Micronutrient Deficiencies in Pediatric IBD: How Often, Why, and What to Do?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Iron, Zinc, and Selenium
3.2. Folic Acid (Vitamin B9) and Vitamin B12
3.3. Vitamin A (Retinol)
3.4. Vitamin C
3.5. Vitamin E
3.6. Vitamin D
4. Discussion and Conclusions
5. Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IBD | Inflammatory Bowel Disease |
CD | Crohn’s Disease |
UC | Ulcerative Colitis |
ESPEN | European Society of Parenteral and Enteral Nutrition |
ECCO | European Crohn’s and Colitis Organization |
NASPGHAN | North American Society of Pediatric Gastroenterology |
SIGENP | Italian Society of Gastroenterology, Hepatology, and Nutrition |
ID | Iron Deficiency |
IDA | Iron Deficiency Anemia |
MMA | Methylmalonic Acid |
RA | Retinoic Acid |
RDA | Recommended Dietary Allowances |
References
- Ananthakrishnan, A.N.; Kaplan, G.G.; Ng, S.C. Changing Global Epidemiology of Inflammatory Bowel Diseases: Sustaining Health Care Delivery Into the 21st Century. Clin. Gastroenterol. Hepatol. 2020, 18, 1252–1260. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, B.; Gokhale, R.; Cho, J. Clinical Aspects and Pathophysiology of Inflammatory Bowel Disease. Clin. Microbiol. Rev. 2002, 15, 79–94. [Google Scholar] [CrossRef]
- Jamieson Paige, E.; Carbonero, F.; Stevens, J.F. Dietary (poly)phenols mitigate inflammatory bowel disease: Therapeutic targets, mechanisms of action, and clinical observations. Curr. Res. Food Sci. 2023, 6, 100521. [Google Scholar] [CrossRef]
- Dixon, L.J.; Kabi, A.; Nickerson, K.P.; McDonald, C. Combinatorial effects of diet and genetics on inflammatory bowel disease. Inflamm. Bowel Dis. 2015, 21, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Alperen, C.C.; Soydas, B.; Serin, E.; Erbayrak, M.; Savas, N.A.; Unler, G.K.; Meral, C.E.; Toprak, U.; Boyacioglu, A.S.; Dagli, U. Role of Environmental Risk Factors in the Etiology of Inflammatory Bowel Diseases: A Multicenter Study. Dig. Dis. Sci. 2024, 69, 2927–2936. [Google Scholar] [CrossRef]
- Meyer, A.; Chan, S.S.M.; Touvier, M.; Julia, C.; Tjønneland, A.; Kyrø, C.; Dahm, C.C.; Katzke, V.A.; Schulze, M.B.; Tumino, R.; et al. Inflammatory Potential of the Diet and Risk of Crohn’s Disease and Ulcerative Colitis. Aliment. Pharmacol. Ther. 2025, 61, 1032–1042. [Google Scholar] [CrossRef]
- Narula, N.; Wong, E.C.L.; Dehghan, M.; Mente, A.; Rangarajan, S.; Lanas, F.; Lopez-Jaramillo, P.; Rohatgi, P.; Lakshmi, P.V.M.; Varma, R.P.; et al. Association of ultra-processed food intake with risk of inflammatory bowel disease: Prospective cohort study. BMJ 2021, 374, n1554. [Google Scholar] [CrossRef] [PubMed]
- Raoul, P.; Cintoni, M.; Palombaro, M.; Basso, L.; Rinninella, E.; Gasbarrini, A.; Mele, M.C. Food Additives, a Key Environmental Factor in the Development of IBD through Gut Dysbiosis. Microorganisms 2022, 10, 167. [Google Scholar] [CrossRef]
- Kaplan, G.G.; Windsor, J.W.; Crain, J.; Barrett, L.; Bernstein, C.N.; Bitton, A.; Chauhan, U.; Coward, S.; Fowler, S.; Ghia, J.E.; et al. Impact of COVID-19 & Inflammatory Bowel Disease in Canada: A Knowledge Translation Strategy. J. Can. Assoc. Gastroenterol. 2021, 4, S10–S19. [Google Scholar] [CrossRef]
- Baldassano, R.N.; Piccoli, D.A. Inflammatory bowel disease in children and adolescents. Gastroenterol. Clin. N. Am. 1999, 28, 445–458. [Google Scholar] [CrossRef]
- Kaplan, G.; Ng, S. Understanding and Preventing the Global Increase of Inflammatory Bowel Disease. Gastroenterology 2017, 152, 313. [Google Scholar] [CrossRef]
- Kuenzig, M.E.; Fung, S.G.; Marderfeld, L.; Mak, J.W.; Kaplan, G.G.; Ng, S.C.; Wilson, D.C.; Cameron, F.; Henderson, P.; Kotze, P.G.; et al. Twenty-first century trends in the global epidemiology of pediatric onset inflammatory bowel disease: Systematic review. Gastroenterology 2022, 162, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Russell, L.A.; Balart, M.T.; Serrano, P.; Armstrong, D.; Pinto-Sanchez, M.I. The complexities of approaching nutrition in inflammatory bowel disease: Current recommendations and future directions. Nutr. Rev. 2022, 80, 215–229. [Google Scholar] [CrossRef]
- Melton, S.L.; Day, A.S.; Bryant, R.V.; Halmos, E.P. Revolution in diet therapy for inflammatory bowel disease. JGH Open 2024, 8, e13097. [Google Scholar] [CrossRef]
- Sumi, R.; Nakajima, K.; Iijima, H.; Wasa, M.; Shinzaki, S.; Nezu, R.; Inoue, Y.; Ito, T. Influence of nutritional status on the therapeutic effect of infliximab in patients with Crohn’s disease. Surg. Today 2016, 46, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Ishige, T. Growth failure in pediatric onset inflammatory bowel disease: Mechanisms, epidemiology, and management. Transl. Pediatr. 2019, 8, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.; Sousa, U.H.; Reis, T.L.M.; Santana, G.O. Nutritional status as a predictor of hospitalization in inflammatory bowel disease: A review. World J. Gastrointest. Pharmacol. Ther. 2019, 10, 50–56. [Google Scholar] [CrossRef]
- Takaoka, A.; Sasaki, M.; Nakanishi, N.; Kurihara, M.; Ohi, A.; Bamba, S.; Andoh, A. Nutritional Screening and Clinical Outcome in Hospitalized Patients with Crohn’s Disease. Ann. Nutr. Metab. 2017, 71, 266–272. [Google Scholar] [CrossRef]
- Pulley, J.; Todd, A.; Flatley, C.; Begun, J. Malnutrition and quality of life among adult inflammatory bowel disease patients. J. Gastroenterol. Hepatol. 2020, 4, 454–460. [Google Scholar] [CrossRef]
- Brown, S.C.; Whelan, K.; Frampton, C.; Wall, C.L.; Gearry, R.B.; Day, A.S. Food-Related Quality of Life in Children and Adolescents with Crohn’s Disease. Inflamm. Bowel Dis. 2022, 281, 838–1843. [Google Scholar] [CrossRef]
- Day, A.S.; Ledder, O.; Leach, S.T.; Lemberg, D.A. Crohn’s and colitis in children and adolescents. World J. Gastroenterol. 2012, 18, 5862–5869. [Google Scholar] [CrossRef] [PubMed]
- Gasparetto, M.; Guariso, G. Crohn’s disease and growth deficiency in children and adolescents. World J. Gastroenterol. 2014, 20, 13219–13233. [Google Scholar] [CrossRef] [PubMed]
- El Matary, W. Transition of children with inflammatory bowel disease: Big task, little evidence. World J. Gastroenterol. 2009, 15, 3744–3747. [Google Scholar] [CrossRef] [PubMed]
- Gerasimidis, K.; McGrogan, P.; Edwards, C.A. The aetiology and impact of malnutrition in paediatric inflammatory bowel disease. J. Hum. Nutr. Diet. 2011, 24, 313–326. [Google Scholar] [CrossRef]
- Massironi, S.; Rossi, R.E.; Cavalcoli, F.A.; Della Valle, S.; Fraquelli, M.; Conte, D. Nutritional deficiencies in inflammatory bowel disease: Therapeutic approaches. Clin. Nutr. 2013, 32, 904–910. [Google Scholar] [CrossRef]
- Sikora, S.K.; Spady, D.; Prosser, C.; El-Matary, W. Trace elements and vitamins at diagnosis in pediatric-onset inflammatory bowel disease. Clin. Pediatr. 2011, 50, 488–492. [Google Scholar] [CrossRef]
- Miele, E.; Shamir, R.; Aloi, M.; Assa, A.; Braegger, C.; Bronsky, J.; de Ridder, L.; Escher, J.C.; Hojsak, I.; Kolaček, S.; et al. Nutrition in Pediatric Inflammatory Bowel Disease: A Position Paper on Behalf of the Porto Inflammatory Bowel Disease Group of the European Society of Pediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 687–708. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Ockenga, J.; Eshraghian, A.; Barazzoni, R.; Busetto, L.; Campmans-Kuijpers, M.; Cardinale, V.; Chermesh, I.; Kani, H.T.; Khannoussi, W.; et al. Practical guideline on obesity care in patients with gastrointestinal and liver diseases-Joint ESPEN/UEG guideline. Clin. Nutr. 2023, 42, 987–1024. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, C.; Dong, W. Adjunctive Therapeutic Effects of Micronutrient Supplementation in Inflammatory Bowel Disease. Front. Immunol. 2023, 14, 1143123. [Google Scholar] [CrossRef]
- Jarmakiewicz-Czaja, S.; Ferenc, K.; Sokal-Dembowska, A.; Filip, R. Nutritional Support: The Use of Antioxidants in Inflammatory Bowel Disease. Int. J. Mol. Sci. 2024, 25, 4390. [Google Scholar] [CrossRef]
- Moustarah, F.; Daley, S.F. Dietary Iron. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK54096 (accessed on 8 January 2024).
- Herrera-deGuise, C.; Casellas, F.; Robles, V.; Navarro, E.; Borruel, N. Iron Deficiency in the Absence of Anemia Impairs the Perception of Health-Related Quality of Life of Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2016, 22, 1450–1455. [Google Scholar] [CrossRef] [PubMed]
- Mahadea, D.; Adamczewska, E.; Ratajczak, A.E.; Rychter, A.M.; Zawada, A.; Eder, P.; Dobrowolska, A.; Krela-Kaźmierczak, I. Iron Deficiency Anemia in Inflammatory Bowel Diseases a Narrative Review. Nutrients 2021, 13, 4008. [Google Scholar] [CrossRef] [PubMed]
- Shah, Y.; Patel, D.; Khan, N. Iron deficiency anemia in IBD: An overlooked comorbidity. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Ocansey, D.K.W.; Yuan, J.; Wei, Z.; Mao, F.; Zhang, Z. Role of ferroptosis in the pathogenesis and as a therapeutic target of inflammatory bowel disease. Int. J. Mol. Med. 2023, 51, 53. [Google Scholar] [CrossRef]
- Xu, S.; He, Y.; Lin, L.; Chen, P.; Chen, M.; Zhang, S. The emerging role of ferroptosis in intestinal disease. Cell Death Dis. 2021, 12, 289. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, J.; Ma, J.; Liu, J.; Wang, F.; Tang, X. Inhibiting Ferroptosis: A Novel Approach for Ulcerative Colitis Therapeutics. Oxid. Med. Cell Longev. 2022, 26, 9678625. [Google Scholar] [CrossRef]
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; World Health Organization: Geneva, Switzerland, 2011. Available online: https://iris.who.int/handle/10665/85839 (accessed on 17 April 2025).
- Martinelli, M.; Fioretti, M.T.; Aloi, M.; Alvisi, P.; Arrigo, S.; Banzato, C.; Bramuzzo, M.; Campanozzi, A.; Civitelli, F.; Knafelz, D.; et al. Diagnosis and management of anemia in pediatric inflammatory bowel diseases: Clinical practice guidelines on behalf of the SIGENP IBD Working group. Dig. Liver Dis. 2024, 56, 1257–1269. [Google Scholar] [CrossRef]
- Song, S.M.; Kim, Y.; Oh, S.H. Nutritional status and growth in Korean children with Crohn’s disease: A single-center study. Gut Liver 2014, 8, 500–507. [Google Scholar] [CrossRef]
- Wiskin, A.E.; Fleming, B.J.; Wootton, S.A.; Beattie, R.M. Anaemia and iron deficiency in chil dren with inflammatory bowel disease. J. Crohns Colitis 2012, 6, 687–691. [Google Scholar] [CrossRef]
- Rempel, J.; Grover, K.; El-Matary, W. Micronutrient deficiencies and anemia in children with inflammatory bowel disease. Nutrients 2021, 13, 236. [Google Scholar] [CrossRef]
- Smith, J.; Jacobson-Kelly, A.; Donegan, A.; Boyle, B.; Maltz, R.M.; Michel, H.K.; Dotson, J.L. Diagnosis and Treatment of Iron Deficiency and Anemia in Youth with Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2023, 1, 313–318. [Google Scholar] [CrossRef] [PubMed]
- D’Arcangelo, G.; Distante, M.; Veraldi, S.; Tarani, F.; Musto, F.; Aloi, M. Natural History of Anemia and Efficacy and Safety of Oral Iron Therapy in Children Newly Diagnosed with Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2023, 1, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Goodhand, J.R.; Kamperidis, N.; Rao, A.; Laskaratos, F.; McDermott, A.; Wahed, M.; Naik, S.; Croft, N.M.; Lindsay, J.O.; Sanderson, I.R.; et al. Prevalence and management of anemia in children, adolescents, and adults with inflammatory bowel disease. Inflamm. Bowel Dis. 2012, 18, 513–519. [Google Scholar] [CrossRef]
- Oustamanolakis, P.; Koutroubakis, I.E.; Messaritakis, I.; Malliaraki, N.; Sfiridaki, A.; Kouromalis, E.A. Serum hepcidin and prohepcidin concentrations in inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2011, 23, 262–268. [Google Scholar] [CrossRef]
- Revel-Vilk, S.; Tamary, H.; Broide, E.; Zoldan, M.; Dinari, G.; Zahavi, I.; Yaniv, I.; Shamir, R. Serum transferrin receptor in children and adolescents with inflammatory bowel disease. Eur. J. Pediatr. 2000, 159, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Hartman, C.; Marderfeld, L.; Davidson, K.; Mozer-Glassberg, Y.; Poraz, I.; Silbermintz, A.; Shamir, R. Food intake adequacy in children and adolescents with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 437–444. [Google Scholar] [CrossRef]
- Gatti, S.; Vallorani, M.; Quattrini, S.; Aloi, M.; Bramuzzo, M.; Felici, E.; Zuin, G.; Catassi, G.N.; Grazian, F.; Ciacchini, B.; et al. Dietary habits in Italian children with inflammatory bowel disease: A case-control multicenter study. J. Pediatr. Gastroenterol. Nutr. 2024, 79, 602–609. [Google Scholar] [CrossRef]
- Goyal, R.K.; Grossman, A. Anemia in Children with Inflammatory Bowel Disease: A Position Paper by the IBD Committee of the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 563–582. [Google Scholar] [CrossRef] [PubMed]
- Dignass, A.U.; Gasche, C.; Bettenworth, D.; Birgegård, G.; Danese, S.; Gisbert, J.P.; Gomollon, F.; Iqbal, T.; Katsanos, K.; Koutroubakis, I.; et al. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. J. Crohn’s Colitis 2015, 9, 211–222. [Google Scholar] [CrossRef]
- Fuqua, B.K.; Vulpe, C.D.; Anderson, G.J. Intestinal iron absorption. J. Trace Elem. Med. Biol. 2012, 26, 115–119. [Google Scholar] [CrossRef]
- Goldberg, N.D. Iron deficiency anemia in patients with inflammatory bowel disease. Clin. Exp. Gastroenterol. 2013, 4, 61–70. [Google Scholar] [CrossRef]
- Nielsen, O.H.; Ainsworth, M.; Coskun, M.; Weiss, G. Management of Iron-Deficiency Anemia in Inflammatory Bowel Disease A Systematic Review. Medicine 2015, 12, e963. [Google Scholar] [CrossRef]
- Auerbach, M.; Adamson, J.W. How we diagnose and treat iron deficiency anemia. Am. J. Hematol. 2016, 91, 31–38. [Google Scholar] [CrossRef]
- Ganzoni, A.M. Intravenous iron-dextran: Therapeutic and experimental possibilities. Schweiz. Med. Wochenschr. 1970, 100, 301–303. [Google Scholar] [PubMed]
- Maxfield, L.; Shukla, S.; Crane, J.S. Zinc Deficiency. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK493231 (accessed on 20 February 2025).
- Lansdown, A.B.; Mirastschijski, U.; Stubbs, N.; Scanlon, E.; Agren, M.S. Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair. Regen. 2007, 15, 2–16. [Google Scholar] [CrossRef]
- Shreenath, A.P.; Hashmi, M.F.; Dooley, J. Selenium Deficiency. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482260/ (accessed on 25 February 2025).
- Khan, K.M.; Jialal, I. Folic Acid Deficiency. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK535377/ (accessed on 25 February 2025).
- Ankar, A.; Kumar, A. Vitamin B12 Deficiency. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441923 (accessed on 25 February 2025).
- Hodge, C.; Taylor, C. Vitamin A Deficiency. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK567744/ (accessed on 2 January 2023).
- Miller, M.; Humphrey, J.; Johnson, E.; Marinda, E.; Brookmeyer, R.; Katz, J. Why do children become vitamin A deficient? J. Nutr. 2002, 132, 2867S–2880S. [Google Scholar] [CrossRef] [PubMed]
- McEldrew, E.P.; Lopez, M.J.; Milstein, H. Vitamin A. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482362 (accessed on 19 February 2025).
- Abdullah, M.; Jamil, R.T.; Attia, F.N. Vitamin C (Ascorbic Acid). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499877/ (accessed on 1 May 2023).
- Szewczyk, K.; Chojnacka, A.; Górnicka, M. Tocopherols and tocotrienols-bioactive dietary compounds, what is certain, what is doubt. Int. J. Mol. Sci. 2021, 22, 6222. [Google Scholar] [CrossRef] [PubMed]
- Kemnic, T.R.; Coleman, M. Vitamin E Deficiency. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK519051 (accessed on 25 February 2025).
- Kaur, J.; Khare, S.; Sizar, O.; Givler, A. Vitamin D Deficiency. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK532266/ (accessed on 15 February 2025).
- Reddy, P.; Jialal, I. Biochemistry, Fat Soluble Vitamins. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK534869/ (accessed on 19 September 2022).
- Yilmaz, B.; Li, H. Gut Microbiota and Iron: The Crucial Actors in Health and Disease. Pharmaceuticals 2018, 11, 98. [Google Scholar] [CrossRef]
- Liu, H.; Lu, N.; Cui, M.; Zhang, M. Role of epigenetic modifications mediated by vitamins and trace elements in inflammatory bowel disease. Epigenomics 2023, 15, 839–843. [Google Scholar] [CrossRef]
- Chang, Y.; Wu, X.; Lu, S.; Du, J.; Long, Y.; Zhu, Y.; Qin, H. Engineered procyanidin-Fe nanoparticle alleviates intestinal inflammation through scavenging ROS and altering gut microbiome in colitis mice. Front. Chem. 2023, 11, 1089775. [Google Scholar] [CrossRef]
- Fritz, J.; Walia, C.; Elkadri, A.; Pipkorn, R.; Dunn, R.K.; Sieracki, R.; Goday, P.S.; Cabrera, J.M. A Systematic Review of Micronutrient Deficiencies in Pediatric Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2019, 25, 445–459. [Google Scholar] [CrossRef] [PubMed]
- Zupo, R.; Sila, A.; Castellana, F.; Bringiotti, R.; Curlo, M.; De Pergola, G.; De Nucci, S.; Giannelli, G.; Mastronardi, M.; Sardone, R. Prevalence of Zinc Deficiency in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 4052. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, J.; Arai, K.; Kudo, T.; Nambu, R.; Tajiri, H.; Aomatsu, T.; Abe, N.; Kakiuchi, T.; Hashimoto, K.; Sogo, T. Serum Zinc and Selenium in Children with Inflammatory Bowel Disease: A Multicenter Study in Japan. Dig. Dis. Sci. 2022, 67, 2485–2491. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, B. The Impact of Zinc and Zinc Homeostasis on the Intestinal Mucosal Barrier and Intestinal Diseases. Biomolecules 2022, 12, 900. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.N.; Wilson, A.; Church, B.B.; Ehman, S.; Roberts, W.L.; McMillin, G.A. Pediatric reference intervals for serum copper and zinc. Clin. Chim. Acta 2012, 22, 612–615. [Google Scholar] [CrossRef]
- Ghasemi, A.; Zahediasl, S.; Hosseini-Esfahani, F.; Syedmoradi, L.; Azizi, F. Pediatric reference values for serum zinc concentration in Iranian subjects and an assessment of their dietary zinc intakes. Clin. Biochem. 2012, 45, 1254–1256. [Google Scholar] [CrossRef]
- Alves, C.X.; de Brito, N.J.N.; Vermeulen, K.M.; Lopes, M.M.G.D.; França, M.C.; Bruno, S.S.; Almeida, M.D.G.; Brandão-Neto, J. Serum zinc reference intervals and its relationship with dietary, functional, and biochemical indicators in 6- to 9-year-old healthy children. Food Nutr. Res. 2016, 60, 30157. [Google Scholar] [CrossRef]
- Gibson, R.S.; Hess, S.Y.; Hotz, C.; Brown, K.H. Indicators of zinc status at the population level: A review of the evidence. Br. J. Nutr. 2008, 99, S14–S23. [Google Scholar] [CrossRef]
- Siva, S.; Rubin, D.T.; Gulotta, G.; Wroblewski, K.; Pekow, J. Zinc Deficiency is Associated with Poor Clinical Outcomes in Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 152–157. [Google Scholar] [CrossRef]
- Sturniolo, G.C.; Di Leo, V.; Ferronato, A.; D’Odorico, A.; D’Incà, R. Zinc supplementation tightens “leaky gut” in Crohn’s disease. Inflamm. Bowel Dis. 2001, 7, 94–98. [Google Scholar] [CrossRef]
- Sakurai, K.; Furukawa, S.; Katsurada, T.; Otagiri, S.; Yamanashi, K.; Nagashima, K.; Onishi, R.; Yagisawa, K.; Nishimura, H.; Ito, T.; et al. Effectiveness of administering zinc acetate hydrate to patients with inflammatory bowel disease and zinc deficiency: A retrospective observational two-center study. Intest. Res. 2022, 20, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Itagaki, M.; Saruta, M.; Saijo, H.; Mitobe, J.; Arihiro, S.; Matsuoka, M.; Kato, T.; Ikegami, M.; Tajiri, H. Efficacy of zinc-carnosine chelate compound, Polaprezinc, enemas in patients with ulcerative colitis. Scand. J. Gastroenterol. 2014, 49, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Griffin, I.J.; Kim, S.C.; Hicks, P.D.; Liang, L.K.; Abrams, S.A. Zinc metabolism in adolescents with Crohn’s disease. Pediatr. Res. 2004, 56, 235–239. [Google Scholar] [CrossRef]
- Rayman, M.P. The importance of selenium to human health. Lancet 2000, 356, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lin, T.; Wang, W.; Jing, F.; Sheng, J. Selenium deficiency in inflammatory bowel disease: A comprehensive meta-analysis. Heliyon 2024, 10, e40139. [Google Scholar] [CrossRef]
- Gîlcă-Blanariu, G.E.; Diaconescu, S.; Ciocoiu, M.; Stefanescu, G. New insights into the role of trace elements in IBD. Biomed. Res. Int. 2018, 2018, 1813047. [Google Scholar] [CrossRef]
- Lockitch, G. Selenium: Clinical signifcance and analytical concepts. Crit. Rev. Clin. Lab. Sci. 1989, 27, 483–541. [Google Scholar] [CrossRef]
- Han, Y.M.; Yoon, H.; Lim, S.; Sung, M.K.; Shin, C.M.; Park, Y.S.; Kim, N.; Lee, D.H.; Kim, J.S. Risk factors for vitamin D, zinc, and selenium deficiencies in Korean patients with inflammatory bowel disease. Gut Liver 2017, 11, 363–369. [Google Scholar] [CrossRef]
- Castro Aguilar-Tablada, T.; Navarro-Alarcón, M.; Quesada Granados, J.; Samaniego Sanchez, C.; Rufian-Henare, J.A.; Nogueras-Lopez, F. Ulcerative Colitis and Crohn’s disease are associated with decreased serum selenium concentrations and increased cardiovascular risk. Nutrients 2016, 8, 16. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, Y.; Guo, H.; Jabir, M.S.; Liu, X.; Cui, W.; Li, D. Associations between Folate and Vitamin B12 Levels and Inflammatory Bowel Disease: A Meta-Analysis. Nutrients 2017, 9, 382. [Google Scholar] [CrossRef]
- Jølving, L.R.; Zegers, F.D.; Lund, K.; Wod, M.; Nielsen, J.; Qvist, N.; Nielsen, R.G.; Nørgård, B.M. Children and Adolescents Diagnosed with Inflammatory Bowel Disease Are at Increased Risk of Developing Diseases with a Possible Autoimmune Pathogenesis. Inflamm. Bowel Dis. 2025, 6, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Husby, S.; Koletzko, S.; Korponay-Szabó, I.; Kurppa, K.; Mearin, M.L.; Ribes-Koninckx, C.; Shamir, R.; Troncone, R.; Auricchio, R.; Castillejo, G.; et al. Euro-pean Society Paedi-atric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 141–156. [Google Scholar] [CrossRef]
- Yakut, M.; Ustun, Y.; Kabacam, G.; Soykan, I. Serum vitamin B12 and folate status in patients with inflammatory bowel diseases. Eur. J. Intern. Med. 2010, 21, 320–323. [Google Scholar] [CrossRef]
- Heyman, M.B.; Garnett, E.A.; Shaikh, N.; Huen, K.; Jose, F.A.; Harmatz, P.; Winter, H.S.; Baldassano, R.N.; Cohen, S.A.; Gold, B.D.; et al. Folate concentrations in pediatric patients with newly diagnosed inflammatory bowel disease. Am. J. Clin. Nutr. 2009, 89, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Al Mutairi, F. Hyperhomocysteinemia: Clinical Insights. J. Cent. Nerv. Syst. Dis. 2020, 12, 1179573520962230. [Google Scholar] [CrossRef]
- Okada, A.; Koike, H.; Nakamura, T.; Watanabe, H.; Sobue, G. Slowly progressive folate-deficiency myelopathy: Report of a case. J. Neurol. Sci. 2014, 336, 273–275. [Google Scholar] [CrossRef]
- Reynolds, E.H. The neurology of folic acid deficiency. Hand. Clin. Neurol. 2014, 120, 927–943. [Google Scholar]
- Cordaro, M.; Siracusa, R.; Fusco, R.; Cuzzocrea, S.; Di Paola, R.; Impellizzeri, D. Involvements of Hyperhomocysteinemia in Neurological Disorders. Metabolites 2021, 11, 37. [Google Scholar] [CrossRef]
- Cammarota, T.; Ribaldone, D.G.; Resegotti, A.; Repici, A.; Danese, S.; Fiorino, G.; Sarno, A.; Robotti, D.; Debani, P.; Bonenti, G.; et al. Role of bowel ultrasound as a predictor of surgical recurrence of Crohn’s disease. Scand. J. Gastroenterol. 2013, 48, 552–555. [Google Scholar] [CrossRef]
- Battat, R.; Kopylov, U.; Szilagyi, A.; Saxena, A.; Rosenblatt, D.S.; Warner, M.; Bessissow, T.; Seidman, E.; Bitton, A. Vitamin B12 deficiency in inflammatory bowel disease: Prevalence, risk factors, evaluation, and management. Inflamm. Bowel Dis. 2014, 20, 1120–1128. [Google Scholar] [CrossRef]
- Costa, C.O.; Carrilho, F.J.; Nunes, V.S.; Sipahi, A.M.; Rodrigues, M. A snapshot of the nutritional status of Crohn’s disease among adolescents in Brazil: A prospective cross-sectional study. BMC Gastroenterol. 2015, 15, 172. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, S.; Mark, A.G.; Rinawi, F.; Shamir, R.; Assa, A. Micronutrient Deficiencies in Chil-dren with Inflammatory Bowel Diseases. Nutr. Clin. Pract. 2020, 35, 315–322. [Google Scholar] [CrossRef]
- Tugba-Kartal, A.; Cagla-Mutlu, Z. Comparison of Sublingual and Intramuscular Administration of Vitamin B12 for the Treatment of Vitamin B12 Deficiency in Children. Rev. Investig. Clin. Organo Hosp. Enferm. Nutr. 2020, 72, 380–385. [Google Scholar] [CrossRef]
- Erkelens, M.N.; Mebius, R.E. Retinoic Acid and Immune Homeostasis: A Balancing Act. Trend Immunol. 2017, 38, 168–180. [Google Scholar] [CrossRef]
- Soares-Mota, M.; Silva, T.A.; Gomes, L.M.; Pinto, M.A.S.; Mendonça, L.M.C.; Farias, M.L.F.; Nunes, T.; Ramalho, A.; Zaltman, C. High prevalence of vitamin A deficiency in Crohn’s disease patients according to serum retinol levels and the relative dose-response test. World J. Gastroenterol. 2015, 21, 1614–1620. [Google Scholar] [CrossRef]
- Hashemi, J.; Asadi, J.; Amiriani, T.; Besharat, S.; Roshandel, G.R.; Joshaghani, H.R. Serum vitamins A and E deficiencies in patients with inflammatory bowel disease. Saudi Med. J. 2013, 34, 432–434. [Google Scholar] [PubMed]
- Alkhouri, R.H.; Hashmi, H.; Baker, R.D.; Gelfond, D.; Baker, S.S. Vitamin and mineral status in patients with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Bousvaros, A.; Zurakowski, D.; Duggan, C.; Law, T.; Rifai, N.; Goldberg, N.E.; Leichtner, A.M. Vitamins A and E serum levels in children and young adults with inflammatory bowel disease: Effect of disease activity. J. Pediatr. Gastroenterol. Nutr. 1998, 26, 129–135. [Google Scholar]
- Ghishan, F.K.; Kiela, P.R. Vitamins and Minerals in Inflammatory Bowel Disease. Gastroenterol. Clin. N. Am. 2017, 46, 797–808. [Google Scholar] [CrossRef]
- Feng, R.; Fang, L.; Cheng, Y.; He, X.; Jiang, W.; Dong, R.; Shi, H.; Jiang, D.; Sun, L.; Wang, D. Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus). Sci. Rep. 2015, 5, 10131. [Google Scholar] [CrossRef]
- Weisshof, R.; Chermesh, I. Micronutrient deficiencies in inflammatory bowel disease. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Schleicher, R.L.; Carroll, M.D.; Ford, E.S.; Lacher, D.A. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003–2004 National Health and Nutrition Examination Survey (NHANES). Am. J. Clin. Nutr. 2009, 90, 1252–1263. [Google Scholar] [CrossRef] [PubMed]
- Leger, D. Scurvy: Reemergence of nutritional deficiencies. Can. Fam. Physician. 2008, 54, 1403–1406. [Google Scholar] [PubMed]
- Gordon, B.L.; Galati, J.S.; Yang, S.; Longman, R.S.; Lukin, D.; Scherl, E.J.; Battat, R. Prevalence and factors associated with vitamin C deficiency in inflammatory bowel disease. World J. Gastroenterol. 2022, 28, 4834–4845. [Google Scholar] [CrossRef]
- Filippi, J.; Al-Jaouni, R.; Wiroth, J.B.; Hébuterne, X.; Schneider, S.M. Nutritional deficiencies in patients with Crohn’s disease in remission. Inflamm. Bowel Dis. 2006, 12, 185–191. [Google Scholar] [CrossRef]
- Granger, M.; Eck, P. Dietary Vitamin C in Human Health. Adv. Food Nutr. Res. 2018, 83, 281–310. [Google Scholar]
- Abraham, A.; Kattoor, A.J.; Saldeen, T.; Mehta, J.L. Vitamin E and its anticancer effects. Crit. Rev. Food Sci. 2019, 59, 2831–2838. [Google Scholar] [CrossRef]
- Mohd Zaffarin, A.S.; Ng, S.F.; Ng, M.H.; Hassan, H.; Alias, E. Pharmacology and pharmacokinetics of vitamin E: Nanoformulations to enhance bioavailability. Int. J. Nanomed. 2020, 15, 9961–9974. [Google Scholar] [CrossRef]
- Ballini, A.; Santacroce, L.; Cantore, S.; Bottalico, L.; Dipalma, G.; Tpi, S.; Saini, R.; De Vito, D.; Inchingolo, F. Probiotics efficacy on oxidative stress values in inflammatory bowel disease: A randomized double-blinded placebo-controlled pilot study. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 373–381. [Google Scholar] [CrossRef]
- Saito, Y. Lipid peroxidation products as a mediator of toxicity and adaptive re-sponse-the regulatory role of selenoprotein and vitamin E. Arch. Biochem. Biophys. 2021, 703, 108840. [Google Scholar] [CrossRef]
- Guarneiri, L.L.; Paton, C.M.; Cooper, J.A. Pecan-enriched diets decrease postprandial lipid peroxidation and increase total antioxidant capacity in adults at-risk for cardiovascular disease. Nutr. Res. 2021, 93, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Bitiren, M.; Karakilcik, A.Z.; Zerin, M.; Ozardali, I.; Selek, S.; Nazligül, Y.; Ozgonul, A.; Musa, D.; Uzunkoy, A. Protective effects of selenium and vitamin E combination on experimental colitis in blood plasma and colon of rats. Biol. Trace Elem. Res. 2010, 136, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.Y.; Nakatsu, C.H.; Jones-Hall, Y.; Kozik, A.; Jiang, Q. Vitamin E alpha- and gamma-tocopherol mitigate colitis, protect intestinal barrier function and modulate the gut microbiota in mice. Free Radic. Biol. Med. 2021, 163, 180–189. [Google Scholar] [CrossRef]
- Fan, X.; Yin, J.; Yin, J.; Weng, X.; Ding, R. Comparison of the anti-inflammatory effects of vitamin E and vitamin D on a rat model of dextran sulfate sodium-induced ulcerative colitis. Exp. Ther. Med. 2023, 25, 98. [Google Scholar] [CrossRef]
- Péter, S.; Friedel, A.; Roos, F.F.; Wyss, A.; Eggersdorfer, M.; Hoffmann, K.; Weber, P. A systematic review of global alpha-tocopherol status as assessed by nutritional intake levels and blood serum concentrations. Int. J. Vitam. Nutr. Res. 2015, 85, 261–281. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ruan, X.; Yuan, S.; Deng, M.; Zhang, H.; Sun, J.; Yu, L.; Satsangi, J.; Larsson, S.C.; Therdoratou, E.; et al. Antioxidants, minerals and vitamins in relation to Crohn’s disease and ulcerative colitis: A mendelian randomization study. Aliment. Pharmacol. Ther. 2023, 57, 399–408. [Google Scholar] [CrossRef]
- Vagianos, K.; Bector, S.; McConnell, J.; Bernstein, C.N. Nutrition assessment of patients with inflammatory bowel disease. J. Parenter. Enter. Nutr. 2007, 31, 311–319. [Google Scholar] [CrossRef]
- Fabisiak, N.; Fabisiak, A.; Watala, C.; Fichna, J. Fat-soluble vitamin deficiencies and in-flammatory bowel disease: Systematic review and meta-analysis. J. Clin. Gastroenterol. 2017, 51, 878–889. [Google Scholar] [CrossRef]
- Vernia, F.; Valvano, M.; Longo, S.; Cesaro, N.; Viscido, A.; Latella, G. Vitamin D in Inflammatory Bowel Diseases. Mechanisms of Action and Therapeutic Implications. Nutrients 2022, 14, 269. [Google Scholar] [CrossRef]
- Giustina, A.; Di Filippo, L.; Allora, A.; Bikle, D.D.; Cavestro, G.M.; Feldman, D.; Latella, G.; Minisola, S.; Napoli, N.; Trasciatti, S.; et al. Vitamin D and Malabsorptive Gastrointestinal Conditions: A Bidirectional Relationship? Rev. Endocr. Metab. Disord. 2023, 24, 121–138. [Google Scholar] [CrossRef]
- Del Pinto, R.; Ferri, C.; Cominelli, F. Vitamin D Axis in Inflammatory Bowel Diseases: Role, Current Uses and Future Perspectives. Int. J. Mol. Sci. 2017, 18, 2360. [Google Scholar] [CrossRef] [PubMed]
- Fakhoury, H.M.A.; Kvietys, P.R.; AlKattan, W.; Anouti, F.A.; Elahi, M.A.; Karras, S.N.; Grant, W.B. Vitamin D and intestinal homeostasis: Barrier, microbiota, and immune modulation. J. Steroid Biochem. Mol. Biol. 2020, 200, 105663. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, V.; White, J.H. Vitamin D signaling in intestinal innate immunity and homeostasis. Mol. Cell. Endocrinol. 2017, 453, 68–78. [Google Scholar] [CrossRef]
- Yamamoto, E.A.; Jørgensen, T.N. Relationships Between Vitamin D, Gut Microbiome, and Systemic Autoimmunity. Front. Immunol. 2020, 10, 3141. [Google Scholar] [CrossRef] [PubMed]
- Pludowski, P.; Holick, M.F.; Grant, W.B.; Konstantynowicz, J.; Mascarenhas, M.R.; Haq, A.; Povoroznyuk, V.; Balatska, N.; Barbosa, A.P.; Karonova, T.; et al. Vitamin D supplementation guidelines. J. Steroid. Biochem. Mol. Biol. 2018, 175, 125–135. [Google Scholar] [CrossRef]
- Holik, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef]
- Hashash, J.G.; Elkins, J.; Lewis, J.D.; Binion, D.G. AGA Clinical Practice Update on Diet and Nutritional Therapies in Patients with Inflammatory Bowel Disease: Expert Review. Gastroenterology 2024, 166, 521–532. [Google Scholar] [CrossRef]
- Charoenngam, N.; Shirvani, A.; Kalajian, T.A.; Song, A.; Holick, M.F. The Effect of Various Doses of Oral Vitamin D3 Supplementation on Gut Microbiota in Healthy Adults: A Randomized, Double-blinded, Dose-response Study. Anticancer. Res. 2020, 40, 551–556. [Google Scholar] [CrossRef]
- El-Matary, W.; Sikora, S.; Spady, D. Bone mineral density, vitamin D, and disease activity in children newly diagnosed with inflammatory bowel disease. Dig. Dis. Sci. 2011, 56, 825–829. [Google Scholar] [CrossRef]
- Sledzińska, K.; Landowski, P.; Żmijewski, M.A.; Kamińska, B.; Kowalski, K.; Liberek, A. Diet, Sun, Physical Activity and Vitamin D Status in Children with Inflammatory Bowel Disease. Nutrients 2022, 28, 1029. [Google Scholar] [CrossRef]
- Jasielska, M.; Grzybowska-Chlebowczyk, U. Hypocalcemia and Vitamin D Deficiency in Children with Inflammatory Bowel Diseases and Lactose Intolerance. Nutrients 2021, 13, 2583. [Google Scholar] [CrossRef] [PubMed]
- Pappa, H.M.; Gordon, C.M.; Saslowsky, T.M.; Zholudev, A.; Horr, B.; Shih, M.; Richard, J.; Grand, R.J. Vitamin D status in children and young adults with inflammatory bowel disease. Pediatrics 2006, 118, 1950–1961. [Google Scholar] [CrossRef] [PubMed]
- Wellington, V.N.A.; Sundaram, V.L.; Singh, S.; Sundaram, U. Dietary Supplementation with Vitamin D, Fish Oil or Resveratrol Modulates the Gut Microbiome in Inflammatory Bowel Disease. Int. J. Mol. Sci. 2021, 23, 206. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.A.; Rodney Harris, R.M.; Lucas, R.M. Low Sun Exposure and Vitamin D Deficiency as Risk Factors for Inflammatory Bowel Disease, with a Focus on Childhood Onset. Photochem. Photobiol. 2019, 95, 105–118. [Google Scholar] [CrossRef]
- Levine, A.; Koletzko, S.; Turner, D.; Escher, J.C.; Cucchiara, S.; de Ridder, L.; Kolho, K.L.; Veres, G.; Russell, R.K.; Paerregaard, A.; et al. ESPGHAN revised Porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 795–806. [Google Scholar] [CrossRef]
- IBD Working Group of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition. Inflammatory bowel disease in children and adolescents: Recommendations for diagnosis-The Porto criteria. J. Pediatr. Gastroenterol. Nutr. 2005, 41, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, A.N. Vitamin D and inflammatory bowel disease. Gastroenterol. Hepatol. 2016, 12, 513–515. [Google Scholar]
- Bischoff, S.C.; Escher, J.; Hébuterne, X.; Kłęk, S.; Krznaric, Z.; Schneider, S.; Shamir, R.; Stardelova, K.; Wierdsma, N.; Wiskin, A.E.; et al. ESPEN practical guideline: Clinical Nutrition in inflammatory bowel disease. Clin. Nutr. 2020, 39, 632–653. [Google Scholar] [CrossRef]
- Varkal, M.A.; Karabocuoglu, M. Efficiency of the sublingual route in treating B12 deficiency in infants. Int. J. Vitam. Nutr. Res. 2023, 93, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Wang, Z.; Zhang, J. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid. Med. Cell. Longev. 2017, 2017, 4535194. [Google Scholar] [CrossRef] [PubMed]
- Piechota-Polanczyk, A.; Fichna, J. Review article: The role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2014, 387, 605–620. [Google Scholar] [CrossRef] [PubMed]
- Gubatan, J.; Chou, N.D.; Nielsen, O.H.; Moss, A.C. Systematic review with meta-analysis: Association of vitamin D status with clinical outcomes in adult patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2019, 50, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- van der Post, S.; Jabbar, K.S.; Birchenough, G.; Arike, L.; Akhtar, N.; Sjovall, H.; Johansson, M.E.; Hansson, G.C. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut 2019, 68, 2142–2151. [Google Scholar] [CrossRef]
- Hlavaty, T.; Krajcovicova, A.; Payer, J. Vitamin D Therapy in Inflammatory Bowel Diseases: Who, in What Form, and How Much? J. Crohn’s Colitis 2015, 9, 198–209. [Google Scholar] [CrossRef]
Micronutrient | References | Clinical Relevance of Deficiency | Laboratory Parameters/Definition | Monitoring | Treatment | Recommended Intake *— Dietary Sources |
---|---|---|---|---|---|---|
Iron | [31,38,39,55,56] | Pallor, asthenia, poor growth, hair loss, sleep disorders, reduced cognitive and physical performance | Hb < 2 SD for age (WHO definition) and ↓ MCV, ↓ SF (<30 ng/mL) and ↓ TS (<20%) or SF 30–100 ng/mL in active disease | Iron status at diagnosis, every 3 months in active disease, every 6–12 months in patients in remission or mild disease | Oral (ferrous salts): 3–6 mg/kg, in inactive/mild disease IV (ferric carboxy maltose): dosage according to Ganzoni formula, # in active IBD and/or moderate-to-severe anemia or previous intolerance to oral iron | PRI: 1–6 years M-F = 7 mg/day 7–11 years M-F = 11 mg/day 12–17 years M = 11 mg/day 12–17 years F = 13 mg/day Sources: Heme-iron: meat, fish, and seafood; non-heme iron: cereals, legumes, and dark green vegetables |
Zinc | [49,57,58] | Impaired growth, dermatitis, impaired vision and taste, compromised immune function | Serum zinc < 70 μg/dL | At diagnosis and annually for patients with CD. In specific situations: ileostomy, surgery, elevated intestinal losses. | Dosage not established for IBD children. A short course (2–4 weeks) of 20–40 mg of elemental zinc is generally sufficient. | PRI: 1–3 years M-F = 4.3 mg/day 4–6 years M-F = 5.5 mg/day 7–10 years M-F = 7.4 mg/day 11–14 years M-F = 10.7 mg/day 15–17 years M = 14.2 mg/day 15–17 years F = 11.9 mg/day Sources: Meat, fish, legumes, nuts. Excess of phytates or oxalates leads to zinc deficiency |
Selenium | [27,59,60] | Muscle pain, weakness, pallor, cardiomiopathy | Serum selenium < 70 μg/L | Not routinely recommended | Dosage not established | AI: 1–3 years M-F = 15 μg/day 4–6 years M-F = 20 μg/day 7–10 years M-F = 35 μg/day 11–14 years M-F = 55 μg/day 15–17 years M-F = 70 μg/day Sources: plant-based foods (Brazil nuts, green vegetables, shiitake and button mushrooms, and various kinds of seeds) |
Folate | [39,60] | Pallor, increased risk of osteoporosis and thrombosis (adults); possible impact on GI inflammation of IBD and growth. | ↓ Hb, ↑ MCV, ↓ serum folate (<2 ng/mL) and RBC folate ↑ homocysteine | Annually in cases with active ileal disease, prior surgery, or on chronic therapy with sulfasalazine, thiopurines, or methotrexate. In every case of macrocytic anemia. | Dosage not established: a daily dose of 1 mg or a weekly dose of 5 mg appears to be sufficient. 5 mg/week orally in all children on MTX treatment. | PRI: 1–3 years M-F = 120 μg DFE/day 4–6 years M-F = 110 μg DFE/day 7–10 years M-F = 200 μg DFE/day 11–14 years M-F = 270 μg DFE/day 15–17 years M-F = 330 μg DFE/day Sources: Lentils, beans, vegetables, leafy greens, and citrus fruits |
Vitamin B12 | [39,61] | Pallor, glossitis, oral ulcers, neurological symptoms | ↓ Hb, ↑ MCV, ↓ vitamin B12 (<200 pg/mL), ↑ MMA and homocysteine | Annually in cases with active ileal disease, prior surgery, UC with ileal pouch or anastomosis, patients on chronic therapy with sulfasalazine, thiopurines, or methotrexate. In every case of macrocytic anemia. | IM B12 therapy in patients with macrocytic anemia without clinical involvement: 250–1000 μg three times a week for 2 weeks, followed by 250 μg weekly until blood count is normal, and then 1 μg every 3 months | AI: 1–6 years M-F = 1.5 μg/day 7–10 years M-F = 2.5 μg/day 11–14 years M-F = 3.5 μg/day 15–17 years M-F = 4 μg/day Sources: Fish, tuna, shellfish, beef, liver, poultry, eggs, and dairy products. |
Vitamin A | [62,63,64] | Night blindness and xerophtalmia, increased frequency of infections, and development of xeroderma and phrynoderma | Serum vitamin A (retinol) < 20 μg/dL | Not routinely recommended in the absence of chronic liver disease | Not established nor recommended supplementation, except for chronic liver disease | PRI: 1–3 years M-F = 250 μg RE/day 4–6 years M-F = 300 μg RE/day 7–10 years M-F = 400 μg RE/day 11–14 years M-F = 600 μg RE/day 15–17 years M = 750 μg RE/day 15–17 years F = 650 μg RE/day Sources: dark leafy greens, orange-colored vegetables, milk products, liver, and fish. |
Vitamin C | [57,65] | Corkscrew hairs, perifollicular hemorrhages, gingival bleeding, fractures, bone reabsorption areas | Serum vitamin C < 0.2 mg/dL | Not routinely recommended | No specific recommendations for IBD 300 mg/day in case of deficiency | PRI: 1–3 years M-F = 15 mg/day 4–6 years M-F = 30 mg/day 7–10 years M-F = 45 mg/day 11–14 years M-F = 70 mg/day 15–17 years M = 100 mg/day 15–17 years F = 90 mg/day Sources: fruits and vegetables (citrus fruits, potatoes, spinach, broccoli, red peppers, strawberries, and tomatoes) |
Vitamin E | [66,67] | Neurological and ocular symptoms (hyporeflexia, decreased night vision, loss/decreased vibratory sense; however, limb and truncal ataxia, muscle weakness) and cardiac arrhythmias. In IBD: increased oxidative stress and consequent inflammation. | Serum vitamin E < 5 mg/L | Not routinely recommended in the absence of chronic liver disease | Not established nor recommended supplementation, except for chronic liver disease | AI: 1–2 years M-F = 6 mg/day 3–9 years M-F = 9 mg/day 10–17 years M = 13 mg/day 10–17 years F = 11 mg/day Sources: Tocopherols: vegetal oils (soybean, corn olive, canola flaxseed, walnut); Tocotrienols: palm and rice bran oil and grains (wheat germ, oats, rice, and corn) |
Vitamin D | [27,68,69] | Malnutrition and delays in growth and puberty; fractures and reduced bone density | Serum vitamin D < 20 ng/mL (or 50 nmol/L) | Routinely recommended in all patients with IBD, at diagnosis and follow-ups | Vitamin D supplementation in IBD children with deficiency. Dosage: standard weight-based dose. High doses (i.e., ≥2000 IU daily or 50,000 IU weekly) and long-term treatment may be necessary to maintain sufficiency. | AI: 1–17 years M-F = 15 μg/day Sources: fatty fish livers, dairy products, fortified food |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galeazzi, T.; Quattrini, S.; Lionetti, E.; Gatti, S. Micronutrient Deficiencies in Pediatric IBD: How Often, Why, and What to Do? Nutrients 2025, 17, 1425. https://doi.org/10.3390/nu17091425
Galeazzi T, Quattrini S, Lionetti E, Gatti S. Micronutrient Deficiencies in Pediatric IBD: How Often, Why, and What to Do? Nutrients. 2025; 17(9):1425. https://doi.org/10.3390/nu17091425
Chicago/Turabian StyleGaleazzi, Tiziana, Sara Quattrini, Elena Lionetti, and Simona Gatti. 2025. "Micronutrient Deficiencies in Pediatric IBD: How Often, Why, and What to Do?" Nutrients 17, no. 9: 1425. https://doi.org/10.3390/nu17091425
APA StyleGaleazzi, T., Quattrini, S., Lionetti, E., & Gatti, S. (2025). Micronutrient Deficiencies in Pediatric IBD: How Often, Why, and What to Do? Nutrients, 17(9), 1425. https://doi.org/10.3390/nu17091425