- Atassi, M.Z.; Casali, P. Molecular mechanisms of autoimmunity. Autoimmunity 2008, 41, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Conrad, B. Potential mechanisms of interferon-alpha induced autoimmunity. Autoimmunity 2003, 36, 519–523. [Google Scholar] [CrossRef]
- Jara, L.J.; Medina, G.; Saavedra, M.A. Autoimmune manifestations of infections. Curr. Opin. Rheumatol. 2018, 30, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, B. The digestive system and autoimmunity. BMC Immunol. 2023, 24, 36. [Google Scholar] [CrossRef] [PubMed]
- Gwinnutt, J.M.; Wieczorek, M.; Balanescu, A.; Bischoff-Ferrari, H.A.; Boonen, A.; Cavalli, G.; de Souza, S.; de Thurah, A.; Dorner, T.E.; Moe, R.H.; et al. 2021 EULAR recommendations regarding lifestyle behaviours and work participation to prevent progression of rheumatic and musculoskeletal diseases. Ann. Rheum. Dis. 2023, 82, 48–56. [Google Scholar] [CrossRef]
- Gwinnutt, J.M.; Wieczorek, M.; Rodríguez-Carrio, J.; Balanescu, A.; Bischoff-Ferrari, H.A.; Boonen, A.; Cavalli, G.; de Souza, S.; de Thurah, A.; Dorner, T.E.; et al. Effects of diet on the outcomes of rheumatic and musculoskeletal diseases (RMDs): Systematic review and meta-analyses informing the 2021 EULAR recommendations for lifestyle improvements in people with RMDs. RMD Open 2022, 8, e002300. [Google Scholar] [CrossRef]
- Singh, R.K.; Chang, H.-W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef]
- Virili, C.; Fallahi, P.; Antonelli, A.; Benvenga, S.; Centanni, M. Gut microbiota and Hashimoto’s thyroiditis. Rev. Endocr. Metab. Disord. 2018, 19, 293–300. [Google Scholar] [CrossRef]
- Mazzucca, C.B.; Raineri, D.; Cappellano, G.; Chiocchetti, A. How to Tackle the Relationship between Autoimmune Diseases and Diet: Well Begun Is Half-Done. Nutrients 2021, 13, 3956. [Google Scholar] [CrossRef] [PubMed]
- Tomasello, G.; Mazzola, M.; Leone, A.; Sinagra, E.; Zummo, G.; Farina, F.; Damiani, P.; Cappello, F.; Geagea, A.G.; Jurjus, A.; et al. Nutrition, oxidative stress and intestinal dysbiosis: Influence of diet on gut microbiota in inflammatory bowel diseases. Biomed. Pap. Med. 2016, 160, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, R.M.; Giovinazzo, S.; Barbalace, M.C.; Cristani, M.; Alibrandi, A.; Vicchio, T.M.; Giuffrida, G.; Aguennouz, M.H.; Malaguti, M.; Angeloni, C.; et al. Influence of Dietary Habits on Oxidative Stress Markers in Hashimoto’s Thyroiditis. Thyroid 2021, 31, 96–105. [Google Scholar] [CrossRef]
- Ruggeri, R.M.; Cristani, M.T.; Crupi, F.; Molonia, M.S.; Burduja, N.; Alibrandi, A.; Campennì, A.; Cannavò, S. Evaluation of paraoxonase activity and association with serum advanced glycation end products as reliable markers of oxidative stress in Hashimoto’s thyroiditis. Minerva Endocrinol. 2022, 47, 248–257. [Google Scholar] [CrossRef] [PubMed]
- González, I.; Morales, M.A.; Rojas, A. Polyphenols and AGEs/RAGE axis. Trends and challenges. Food Res. Int. 2020, 129, 108843. [Google Scholar] [CrossRef]
- Grygielska, J.; Raciborski, F.; Kłak, A.; Owoc, J. The impact of nutrition and generally available products such as nicotine and alcohol on rheumatoid arthritis—Review of the literature. Reumatologia 2018, 56, 121–127. [Google Scholar] [CrossRef]
- Effraimidis, G.; Tijssen, J.G.; Wiersinga, W.M. Alcohol consumption as a risk factor for autoimmune thyroid disease: A prospective study. Eur. Thyroid J. 2012, 1, 99–104. [Google Scholar] [CrossRef]
- Carlé, A.; Bülow Pedersen, I.; Knudsen, N.; Perrild, H.; Ovesen, L.; Rasmussen, L.B.; Jørgensen, T.; Laurberg, P. Graves’ hyperthyroidism and moderate alcohol consumption: Evidence for disease prevention. Clin. Endocrinol. 2013, 79, 111–119. [Google Scholar] [CrossRef]
- Santangelo, C.; Vari, R.; Scazzocchio, B.; De Sanctis, P.; Giovannini, C.; D’Archivio, M.; Masella, R. Anti-inflammatory Activity of Extra Virgin Olive Oil Polyphenols: Which Role in the Prevention and Treatment of Immune-Mediated Inflammatory Diseases? Endocr. Metab. Immune Disord. Drug Targets 2018, 18, 36–50. [Google Scholar] [CrossRef]
- Randeni, N.; Bordiga, M.; Xu, B. A Comprehensive Review of the Triangular Relationship among Diet-Gut Microbiota-Inflammation. Int. J. Mol. Sci. 2024, 25, 9366. [Google Scholar] [CrossRef]
- Ruggeri, R.M.; Barbalace, M.C.; Croce, L.; Malaguti, M.; Campennì, A.; Rotondi, M.; Cannavò, S.; Hrelia, S. Autoimmune Thyroid Disorders: The Mediterranean Diet as a Protective Choice. Nutrients 2023, 15, 3953. [Google Scholar] [CrossRef] [PubMed]
- Petersson, S.; Philippou, E.; Rodomar, C.; Nikiphorou, E. The Mediterranean diet, fish oil supplements and Rheumatoid arthritis outcomes: Evidence from clinical trials. Autoimmun. Rev. 2018, 17, 1105–1114. [Google Scholar] [CrossRef]
- Dourado, E.; Ferro, M.; Sousa Guerreiro, C.; Fonseca, J.E. Diet as a Modulator of Intestinal Microbiota in Rheumatoid Arthritis. Nutrients 2020, 12, 3504. [Google Scholar] [CrossRef] [PubMed]
- Vranou, P.; Gkoutzourelas, A.; Athanatou, D.; Zafiriou, E.; Grammatikopoulou, M.G.; Bogdanos, D.P. Let Food Be Thy Medicine: The Case of The Mediterranean Diet in Rheumatoid Arthritis. Mediterr. J. Rheumatol. 2020, 31, 325–329. [Google Scholar] [CrossRef]
- Hagfors, L.; Nilsson, I.; Sköldstam, L.; Johansson, G. Fat intake and composition of fatty acids in serum phospholipids in a randomized, controlled, Mediterranean dietary intervention study on patients with rheumatoid arthritis. Nutr. Metab. 2005, 2, 26. [Google Scholar] [CrossRef] [PubMed]
- Sköldstam, L.; Hagfors, L.; Johansson, G. An experimental study of a Mediterranean diet intervention for patients with rheumatoid arthritis. Ann. Rheum. Dis. 2003, 62, 208–214. [Google Scholar] [CrossRef]
- McKellar, G.; Morrison, E.; McEntegart, A.; Hampson, R.; Tierney, A.; Mackle, G.; Scoular, J.; Scott, J.A.; Capell, H.A. A pilot study of a Mediterranean-type diet intervention in female patients with rheumatoid arthritis living in areas of social deprivation in Glasgow. Ann. Rheum. Dis. 2007, 66, 1239–1243. [Google Scholar] [CrossRef]
- Ometto, F.; Ortolan, A.; Farber, D.; Lorenzin, M.; Dellamaria, G.; Cozzi, G.; Favero, M.; Valentini, R.; Doria, A.; Ramonda, R. Mediterranean diet in axial spondyloarthritis: An observational study in an Italian monocentric cohort. Arthritis Res. Ther. 2021, 23, 219, Erratum in Arthritis Res. Ther. 2021, 23, 282. [Google Scholar] [CrossRef]
- Katsimbri, P.; Grivas, A.; Papadavid, E.; Tzannis, K.; Flouda, S.; Moysidou, G.S.; Kosmetatou, M.; Kapniari, I.; Fanouriakis, A.; Boumpas, D.T. Mediterranean diet and exercise are associated with better disease control in psoriatic arthritis. Clin. Rheumatol. 2024, 43, 2877–2887. [Google Scholar] [CrossRef]
- Pocovi-Gerardino, G.; Correa-Rodríguez, M.; Callejas-Rubio, J.L.; Ríos-Fernández, R.; Martín-Amada, M.; Cruz-Caparros, M.G.; Rueda-Medina, B.; Ortego-Centeno, N. Beneficial effect of Mediterranean diet on disease activity and cardiovascular risk in systemic lupus erythematosus patients: A cross-sectional study. Rheumatology 2020, 60, 160–169. [Google Scholar] [CrossRef]
- Carubbi, F.; Alunno, A.; Mai, F.; Mercuri, A.; Centorame, D.; Cipollone, J.; Mariani, F.M.; Rossi, M.; Bartoloni, E.; Grassi, D.; et al. Adherence to the Mediterranean diet and the impact on clinical features in primary Sjögren’s syndrome. Clin. Exp. Rheumatol. 2021, 39, 190–196. [Google Scholar] [CrossRef]
- Natalello, G.; Bosello, S.L.; Campochiaro, C.; Abignano, G.; De Santis, M.; Ferlito, A.; Karadağ, D.T.; Padula, A.A.; Cavalli, G.; D’Agostino, M.A.; et al. Adherence to the Mediterranean Diet in Italian Patients With Systemic Sclerosis: An Epidemiologic Survey. ACR Open Rheumatol. 2023, 6, 14–20. [Google Scholar] [CrossRef]
- Keys, A.; Menotti, A.; Aravanis, C.; Blackburn, H.; Djordevic, B.S.; Buzina, R.; Dontas, A.S.; Fidanza, F.; Karvonen, M.J.; Kimura, N. The seven countries study: 2289 deaths in 15 years. Prev. Med. 1984, 13, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Decision of the Intergovernmental Committee: 8.COM 8.10. Available online: https://ich.unesco.org/en/Decisions/8.COM/8.10 (accessed on 14 December 2023).
- de la Rubia Ortí, J.E.; García-Pardo, M.P.; Drehmer, E.; Sancho Cantus, D.; Julián Rochina, M.; Aguilar, M.A.; Hu Yang, I. Improvement of Main Cognitive Functions in Patients with Alzheimer’s Disease after Treatment with Coconut Oil Enriched Mediterranean Diet: A Pilot Study. J. Alzheimer’s Dis. 2018, 2, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Gardener, H.; Caunca, M.R. Mediterranean Diet in Preventing Neurodegenerative Diseases. Curr. Nutr. Rep. 2018, 7, 10–20. [Google Scholar] [CrossRef]
- Kesse-Guyot, E.; Ahluwalia, N.; Lassale, C.; Hercberg, S.; Fezeu, L.; Lairon, D. Adherence to Mediterranean diet reduces the risk of metabolic syndrome: A 6-year prospective study. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvadó, J.; Fernández-Ballart, J.; Ros, E.; Martínez-González, M.A.; Fitó, M.; Estruch, R.; Corella, D.; Fiol, M.; Gómez-Gracia, E.; Arós, F.; et al. Effect of a Mediterranean diet supplemented with nuts on metabolic syndrome status: One-year results of the PREDIMED randomized trial. Arch. Intern. Med. 2008, 168, 2449–2458. [Google Scholar] [CrossRef]
- Laudisio, D.; Barrea, L.; Muscogiuri, G.; Annunziata, G.; Colao, A.; Savastano, S. Breast cancer prevention in premenopausal women: Role of the Mediterranean diet and its components. Nutr. Res. Rev. 2020, 33, 19–32. [Google Scholar] [CrossRef]
- Maruca, A.; Catalano, R.; Bagetta, D.; Mesiti, F.; Ambrosio, F.A.; Romeo, I.; Moraca, F.; Rocca, R.; Ortuso, F.; Artese, A.; et al. The Mediterranean Diet as source of bioactive compounds with multi-targeting anti-cancer profile. Eur. J. Med. Chem. 2019, 181, 111579. [Google Scholar] [CrossRef]
- Salas-Salvadó, J.; Bulló, M.; Babio, N.; Martínez-González, M.; Ibarrola-Jurado, N.; Basora, J.; Estruch, R.; Covas, M.I.; Corella, D.; Arós, F.; et al. Reduction in the Incidence of Type 2 Diabetes with the Mediterranean Diet: Results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 2011, 34, 14–19, Erratum in Diabetes Care 2018, 41, 2259–2260. [Google Scholar] [CrossRef]
- Romaguera, D.; Guevara, M.; Norat, T.; Langenberg, C.; Forouhi, N.G.; Sharp, S.; Slimani, N.; Schulze, M.B.; Buijsse, B.; Buckland, G.; et al. Mediterranean diet and type 2 diabetes risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study: The InterAct project. Diabetes Care 2011, 34, 1913–1918. [Google Scholar]
- Hrelia, S.; Di Renzo, L.; Bavaresco, L.; Bernardi, E.; Malaguti, M.; Giacosa, A. Moderate Wine Consumption and Health: A Narrative Review. Nutrients 2022, 15, 175. [Google Scholar] [CrossRef]
- Hrelia, S.; Barbalace, M.C.; Cannavò, S.; Ruggeri, R.M. Commentary: Fish and the thyroid: A Janus Bifrons relationship caused by pollutants and the omega-3 polyunsaturated fatty acids. Front. Endocrinol. 2023, 14, 1138245. [Google Scholar] [CrossRef] [PubMed]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef]
- Barrea, L.; Muscogiuri, G.; Frias-Toral, E.; Laudisio, D.; Pugliese, G.; Castellucci, B.; Garcia-Velasquez, E.; Savastano, S.; Colao, A. Nutrition and immune system: From the Mediterranean diet to dietary supplementary through the microbiota. Crit. Rev. Food Sci. Nutr. 2021, 61, 3066–3090. [Google Scholar] [CrossRef] [PubMed]
- Virili, C.; Stramazzo, I.; Centanni, M. Gut microbiome and thyroid autoimmunity. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101506. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yu, X.; Wang, Q.; Yao, X.; Lu, D.; Zhou, D.; Wang, X. Association between primary Sjögren’s syndrome and gut microbiota disruption: A systematic review and meta-analysis. Clin. Rheumatol. 2024, 43, 603–619. [Google Scholar] [CrossRef]
- Abendroth, A.; Michalsen, A.; Lüdtke, R.; Rüffer, A.; Musial, F.; Dobos, G.J.; Langhorst, J. Changes of Intestinal Microflora in Patients with Rheumatoid Arthritis during Fasting or a Mediterranean Diet. Forsch. Komplementärmedizin 2010, 17, 307–313. [Google Scholar] [CrossRef]
- Galarraga, B.; Ho, M.; Youssef, H.M.; Hill, A.; McMahon, H.; Hall, C.; Ogston, S.; Nuki, G.; Belch, J.J. Cod liver oil (n-3 fatty acids) as an non-steroidal anti-inflammatory drug sparing agent in rheumatoid arthritis. Rheumatology 2008, 47, 665–669. [Google Scholar] [CrossRef]
- Proudman, S.M.; James, M.J.; Spargo, L.D.; Metcalf, R.G.; Sullivan, T.R.; Rischmueller, M.; Flabouris, K.; Wechalekar, M.D.; Lee, A.T.; Cleland, L.G. Fish oil in recent onset rheumatoid arthritis: A randomised, double-blind controlled trial within algorithm-based drug use. Ann. Rheum. Dis. 2015, 74, 89–95. [Google Scholar] [CrossRef]
- Rajaei, E.; Mowla, K.; Ghorbani, A.; Bahadoram, S.; Bahadoram, M.; Dargahi-Malamir, M. The Effect of Omega-3 Fatty Acids in Patients With Active Rheumatoid Arthritis Receiving DMARDs Therapy: Double-Blind Randomized Controlled Trial. Glob. J. Health Sci. 2015, 8, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Remans, P.H.; Sont, J.K.; Wagenaar, L.W.; Wouters-Wesseling, W.; Zuijderduin, W.M.; Jongma, A.; Breedveld, F.C.; Van Laar, J.M. Nutrient supplementation with polyunsaturated fatty acids and micronutrients in rheumatoid arthritis: Clinical and biochemical effects. Eur. J. Clin. Nutr. 2004, 58, 839–845. [Google Scholar] [CrossRef]
- Veselinovic, M.; Vasiljevic, D.; Vucic, V.; Arsic, A.; Petrovic, S.; Tomic-Lucic, A.; Savic, M.; Zivanovic, S.; Stojic, V.; Jakovljevic, V. Clinical Benefits of n-3 PUFA and ɤ-Linolenic Acid in Patients with Rheumatoid Arthritis. Nutrients 2017, 9, 325. [Google Scholar] [CrossRef] [PubMed]
- Beyer, K.; Lie, S.A.; Kjellevold, M.; Dahl, L.; Brun, J.G.; Bolstad, A.I. Marine ω-3, vitamin D levels, disease outcome and periodontal status in rheumatoid arthritis outpatients. Nutrition 2018, 55–56, 116–124. [Google Scholar] [CrossRef]
- Lee, Y.H.; Bae, S.C.; Song, G.G. Omega-3 polyunsaturated fatty acids and the treatment of rheumatoid arthritis: A meta-analysis. Arch. Med. Res. 2012, 43, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Espersen, G.T.; Grunnet, N.; Lervang, H.H.; Nielsen, G.L.; Thomsen, B.S.; Faarvang, K.L.; Dyerberg, J.; Ernst, E. Decreased interleukin-1 beta levels in plasma from rheumatoid arthritis patients after dietary supplementation with n-3 polyunsaturated fatty acids. Clin. Rheumatol. 1992, 11, 393–395. [Google Scholar] [CrossRef]
- Kremer, J.M.; Lawrence, D.A.; Jubiz, W.; DiGiacomo, R.; Rynes, R.; Bartholomew, L.E.; Sherman, M. Dietary fish oil and olive oil supplementation in patients with rheumatoid arthritis clinical and immunologic effects. Arthritis Rheum. 1990, 33, 810–820. [Google Scholar] [CrossRef]
- Hughes, D.A.; Pinder, A.C.; Piper, Z.; Johnson, I.T.; Lund, E.K. Fish oil supplementation inhibits the expression of major histocompatibility complex class II molecules and adhesion molecules on human monocytes. Am. J. Clin. Nutr. 1996, 63, 267–272. [Google Scholar] [CrossRef]
- Mizota, T.; Fujita-Kambara, C.; Matsuya, N.; Hamasaki, S.; Fukudome, T.; Goto, H.; Nakane, S.; Kondo, T.; Matsuo, H. Effect of dietary fatty acid composition on Th1/Th2 polarization in lymphocytes. JPEN J. Parenter. Enter. Nutr. 2009, 33, 390–396. [Google Scholar] [CrossRef]
- Suzuki, D.; Furukawa, K.; Kimura, F.; Shimizu, H.; Yoshidome, H.; Ohtsuka, M.; Kato, A.; Yoshitomi, H.; Miyazaki, M. Effects of perioperative immunonutrition on cell-mediated immunity, T helper type 1 (Th1)/Th2 differentiation, and Th17 response after pancreaticoduodenectomy. Surgery 2010, 148, 573–581. [Google Scholar] [CrossRef]
- Féart, C.; Samieri, C.; Allès, B.; Barberger-Gateau, P. Potential benefits of adherence to the Mediterranean diet on cognitive health. Proc. Nutr. Soc. 2013, 72, 140–152. [Google Scholar] [CrossRef] [PubMed]
- López-Miranda, J.; Pérez-Jiménez, F.; Ros, E.; De Caterina, R.; Badimón, L.; Covas, M.I.; Escrich, E.; Ordovás, J.M.; Soriguer, F.; Abiá, R.; et al. Olive oil and health: Summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 284–294. [Google Scholar] [CrossRef]
- Angeloni, C.; Malaguti, M.; Barbalace, M.C.; Hrelia, S. Bioactivity of Olive Oil Phenols in Neuroprotection. Int. J. Mol. Sci. 2017, 18, 2230. [Google Scholar] [CrossRef]
- Montoya, T.; Sánchez-Hidalgo, M.; Castejón, M.L.; Rosillo, M.Á.; González-Benjumea, A.; Alarcón-de-la-Lastra, C. Dietary Oleocanthal Supplementation Prevents Inflammation and Oxidative Stress in Collagen-Induced Arthritis in Mice. Antioxidants 2021, 10, 650. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Soto, M.; Montserrat-de la Paz, S.; Sanchez-Hidalgo, M.; Cardeno, A.; Bermudez, B.; Muriana, F.; Alarcon-de-la-Lastra, C. Virgin olive oil and its phenol fraction modulate monocyte/macrophage functionality: A potential therapeutic strategy in the treatment of SLE. Br. J. Nutr. 2018, 120, 681–692. [Google Scholar] [CrossRef]
- Aparicio-Soto, M.; Sanchez-Hidalgo, M.; Cardeno, A.; Rosillo, M.Á.; Sánchez-Fidalgo, S.; Utrilla, J.; Martín-Lacave, I.; Alarcón-de-la-Lastra, C. Dietary extra virgin olive oil attenuates kidney injury in pristane-induced SLE model via activation of HO-1/Nrf-2 antioxidant pathway and suppression of JAK/STAT, NF-κB and MAPK activation. Nutr. Biochem. 2016, 27, 278–288. [Google Scholar] [CrossRef]
- Pang, K.-L.; Lumintang, J.N.; Chin, K.-Y. Thyroid-Modulating Activities of Olive and Its Polyphenols: A Systematic Review. Nutrients 2021, 13, 529. [Google Scholar] [CrossRef] [PubMed]
- Ditano-Vázquez, P.; Torres-Peña, J.D.; Galeano-Valle, F.; Pérez-Caballero, A.I.; Demelo-Rodríguez, P.; Lòpez-Miranda, J.; Katsiki, N.; Delgado-Lista, J.; AlvarezSala-Walther, L.A. The fluid aspect of the Mediterranean diet in the prevention and management of cardiovascular disease and diabetes: The role of polyphenol content in moderate consumption of wine and olive oil. Nutrients 2019, 11, 2833. [Google Scholar] [CrossRef]
- Giacosa, A.; Barale, R.; Bavaresco, L.; Faliva, M.A.; Gerbi, V.; La Vecchia, C.; Negri, E.; Opizzi, A.; Perna, S.; Pezzotti, M. Mediterranean way of drinking and longevity. Crit. Rev. Food Sci. Nutr. 2016, 56, 635–640. [Google Scholar] [CrossRef]
- Kallberg, H.; Jacobsen, S.; Bengtsson, C.; Pedersen, M.; Padyukov, L.; Garred, P.; Frisch, M.; Karlson, E.W.; Klareskog, L.; Alfredsson, L. Alcohol consumption is associated with decreased risk of rheumatoid arthritis: Results from two Scandinavian case–control studies. Ann. Rheum. Dis. 2009, 68, 222–227. [Google Scholar] [CrossRef]
- Maxwell, J.R.; Gowers, I.R.; Moore, D.J.; Wilson, A.G. Alcohol consumption is inversely associated with risk and severity of rheumatoid arthritis. Rheumatology 2010, 49, 2140–2146. [Google Scholar] [CrossRef] [PubMed]
- Hardy, C.J.; Palmer, B.P.; Muir, K.R.; Sutton, A.J.; Powell, R.J. Smoking history, alcohol consumption, and systemic lupus erythematosus: A case–control study. Ann. Rheum. Dis. 1998, 57, 451–455. [Google Scholar] [CrossRef]
- Wang, J.; Pan, H.F.; Ye, D.Q.; Su, H.; Li, X.P. Moderate alcohol drinking might be protective for systemic lupus erythematosus: A systematic review and meta-analysis. Clin. Rheumatol. 2008, 27, 1557–1563. [Google Scholar] [CrossRef]
- Carlé, A.; Pedersen, I.B.; Knudsen, N.; Perrild, H.; Ovesen, L.; Rasmussen, L.B.; Jørgensen, T.; Laurberg, P. Moderate alcohol consumption may protect against overt autoimmune hypothyroidism: A population-based case-control study. Eur. J. Endocrinol. 2012, 167, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Blanquer-Rosselló, M.; Hernández-López, R.; Roca, P.; Oliver, J.; Valle, A. Resveratrol induces mitochondrial respiration and apoptosis in SW620 colon cancer cells. Biochim. Biophys. Acta Gen. Subj. 2016, 1861, 431–440. [Google Scholar] [CrossRef]
- Kalantari, H.; Das, D. Physiological effects of resveratrol. Biofactors 2010, 36, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.; Kantham, S.; Rao, V.; Palanivelu, M.; Pham, H.; Shaw, P.N.; McGeary, R.P.; Ross, B.P. Metal chelation, radical scavenging and inhibition of Aβ42 fibrillation by food constituents in relation to Alzheimer’s disease. Food Chem. 2016, 199, 185–194. [Google Scholar] [CrossRef]
- Khojah, H.; Ahmed, S.; Abdel-Rahman, M.; Elhakeim, E. Resveratrol as an effective adjuvant therapy in the management of rheumatoid arthritis: A clinical study. Clin. Rheumatol. 2018, 37, 2035–2042. [Google Scholar] [CrossRef]
- Lomholt, S.; Mellemkjaer, A.; Iversen, M.; Pedersen, S.; Kragstrup, T. Resveratrol displays anti-inflammatory properties in an ex vivo model of immune mediated inflammatory arthritis. BMC Rheumatol. 2018, 2, 27. [Google Scholar] [CrossRef]
- Coradini, K.; Friedrich, R.B.; Fonseca, F.N.; Vencato, M.S.; Andrade, D.F.; Oliveira, C.M.; Battistel, A.P.; Guterres, S.S.; da Rocha, M.I.; Pohlmann, A.R.; et al. A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: In vivo studies. Eur. J. Pharm. Sci. 2015, 78, 163–170. [Google Scholar] [CrossRef]
- Wang, P.; Ren, D.; Chen, Y.; Jiang, M.; Wang, R.; Wang, Y.G. Effect of sodium alginate addition to resveratrol on acute gouty arthritis. Cell. Physiol. Biochem. 2015, 36, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.H.; Hsu, L.F.; Lee, C.W.; Chiang, Y.C.; Lee, M.H.; How, J.M.; Wu, C.M.; Huang, C.L.; Lee, I.T. Resveratrol inhibits urban particulate matter-induced COX-2/PGE2 release in human fibroblast-like synoviocytes via the inhibition of activation of NADPH oxidase/ROS/NF-κB. Int. J. Biochem. Cell Biol. 2017, 88, 113–123. [Google Scholar] [CrossRef]
- Tian, J.; Chen, J.W.; Gao, J.S.; Li, L.; Xie, X. Resveratrol inhibits TNF-α-induced IL-1β, MMP-3 production in human rheumatoid arthritis fibroblast-like synoviocytes via modulation of PI3kinase/Akt pathway. Rheumatol. Int. 2013, 33, 1829–1835. [Google Scholar] [CrossRef]
- Zhang, J.; Song, X.; Cao, W.; Lu, J.; Wang, X.; Wang, G.; Wang, Z.; Chen, X. Autophagy and mitochondrial dysfunction in adjuvant-arthritis rats treatment with resveratrol. Sci. Rep. 2016, 6, 32928. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, S.; Liu, Z.; Zhao, X.; Yuan, Y.; Sheng, L.; Li, Y. Resveratrol prevents atrial fibrillation by inhibiting atrial structural and metabolic remodeling in collagen-induced arthritis rats. Naunyn. Schmiedeb. Arch. Pharmacol. 2018, 391, 1179–1190. [Google Scholar] [CrossRef]
- Wang, Z.L.; Luo, X.F.; Li, M.T.; Xu, D.; Zhou, S.; Chen, H.Z.; Gao, N.; Chen, Z.; Zhang, L.L.; Zeng, X.F. Resveratrol possesses protective effects in a pristane-induced lupus mouse model. PLoS ONE 2014, 9, e0114792. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Li, H.; Rumbin, A.A.; Wang, X.; La Cava, A.; Brechtelsbauer, K.; Castellani, L.W.; Witztum, J.L.; Lusis, A.J.; Tsao, B.P. ApoE−/−Fas−/−C57BL/6 mice: A novel murine model simultaneously exhibits lupus nephritis, atherosclerosis, and osteopenia. J. Lipid Res. 2007, 48, 794–805. [Google Scholar] [CrossRef]
- Voloshyna, I.; Hai, O.; Littlefield, M.J.; Carsons, S.; Reiss, A.B. Resveratrol mediates anti-atherogenic effects on cholesterol flux in human macrophages and endothelium via PPARγ and adenosine. Eur. J. Pharmacol. 2013, 698, 299–309. [Google Scholar] [CrossRef]
- Voloshyna, I.; Teboul, I.; Littlefield, M.J.; Siegart, N.M.; Turi, G.K.; Fazzari, M.J.; Carsons, S.E.; DeLeon, J.; Reiss, A.B. Resveratrol counters systemic lupus erythematosus-associated atherogenicity by normalizing cholesterol efflux. Exp. Biol. Med. 2016, 241, 1611–1619. [Google Scholar] [CrossRef]
- Ruggeri, R.M.; Giuffrida, G.; Campennì, A. Autoimmune endocrine diseases. Minerva Endocrinol. 2018, 43, 305–322. [Google Scholar] [CrossRef]
- Boelaert, K.; Newby, P.R.; Simmonds, M.J.; Holder, R.L.; Carr-Smith, J.D.; Heward, J.M.; Manji, N.; Allahabadia, A.; Armitage, M.; Chatterjee, K.V.; et al. Prevalence and relative risk of other autoimmune diseases in subjects with autoimmune thyroid disease. Am. J. Med. 2010, 123, 183.e1–183.e9. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, R.M.; Trimarchi, F.; Giuffrida, G.; Certo, R.; Cama, E.; Campennì, A.; Alibrandi, A.; De Luca, F.; Wasniewska, M. Autoimmune comorbidities in Hashimoto’s thyroiditis: Different patterns of association in adulthood and childhood/adolescence. Eur. J. Endocrinol. 2017, 176, 133–141. [Google Scholar] [CrossRef]
- Ajjan, R.A.; Weetman, A.P. The Pathogenesis of Hashimoto’s Thyroiditis: Further Developments in our Understanding. Horm Metab Res. 2015, 47, 702–710. [Google Scholar] [CrossRef]
- Trowell, H.C.; Burkitt, D.P. Western Diseases, Their Emergence and Prevention; Harvard University Press: Cambridge, UK, 1981. [Google Scholar]
- Tonstad, S.; Nathan, E.; Oda, K.; Fraser, G. Vegan diets and hypothyroidism. Nutrients 2013, 5, 4642–4652. [Google Scholar] [CrossRef]
- Tonstad, S.; Nathan, E.; Oda, K.; Fraser, G. Prevalence of hyperthyroidism according to type of vegetarian diet. Public Health Nutr. 2015, 18, 1482–1487. [Google Scholar] [CrossRef]
- Aktaş, H.S. Vitamin B12 and Vitamin D levels in patients with autoimmune hypothyroidism and their correlation with anti-thyroid peroxidase antibodies. Med. Princ. Pract. 2020, 29, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Mikulska, A.A.; Karaźniewicz-Łada, M.; Filipowicz, D.; Ruchała, M.; Główka, F.K. Metabolic characteristics of Hashimoto’s thyroiditis patients and the role of microelements and diet in the disease management—An overview. Int. J. Mol. Sci. 2022, 23, 6580. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wei, H.; Zhang, W.; Li, Z.; Ding, L.; Yu, T.; Tan, L.; Liu, Y.; Liu, T.; Wang, H.; et al. Severely low serum magnesium is associated with increased risks of positive anti-thyroglobulin antibody and hypothyroidism: A cross-sectional study. Sci. Rep. 2018, 8, 9904. [Google Scholar] [CrossRef]
- Ihnatowicz, P.; Drywień, M.; Wątor, P.; Wojsiat, J. The importance of nutritional factors and dietary management of Hashimoto’s thyroiditis. Ann. Agric. Environ. Med. 2020, 27, 184–193. [Google Scholar] [CrossRef]
- Betsy, A.; Binitha, M.; Sarita, S. Zinc deficiency associated with hypothyroidism: An overlooked cause of severe alopecia. Int. J. Trichology 2013, 5, 40–42. [Google Scholar]
- Wichman, J.; Winther, K.H.; Bonnema, S.J.; Hegedüs, L. Selenium supplementation significantly reduces thyroid autoantibody levels in patients with chronic autoimmune thyroiditis: A systematic review and meta-analysis. Thyroid 2016, 26, 1681–1692. [Google Scholar] [CrossRef] [PubMed]
- Hébert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)-Lessons Learned, Improvements Made, and Future Directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Ma, F.; Feng, Y.; Ma, X. The Association between the Dietary Inflammatory Index and Thyroid Function in U.S. Adult Males. Nutrients 2021, 13, 3330. [Google Scholar] [CrossRef]
- Chen, S.; Peng, Y.; Zhang, H.; Zou, Y. Relationship between thyroid function and dietary inflammatory index in Hashimoto thyroiditis patients. Medicine 2023, 102, e35951. [Google Scholar] [CrossRef]
- Klobučar, S.; Kenđel Jovanović, G.; Kryczyk-Kozioł, J.; Cigrovski Berković, M.; Vučak Lončar, J.; Morić, N.; Peljhan, K.; Rahelić, D.; Mudri, D.; Bilić-Ćurčić, I.; et al. Association of Dietary Inflammatory Index and Thyroid Function in Patients with Hashimoto’s Thyroiditis: An Observational Cross–Sectional Multicenter Study. Medicina 2024, 60, 1454. [Google Scholar] [CrossRef] [PubMed]
- Zupo, R.; Castellana, F.; Panza, F.; Lampignano, L.; Murro, I.; Di Noia, C.; Triggiani, V.; Giannelli, G.; Sardone, R.; De Pergola, G. Adherence to a Mediterranean Diet and Thyroid Function in Obesity: A Cross-Sectional Apulian Survey. Nutrients 2020, 12, 3173. [Google Scholar] [CrossRef]
- Alijani, S.; Ghadir, M.; Gargari, B.P. The association between dietary inflammatory index and dietary total antioxidant capacity and Hashimoto’s thyroiditis: A case-control study. BMC Endocr. Disord. 2024, 24, 177. [Google Scholar] [CrossRef]
- Giannakou, M.; Saltiki, K.; Mantzou, E.; Loukari, E.; Philippou, G.; Terzidis, K.; Stavrianos, C.; Kyprianou, M.; Psaltopoulou, T.; Karatzi, K.; et al. The effect of obesity and dietary habits on oxidative stress in Hashimoto’s thyroiditis. Endocr. Connect. 2018, 7, 990–997. [Google Scholar] [CrossRef]
- Kaličanin, D.; Brčić, L.; Ljubetić, K.; Barić, A.; Gračan, S.; Brekalo, M.; Torlak Lovrić, V.; Kolčić, I.; Polašek, O.; Zemunik, T.; et al. Differences in food consumption between patients with Hashimoto’s thyroiditis and healthy individuals. Sci. Rep. 2020, 10, 10670. [Google Scholar] [CrossRef]
- Corrias, S.; Fosci, M.; Galletta, M.; Boi, F.; Baghino, G.; Oppo, A.; Pigliaru, F.; Melis, M.; Rodia, R.; Pani, A.; et al. Mediterranean Diet adherence, physical activity level, and quality of life in patients affected by thyroid diseases: Comparison between pre- and post-lockdown assessment. J. Public Health Res. 2024, 4, 13. [Google Scholar] [CrossRef]
- Shady, M.A.; Adly, N.N.; Ibrahim, S.; Aboelyazed, S. The impact of Mediterranean diet on patients with Hashimoto thyroiditis. QJM 2024, 117, 175–472. [Google Scholar] [CrossRef]
- Snir, O.; Widhe, M.; Hermansson, M.; von Spee, C.; Lindberg, J.; Hensen, S.; Lundberg, K.; Engström, A.; Venables, P.J.; Toes, R.E.; et al. Antibodies to several citrullinated antigens are enriched in the joints of rheumatoid arthritis patients. Arthritis Rheum. 2010, 62, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Marston, B.; Palanichamy, A.; Anolik, J.H. B cells in the pathogenesis and treatment of rheumatoid arthritis. Curr. Opin. Rheumatol. 2010, 22, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wei, K.; Jiang, P.; Zhao, J.; Shan, Y.; Shi, Y.; Zhao, F.; Chang, C.; Li, Y.; Zhou, M.; et al. Macrophage polarization in rheumatoid arthritis: Signaling pathways, metabolic reprogramming, and crosstalk with synovial fibroblasts. Front. Immunol. 2024, 15, 1394108. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, M.; Cojocaru, I.M.; Silosi, I.; Vrabie, C.D.; Tanasescu, R. Extra-articular Manifestations in Rheumatoid Arthritis. Maedica 2010, 5, 286–291. [Google Scholar]
- Crowson, C.S.; Liao, K.P.; Davis, J.M., 3rd; Solomon, D.H.; Matteson, E.L.; Knutson, K.L.; Hlatky, M.A.; Gabriel, S.E. Rheumatoid arthritis and cardiovascular disease. Am. Heart J. 2013, 166, 622–628. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.M.; Bergstra, S.A.; Kerschbaumer, A.; Sepriano, A.; Aletaha, D.; Caporali, R.; Edwards, C.J.; Hyrich, K.L.; Pope, J.E.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann. Rheum. Dis. 2023, 82, 3–18. [Google Scholar] [CrossRef]
- Papandreou, P.; Gioxari, A.; Daskalou, E.; Grammatikopoulou, M.G.; Skouroliakou, M.; Bogdanos, D.P. Mediterranean Diet and Physical Activity Nudges versus Usual Care in Women with Rheumatoid Arthritis: Results from the MADEIRA Randomized Controlled Trial. Nutrients 2023, 15, 676. [Google Scholar] [CrossRef]
- Raad, T.; George, E.; Griffin, A.; Larkin, L.; Fraser, A.; Kennedy, N.; Tierney, A. Effects of a telehealth-delivered Mediterranean diet intervention in adults with Rheumatoid Arthritis (MEDRA): A randomised controlled trial. BMC Musculoskelet. Disord. 2024, 25, 631. [Google Scholar] [CrossRef]
- Pineda-Juárez, J.A.; Lozada-Mellado, M.; Hinojosa-Azaola, A.; García-Morales, J.M.; Ogata-Medel, M.; Llorente, L.; Alcocer-Varela, J.; Orea-Tejeda, A.; Martín-Nares, E.; Castillo-Martínez, L. Changes in hand grip strength and body weight after a dynamic exercise program and Mediterranean diet in women with rheumatoid arthritis: A randomized clinical trial. Physiother. Theory Pract. 2022, 38, 504–512. [Google Scholar] [CrossRef]
- García-Morales, J.M.; Lozada-Mellado, M.; Hinojosa-Azaola, A.; Llorente, L.; Ogata-Medel, M.; Pineda-Juárez, J.A.; Alcocer-Varela, J.; Cervantes-Gaytán, R.; Castillo-Martínez, L. Effect of a Dynamic Exercise Program in Combination with Mediterranean Diet on Quality of Life in Women with Rheumatoid Arthritis. J. Clin. Rheumatol. 2020, 26, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Dougados, M.; Baeten, D. Spondyloarthritis. Lancet 2011, 377, 2127–2137. [Google Scholar] [CrossRef]
- Stolwijk, C.; Boonen, A.; van Tubergen, A.; Reveille, J.D. Epidemiology of spondyloarthritis. Rheum. Dis. Clin. N. Am. 2012, 38, 441–476. [Google Scholar] [CrossRef] [PubMed]
- Sharip, A.; Kunz, J. Understanding the Pathogenesis of Spondyloarthritis. Biomolecules 2020, 10, 1461. [Google Scholar] [CrossRef] [PubMed]
- So, J.; Tam, L.S. Gut Microbiome and Its Interaction with Immune System in Spondyloarthritis. Microorganisms 2020, 8, 1727. [Google Scholar] [CrossRef]
- Gracey, E.; Burssens, A.; Cambré, I.; Schett, G.; Lories, R.; McInnes, I.B.; Asahara, H.; Elewaut, D. Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat. Rev. Rheumatol. 2020, 4, 193–207. [Google Scholar] [CrossRef]
- Ramiro, S.; Nikiphorou, E.; Sepriano, A.; Ortolan, A.; Webers, C.; Baraliakos, X.; Landewé, R.B.M.; Van den Bosch, F.E.; Boteva, B.; Bremander, A.; et al. ASAS-EULAR recommendations for the management of axial spondyloarthritis: 2022 update. Ann. Rheum. Dis. 2023, 82, 19–34. [Google Scholar] [CrossRef]
- Pérez-Martínez, P.; García-Ríos, A.; Delgado-Lista, J.; Pérez-Jiménez, F.; López-Miranda, J. Mediterranean diet rich in olive oil and obesity, metabolic syndrome and diabetes mellitus. Curr. Pharm. Des. 2011, 17, 769–777. [Google Scholar] [CrossRef]
- Società Italiana di Reumatologia (SIR). Linee guida per la gestione terapeutica delle spondiloartriti. Reumatismo 2016, 68, 227–244. [Google Scholar]
- Lambadiari, V.; Katsimbri, P.; Kountouri, A.; Korakas, E.; Papathanasi, A.; Maratou, E.; Pavlidis, G.; Pliouta, L.; Ikonomidis, I.; Malisova, S.; et al. The Effect of a Ketogenic Diet versus Mediterranean Diet on Clinical and Biochemical Markers of Inflammation in Patients with Obesity and Psoriatic Arthritis: A Randomized Crossover Trial. Int. J. Mol. Sci. 2024, 25, 2475. [Google Scholar] [CrossRef]
- Caso, F.; Navarini, L.; Carubbi, F.; Picchianti-Diamanti, A.; Chimenti, M.S.; Tasso, M.; Currado, D.; Ruscitti, P.; Ciccozzi, M.; Annarumma, A.; et al. Mediterranean diet and Psoriatic Arthritis activity: A multicenter cross-sectional study. Rheumatol. Int. 2020, 40, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, P.; Cordier, J.F.; Cottin, V. Connective tissue diseases, multimorbidity and the ageing lung. Eur. Respir. J. 2016, 47, 1535–1558. [Google Scholar] [CrossRef] [PubMed]
- Zucchi, D.; Silvagni, E.; Elefante, E.; Signorini, V.; Cardelli, C.; Trentin, F.; Schilirò, D.; Cascarano, G.; Valevich, A.; Bortoluzzi, A.; et al. Systemic lupus erythematosus: One year in review 2023. Clin. Exp. Rheumatol. 2023, 41, 997–1008. [Google Scholar] [CrossRef]
- Accapezzato, D.; Caccavale, R.; Paroli, M.P.; Gioia, C.; Nguyen, B.L.; Spadea, L.; Paroli, M. Advances in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2023, 24, 6578. [Google Scholar] [CrossRef] [PubMed]
- Fanouriakis, A.; Kostopoulou, M.; Alunno, A.; Aringer, M.; Bajema, I.; Boletis, J.N.; Cervera, R.; Doria, A.; Gordon, C.; Govoni, M.; et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann. Rheum. Dis. 2019, 78, 736–745. [Google Scholar] [CrossRef]
- Barbhaiya, M.; Tedeschi, S.; Sparks, J.A.; Leatherwood, C.; Karlson, E.W.; Willett, W.C.; Lu, B.; Costenbader, K.H. Association of Dietary Quality With Risk of Incident Systemic Lupus Erythematosus in the Nurses’ Health Study and Nurses’ Health Study II. Arthritis Care Res. 2021, 73, 1250–1258. [Google Scholar] [CrossRef]
- Vordenbäumen, S.; Kleefisch, M.; Sokolowski, A.; Düsing, C.; Richter, J.G.; Brinks, R.; Schneider, M.; Chehab, G. Beneficial effects associated to a healthy lifestyle in systemic lupus erythematosus: A cross-sectional study. Lupus 2023, 32, 855–863. [Google Scholar] [CrossRef]
- DelOlmo-Romero, S.; Medina-Martínez, I.; Gil-Gutierrez, R.; Pocovi-Gerardino, G.; Correa-Rodríguez, M.; Ortego-Centeno, N.; Rueda-Medina, B. Metabolic syndrome in systemic lupus erythematosus patients under Mediterranean diet. Med. Clin. 2024, 162, 259–264. [Google Scholar] [CrossRef]
- Gavilán-Carrera, B.; Aguilera-Fernández, V.; Amaro-Gahete, F.J.; Rosales-Castillo, A.; Soriano-Maldonado, A.; Vargas-Hitos, J.A. Association of the Mediterranean diet with arterial stiffness, inflammation, and medication use in women with systemic lupus erythematosus: An exploratory study. J. Nutr. Biochem. 2024, 134, 109759. [Google Scholar] [CrossRef]
- Tsoi, A.; Gomez, A.; Boström, C.; Pezzella, D.; Chow, J.W.; Girard-Guyonvarc’h, C.; Stamm, T.; Arnaud, L.; Parodis, I. Efficacy of lifestyle interventions in the management of systemic lupus erythematosus: A systematic review of the literature. Rheumatol. Int. 2024, 44, 765–778. [Google Scholar] [CrossRef]
- Patel, R.; Shahane, A. The epidemiology of Sjögren’s syndrome. Clin. Epidemiol. 2014, 30, 247–255. [Google Scholar]
- Shiboski, C.H.; Shiboski, S.C.; Seror, R.; Criswell, L.A.; Labetoulle, M.; Lietman, T.M.; Rasmussen, A.; Scofield, H.; Vitali, C.; Bowman, S.J.; et al. International Sjögren’s Syndrome Criteria Working Group 2016 American College of Rheumatology/European League Against Rheumatism Classification Criteria for Primary Sjögren’s Syndrome: A Consensus and Data-Driven Methodology Involving Three International Patient Cohorts. Arthritis Rheumatol. 2017, 69, 35–45. [Google Scholar]
- Vitali, C.; Bombardieri, S.; Jonsson, R.; Moutsopoulos, H.M.; Alexander, E.L.; Carsons, S.E.; Daniels, T.E.; Fox, P.C.; Fox, R.I.; Kassan, S.S.; et al. European Study Group on Classification Criteria for Sjögren’s Syndrome. Classification criteria for Sjögren’s syndrome: A revised version of the European criteria proposed by the American-European Consensus Group. Ann. Rheum. Dis. 2002, 61, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Van den Hoogen, F.; Khanna, D.; Fransen, J.; Johnson, S.R.; Baron, M.; Tyndall, A.; Matucci-Cerinic, M.; Naden, R.P.; Medsger, T.A., Jr.; Carreira, P.E.; et al. 2013 classification criteria for systemic sclerosis: An American college of rheumatology/European league against rheumatism collaborative initiative. Ann. Rheum. Dis. 2013, 72, 1747–1755. [Google Scholar] [CrossRef]
- Zhong, L.; Pope, M.; Shen, Y.; Hernandez, J.J.; Wu, L. Prevalence and incidence of systemic sclerosis: A systematic review and meta-analysis. Int. J. Rheum. Dis. 2019, 22, 2096–2107. [Google Scholar] [CrossRef]
- Ramos-Casals, M.; Brito-Zerón, P.; Bombardieri, S.; Bootsma, H.; De Vita, S.; Dörner, T.; Fisher, B.A.; Gottenberg, J.E.; Hernandez-Molina, G.; Kocher, A.; et al. EULAR-Sjögren Syndrome Task Force Group. EULAR recommendations for the management of Sjögren’s syndrome with topical and systemic therapies. Ann. Rheum. Dis. 2020, 79, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Del Galdo, F.; Lescoat, A.; Conaghan, P.G.; Bertoldo, E.; Čolić, J.; Santiago, T.; Suliman, Y.A.; Matucci-Cerinic, M.; Gabrielli, A.; Distler, O.; et al. EULAR recommendations for the treatment of systemic sclerosis: 2023 update. Ann. Rheum. Dis. 2025, 84, 29–40. [Google Scholar] [CrossRef]
- Machowicz, A.; Hall, I.; de Pablo, P.; Rauz, S.; Richards, A.; Higham, J.; Poveda-Gallego, A.; Imamura, F.; Bowman, S.J.; Barone, F.; et al. Mediterranean diet and risk of Sjögren’s syndrome. Clin. Exp. Rheumatol. 2020, 38, 216–221. [Google Scholar]
- Haasis, E.; Bettenburg, A.; Lorentz, A. Effect of Intermittent Fasting on Immune Parameters and Intestinal Inflammation. Nutrients 2024, 16, 3956. [Google Scholar] [CrossRef]
- Pinto, A.; Bonucci, A.; Maggi, E.; Corsi, M.; Businaro, R. Anti-Oxidant and Anti-Inflammatory Activity of Ketogenic Diet: New Perspectives for Neuroprotection in Alzheimer’s Disease. Antioxidants 2018, 7, 63. [Google Scholar] [CrossRef]
Reference | Disease Type | Study Type | Number of Participants, Age, Gender Distribution | Diet Effects | Intervention | Summary of Results |
---|---|---|---|---|---|---|
Sköldstam et al., 2003 [26] | RA | RCT | 51 patients with RA disease duration of at least 2 years, of which 21 women and 5 men aged 58 (33–73) years in the intervention group and 20 women and 5 men aged 59 (35–75) years in the control group | Positive | 26 patients assigned to MD group, 25 assigned to the control group. Five patients excluded from the final analysis | Significant reduction in DAS28 in the intervention group compared to the control group from baseline and improvement in physical function as assessed by HAQ |
Papandreou et al., 2023 [120] | RA | RCT | 40 women, aged 34.03 ± 5.45 years, with RA for at least 2 years (DAS28 < 3.2) | Positive | 20 patients assigned to MD + physical activity for 12 weeks, 20 patients assigned to the control group (usual care) | Significant reduction in DAS28 compared to the control group from baseline and improvement in cardiometabolic outcomes (body weight, body composition, blood glucose, vitamin D concentration) |
Raad et al., 2024 [121] | RA | RCT | 44 adults (87.5% females), mean age 47.5 ± 10.9 years | Positive | 22 patients assigned to the MD group and 22 patients to the HEG group for 12 weeks | Improved physical function, assessed with HAQ-DI, and quality of life, assessed with RAQoL, in patients in the MD group compared to the HEG group |
Abendroth et al., 2010 [49] | RA | Prospective observational, non-randomized, clinical trial | 50 patients, aged 55.7 ± 7.2 years (95.5% females) in the fasting group and 60.0 ± 12.1 years (92.9% females) in the MD group | Neutral | 28 patients assigned to the MD and 22 patients to a 7-day fasting therapy | Reduction in DAS28 in both groups from baseline with similar improvements in both study groups. Significant reduction in VAS pain scores on day 7 after fasting therapy compared to MD |
Pineda-Juárez et al., 2022 [122] | RA | RCT | 106 women aged 49.5 ± 13.6 years in the DEP + MD group, 47.1 ± 11 years in the DEP group and 48.2 ± 13.2 years in the MD group | Neutral–Positive | 34 patients assigned to the MD + DEP group, 34 patients assigned to the DEP group, 38 patients assigned to the MD group for 24 weeks | Increase in handgrip strength in the DEP group Decrease in weight and waist circumference in the MD group. Decrease in HAQ-DI values in the MD + DEP group |
García-Morales et al., 2020 [123] | RA | RCT | 144 women, aged 51.4 ± 12.4 years in the MD + DEP group, 49.7 ± 11.4 years in the DEP group, 46.3 ± 13.1 years in the MD group, and 49.1 ± 12.1 years in the control group; DAS28 < 3.2 | Positive | 36 patients assigned to the MD + DEP group, 37 patients assigned to the DEP group, 40 patients assigned to the MD group and 31 patients assigned to the control group (no additional intervention) for 24 weeks | Improvement in HRQoL scores in patients in the MD + DEP group compared to the other groups |
Reference | Disease Type | Study Type | Number of Participants, Age, Gender Distribution | Diet Effects | Intervention | Summary of Results |
---|---|---|---|---|---|---|
Lambadiari et al., 2024 [132] | PsA and PsO | Randomized crossover trial | 26 patients, mean ± SD age 52.93 ± 7.33 years, females 75% | Neutral | Patients randomly assigned to the MD or a ketogenic diet arm for 8 weeks. After a washout interval of 6 weeks, the groups were crossed over and observed for a further 8-week period | Significant reduction in PASI and DAPSA scores and IL-6, IL-17 and IL-23 levels after the ketogenic diet. No significant difference in the arm assigned to the MD |
Caso et al., 2020 [133] | PsA | Observational multicenter cross-sectional study | 211 patients (females 62.09%) with median age of 55 (48–62) years and disease duration of 76 (36–120) months. 27.01% of patients classified as having MetS | Positive | Assessment of PsA disease activity using the DAPSA and CPDAI scores, assessment of MetS and adherence to the MD using the PREDIMED questionnaire | Inverse correlation between the degree of adherence to MD and DAPSA scores |
Katsimbri et al., 2024 [29] | PsA and PsO | Observational cross-sectional study | 355 patients (279 with PsA and 76 with PsO), with median age of 55 (45.1–62.9) years; 56.6% females | Positive | Assessment of disease activity by DAPSA, LEI, ASDAS, BASDAI, BSA, PASI and HAQ tools. Assessment of MD adherence using the PREDIMED questionnaire and assessment of physical activity using the Short Last 7 Days Self-Administered Format of the International Physical Activity Questionnaire | Inverse correlation between DAPSA score, tender and swollen joint count, ESR values and PASI scores with physical activity levels. Significant correlation between higher MD adherence and lower ESR values, PASI and BSA scores. After adjustment for BMI, significant correlation between physical activity and PsA disease activity and between diet and enthesitis |
Ometto et al., 2021 [28] | axSpA (with or without PsO) | Observational monocentric study | 110 patients who completed the study, of which 40% females; mean age 51.7 ± 1.3 years | Positive | 47 patients who followed MD and 63 patients who did not follow a special diet for 6 months | Significant improvement of the ASDAS-CRP score (≥20%) in the group of patients on MD compared to the control group |
Reference | Disease Type | Study Type | Number of Participants, Age, Gender Distribution | Diet Effects | Intervention | Outcomes |
---|---|---|---|---|---|---|
Barbhaiya et al., 2021 [138] | SLE | Prospective cohort study | Two cohorts of 79,568 and 93,554 women aged 30–55 years and 25–42 years, respectively, of whom 194 had SLE | Neutral–Positive | Administration of validated questionnaires on frequency of food intake at baseline and at follow-up with the calculation of 4 diet scores, including the Alternative Mediterranean Diet Score | No association between likelihood of SLE diagnosis and dietary habits, including MD. Decreased risk of SLE in subjects with the highest AHEI-2010 tertile of nut and legume intake |
Pocovi-Gerardino et al., 2021 [30] | SLE | Cross-sectional study | 280 patients aged 46.9 ± 12.8 years, 90.4% of whom were female | Positive | Assessment of MD adherence using the PREDIMED questionnaire and assessment of disease activity and damage accrual using SLEDAI-2K, SLICC/ACR and SDI | Significant association between higher PREDIMED scores and fewer CV risk factors. Significant association between higher PREDIMED scores and lower SLEDAI and SDI scores. Significantly lower SLEDAI and SDI scores among consumers of MD food components such as vegetables and fruit, fish and olive oil |
Gavilán-Carrera et al., 2024 [141] | SLE | Cross-sectional study | 76 women with SLE in mild disease activity aged 43.5 ± 13.8 years | Negative | Evaluation of adherence to the MD using the 11-item Mediterranean Diet Score and SLE disease activity using the SLEDAI score | Negative association between consumption of whole dairy products and glucorticoid intake and dosage. Positive correlation between red wine consumption and the likelihood of taking immunosuppressants |
Vordenbäumen et al., 2023 [139] | SLE | Cross-sectional study | 145 patients aged 44.3 ± 31.7 years, of whom 87.6% were female | Neutral | Assessment of MD adherence, energy expenditure for physical activity, depression, fatigue and SLE disease activity using the MEDAS, PAEE, CES-D, FSS and SLEDAI questionnaires | Healthy lifestyle recorded in 49 SLE patients, which correlated with a better physical quality of life, lower fatigue and depression and reduced titers of anti-dsDNA antibodies. Higher impact of physical activity on health compared to dietary pattern |
DelOlmo-Romero et al., 2024 [140] | SLE | Cross-sectional study | 293 patients aged 46.85 ± 12.9 years, of whom 90.4% women | Neutral | Assessment of participants on MetS by applying the National Cholesterol Education Program Adult Treatment Panel III criteria, SLE disease activity and damage accrual by SLEDAI-2K and SDI and MD adherence by a 14-item questionnaire | No significant association between MD adherence and disease activity or damage accrual. MetS recorded in 15% of SLE patients and significantly associated with SDI scores and complement C3 levels |
Tsoi et al., 2024 [142] | SLE | Systematic review | More than 1000 participants from 102 studies, of which 15 on diet and nutrition | Positive for SLE-related CV risk | Search for evidence of the effectiveness of diet and healthy lifestyle on SLE disease activity in the Medline, Embase, Web of Science and Cinahl databases | Lower CV risk with the consumption of MD foods |
Machowicz et al., 2020 [150] | pSS | Case–control study | 82 patients (77 women, mean age ± SD 56 ± 14 years) and 51 sicca patients (47 women, mean age ± SD 57.4 ± 11 years) | Positive | Evaluation of nutritional behavior using a semi-quantitative MD score | Inverse correlation between the MD total score and the probability of pSS. Inverse correlation between frequency of fish consumption, intake of galactose, vitamin A/retinol equivalents and vitamin C and the likelihood of pSS. |
Carubbi et al., 2021 [31] | pSS | Cross-sectional study | 93 patients (95% female, mean age, SEM 61.8, 1.2 years) | Positive | Assessment of MD adherence with the PREDIMED and MEDLIFE questionnaires; assessment of disease activity with the ClinESSDAI | Good, moderate and low adherence to MD according to the PREDIMED questionnaire found in 31%, 61% and 8% of pSS participants, respectively. Inverse correlation between the PREDIMED score and the ClinESSDAI score. |
Natalello et al., 2024 [32] | SSc | Cross-sectional study | 387 patients (94.6% female, mean age ± SD 55.6 ± 13.9 years) | Positive | Assessment of MD adherence through the 14-MEDAS questionnaire, severity of gastrointestinal symptoms, depression and anxiety and work productivity | Negative correlation between the 14-MEDAS score and gastrointestinal symptoms, depression and anxiety scores, severity of Raynaud’s phenomenon and work productivity impairment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbalace, M.C.; Talotta, R.; Rapisarda, F.; D’Amico, V.; Laganà, M.; Malaguti, M.; Campennì, A.; Cannavò, S.; Hrelia, S.; Ruggeri, R.M. Unlocking the Power of the Mediterranean Diet: Two in One—Dual Benefits for Rheumatic and Thyroid Autoimmune Diseases. Nutrients 2025, 17, 1383. https://doi.org/10.3390/nu17081383
Barbalace MC, Talotta R, Rapisarda F, D’Amico V, Laganà M, Malaguti M, Campennì A, Cannavò S, Hrelia S, Ruggeri RM. Unlocking the Power of the Mediterranean Diet: Two in One—Dual Benefits for Rheumatic and Thyroid Autoimmune Diseases. Nutrients. 2025; 17(8):1383. https://doi.org/10.3390/nu17081383
Chicago/Turabian StyleBarbalace, Maria Cristina, Rossella Talotta, Federica Rapisarda, Valeria D’Amico, Martina Laganà, Marco Malaguti, Alfredo Campennì, Salvatore Cannavò, Silvana Hrelia, and Rosaria Maddalena Ruggeri. 2025. "Unlocking the Power of the Mediterranean Diet: Two in One—Dual Benefits for Rheumatic and Thyroid Autoimmune Diseases" Nutrients 17, no. 8: 1383. https://doi.org/10.3390/nu17081383
APA StyleBarbalace, M. C., Talotta, R., Rapisarda, F., D’Amico, V., Laganà, M., Malaguti, M., Campennì, A., Cannavò, S., Hrelia, S., & Ruggeri, R. M. (2025). Unlocking the Power of the Mediterranean Diet: Two in One—Dual Benefits for Rheumatic and Thyroid Autoimmune Diseases. Nutrients, 17(8), 1383. https://doi.org/10.3390/nu17081383