Association between Intake of Sugar-Sweetened Beverages and Circulating 25-Hydroxyvitamin D Concentration among Premenopausal Women
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Population and Recruitment Procedure
2.2. Data Collection
2.3. Diet Assessment
2.4. Assessment of Plasma 25(OH)D
2.5. Statistical Analyses
3. Results
Premenopausal women (n = 741) 1 | |
---|---|
Age (year), mean (SD) | 46.8 (4.6) |
Body mass index (kg/m2), mean (SD) | 25.2 (4.5) |
Waist-to-hip ratio, mean (SD) | 0.78 (0.06) |
Plasma 25(OH)D concentrations, (nmol/L), mean (SD) | 65.0 (19.6) |
Vitamin D intake 2 (IU/day), mean (SD) | 284.3 (231.6) |
Calcium intake 2 (mg/day), mean (SD) | 974.6 (435.0) |
Milk intake 3 (servings/week), mean (SD) | 5.5 (5.9) |
Caloric intake (kcal/day), mean (SD) | 1906 (514) |
Physical activity (MET-h/week), mean (SD) | 27.2 (22.2) |
Alcohol (servings/week), mean (SD) | 3.4 (3.8) |
Total colas 4 (servings/week), n (%) | |
Never | 319 (43.2) |
<1 | 271 (36.7) |
1–3 | 103 (13.9) |
>3 | 46 (6.2) |
Other sweet carbonated beverages (servings/week), n (%) | |
Never | 327 (44.2) |
<1 | 328 (44.3) |
≥1 | 85 (11.5) |
Sweet fruit drinks (servings/week), n (%) | |
Never | 375 (50.7) |
<1 | 263 (35.6) |
≥1 | 101 (13.7) |
Total of all sugar-sweetened beverages 5 (servings/week), n (%) | |
Never | 130 (17.7) |
<1 | 304 (41.3) |
1–3 | 154 (20.9) |
>3 | 148 (20.1) |
Season at blood sampling, n (%) | |
Winter | 90 (12.2) |
Spring | 249 (33.6) |
Summer | 184 (24.8) |
Fall | 218 (29.4) |
Education, n (%) | |
Less than a high school degree | 48 (6.5) |
High school degree | 235 (31.7) |
College degree | 197 (26.6) |
University degree | 261 (35.2) |
Smoking status, n (%) | |
Nonsmoker | 337 (45.5) |
Ex-smoker | 294 (39.7) |
Current smoker | 110 (14.8) |
Sugar-sweetened beverages (Servings/week) | n | Crude | Adjusted 1 |
---|---|---|---|
25(OH)D (nmol/L) mean (95% CI), p 2 | 25(OH)D (nmol/L) mean (95% CI), p 2 | ||
Total of all colas 3 | |||
Never | 319 | 67.5 (65.3–69.6), ref. | 67.0 (65.2–68.9), ref. |
<1 | 271 | 63.6 (61.3–65.9), 0.02 | 63.7 (61.8–65.7), 0.02 |
1–3 | 103 | 66.0 (62.3–65.9), 0.51 | 64.7 (61.4–67.9), 0.21 |
>3 | 46 | 54.4 (48.9–60.0), <0.0001 | 58.5 (53.4–63.6), 0.003 |
Spearman r (p) | −0.13 (0.0004) | −0.11 (0.004) | |
Spearman r (p) 4 | −0.11 (0.005) | ||
Other sweet carbonated beverages | |||
Never | 327 | 66.4 (64.3–68.5), ref. | 66.1 (64.3–67.9), ref. |
<1 | 328 | 64.1 (62.0–66.3), 0.14 | 64.1 (62.3–65.8), 0.12 |
≥1 | 85 | 62.6 (58.4–66.7), 0.11 | 63.7 (60.0–67.4), 0.26 |
Spearman r (p) | −0.08 (0.03) | −0.06 (0.10) | |
Spearman r (p) 4 | −0.06 (0.13) | ||
Sweet fruit drinks | |||
Never | 375 | 65.9 (63.9–67.8), ref. | 65.4 (63.6–67.0), ref. |
<1 | 263 | 63.2 (60.8–65.5), 0.08 | 64.0 (62.0–68.8), 0.31 |
≥1 | 101 | 66.2 (62.4–70.0), 0.87 | 65.6 (62.3–68.8), 0.91 |
Spearman r (p) | −0.04 (0.33) | −0.03 (0.48) | |
Spearman r (p) 4 | −0.03 (0.47) | ||
Total of all sugar-sweetened beverages 5 | |||
Never | 130 | 66.5 (63.1–69.9), ref. | 65.5 (62.6–68.4), ref. |
<1 | 304 | 65.1 (62.9–67.3), 0.49 | 65.7 (63.8–67.6), 0.91 |
1–3 | 154 | 64.6 (61.5–67.7), 0.42 | 63.8 (61.1–66.4), 0.38 |
>3 | 148 | 64.0 (60.8–67.1), 0.28 | 64.3 (61.4–67.1), 0.56 |
Spearman r (p) | −0.09 (0.02) | −0.06 (0.09) | |
Spearman r (p) 4 | −0.07 (0.08) |
Determinant of 25(OH)D concentration | Spearman correlations | |||
---|---|---|---|---|
r 1 | p 1 | r 2 | p 2 | |
Age (year) | −0.05 | 0.18 | −0.05 | 0.17 |
Body mass index (kg/m2) | −0.14 | 0.0001 | −0.15 | <0.0001 |
Waist-to-hip ratio | 0.02 | 0.66 | 0.02 | 0.63 |
Vitamin D intake 3 (IU/day) | 0.13 | 0.0003 | 0.12 | 0.0002 |
Calcium intake 3 (mg/day) | 0.15 | <0.0001 | 0.13 | 0.0005 |
Caloric intake (kcal/day) | −0.10 | 0.005 | −0.08 | 0.04 |
Physical activity (MET-h/week) | 0.20 | <0.0001 | 0.20 | <0.0001 |
Alcohol (servings/week) | 0.04 | 0.34 | 0.02 | 0.56 |
Season at blood sampling, n (%) 4 | 0.40 | <0.0001 | 0.40 | <0.0001 |
Education, n (%) | −0.12 | 0.001 | −0.13 | 0.0004 |
Smoking status, n (%) | 0.07 | 0.08 | 0.07 | 0.06 |
Total of all colas (serving/week) 5 | −0.11 | 0.004 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nikpartow, N.; Danyliw, A.D.; Whiting, S.J.; Lim, H.J.; Vatanparast, H. Beverage consumption patterns of canadian adults aged 19 to 65 years. Public Health Nutr. 2012, 15, 2175–2184. [Google Scholar] [CrossRef] [PubMed]
- Lustig, R.H.; Schmidt, L.A.; Brindis, C.D. Public health: The toxic truth about sugar. Nature 2012, 482, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Merchant, A.T.; Tripathi, A.; Pervaiz, F. Available energy from soft drinks: More than the sum of its parts. Public Health Nutr. 2010, 13, 1997–1999. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.M.; Dulloo, A.G.; Montani, J.P. Sugary drinks in the pathogenesis of obesity and cardiovascular diseases. Int. J. Obes. (Lond.) 2008, 32, S28–S34. [Google Scholar] [CrossRef]
- Tucker, K.L.; Morita, K.; Qiao, N.; Hannan, M.T.; Cupples, L.A.; Kiel, D.P. Colas, but not other carbonated beverages, are associated with low bone mineral density in older women: The framingham osteoporosis study. Am. J. Clin. Nutr. 2006, 84, 936–942. [Google Scholar] [PubMed]
- Mazariegos-Ramos, E.; Guerrero-Romero, F.; Rodriguez-Moran, M.; Lazcano-Burciaga, G.; Paniagua, R.; Amato, D. Consumption of soft drinks with phosphoric acid as a risk factor for the development of hypocalcemia in children: A case-control study. J. Pediatr. 1995, 126, 940–942. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Romero, F.; Rodriguez-Moran, M.; Reyes, E. Consumption of soft drinks with phosphoric acid as a risk factor for the development of hypocalcemia in postmenopausal women. J. Clin. Epidemiol. 1999, 52, 1007–1010. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Heaney, A.P. Refined fructose and cancer. Expert Opin. Ther. Targets 2011, 15, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Michaud, D.S.; Fuchs, C.S.; Liu, S.; Willett, W.C.; Colditz, G.A.; Giovannucci, E. Dietary glycemic load, carbohydrate, sugar, and colorectal cancer risk in men and women. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Friberg, E.; Wallin, A.; Wolk, A. Sucrose, high-sugar foods, and risk of endometrial cancer—A population-based cohort study. Cancer Epidemiol. Biomarkers Prev. 2011, 20, 1831–1837. [Google Scholar] [CrossRef] [PubMed]
- Tavani, A.; Giordano, L.; Gallus, S.; Talamini, R.; Franceschi, S.; Giacosa, A.; Montella, M.; La Vecchia, C. Consumption of sweet foods and breast cancer risk in italy. Ann. Oncol. 2006, 17, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the institute of medicine: What clinicians need to know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Mezza, T.; Muscogiuri, G.; Sorice, G.P.; Prioletta, A.; Salomone, E.; Pontecorvi, A.; Giaccari, A. Vitamin D deficiency: A new risk factor for type 2 diabetes? Ann. Nutr. Metab. 2012, 61, 337–348. [Google Scholar] [CrossRef]
- Gagnon, C.; Lu, Z.X.; Magliano, D.J.; Dunstan, D.W.; Shaw, J.E.; Zimmet, P.Z.; Sikaris, K.; Ebeling, P.R.; Daly, R.M. Low serum 25-hydroxyvitamin D is associated with increased risk of the development of the metabolic syndrome at five years: Results from a national, population-based prospective study (the australian diabetes, obesity and lifestyle study: Ausdiab). J. Clin. Endocrinol. Metab. 2012, 97, 1953–1961. [Google Scholar] [CrossRef] [PubMed]
- Tamez, H.; Thadhani, R.I. Vitamin D and hypertension: An update and review. Curr. Opin. Nephrol. Hypertens. 2012, 21, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, E. The epidemiology of vitamin D and cancer incidence and mortality: A review (United States). Cancer Causes Control 2005, 16, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D: Its role in cancer prevention and treatment. Prog. Biophys. Mol. Biol. 2006, 92, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Shao, T.; Klein, P.; Grossbard, M.L. Vitamin D and breast cancer. Oncologist 2012, 17, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Mohr, S.B.; Gorham, E.D.; Alcaraz, J.E.; Kane, C.J.; Macera, C.A.; Parsons, J.K.; Wingard, D.L.; Garland, C.F. Serum 25-hydroxyvitamin D and prevention of breast cancer: Pooled analysis. Anticancer Res. 2011, 31, 2939–2948. [Google Scholar] [PubMed]
- Chen, P.; Hu, P.; Xie, D.; Qin, Y.; Wang, F.; Wang, H. Meta-analysis of vitamin D,calcium and the prevention of breast cancer. Breast Cancer Res. Treat. 2010, 121, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Amir, E.; Cecchini, R.S.; Ganz, P.A.; Costantino, J.P.; Beddows, S.; Hood, N.; Goodwin, P.J. 25-hydroxyvitamin D, obesity, and associated variables as predictors of breast cancer risk and tamoxifen benefit in NSABP-P1. Breast Cancer Res. Treat. 2012, 133, 1077–1088. [Google Scholar] [CrossRef] [PubMed]
- Jones, G. Metabolism and biomarkers of vitamin D. Scand. J. Clin. Lab. Invest. Suppl. 2012, 243, 7–13. [Google Scholar] [PubMed]
- Whiting, S.J.; Langlois, K.A.; Vatanparast, H.; Greene-Finestone, L.S. The vitamin D status of canadians relative to the 2011 dietary reference intakes: An examination in children and adults with and without supplement use. Am. J. Clin. Nutr. 2011, 94, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Contreras, F.; Paniagua, R.; Avila-Diaz, M.; Cabrera-Munoz, L.; Martinez-Muniz, I.; Foyo-Niembro, E.; Amato, D. Cola beverage consumption induces bone mineralization reduction in ovariectomized rats. Arch. Med. Res. 2000, 31, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Olson, M.L.; Maalouf, N.M.; Oden, J.D.; White, P.C.; Hutchison, M.R. Vitamin D deficiency in obese children and its relationship to glucose homeostasis. J. Clin. Endocrinol. Metab. 2012, 97, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Douard, V.; Asgerally, A.; Sabbagh, Y.; Sugiura, S.; Shapses, S.A.; Casirola, D.; Ferraris, R.P. Dietary fructose inhibits intestinal calcium absorption and induces vitamin D insufficiency in CKD. J. Am. Soc. Nephrol. 2010, 21, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Portale, A.A.; Halloran, B.P.; Murphy, M.M.; Morris, R.C., Jr. Oral intake of phosphorus can determine the serum concentration of 1,25-dihydroxyvitamin D by determining its production rate in humans. J. Clin. Investig. 1986, 77, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.S. Dietary phosphorus, calcium metabolism and bone. J. Nutr. 1993, 123, 1627–1633. [Google Scholar] [PubMed]
- Diorio, C.; Pollak, M.; Byrne, C.; Masse, B.; Hebert-Croteau, N.; Yaffe, M.; Cote, G.; Berube, S.; Morin, C.; Brisson, J. Insulin-like growth factor-I,IGF-binding protein-3, and mammographic breast density. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Brisson, J.; Berube, S.; Diorio, C.; Sinotte, M.; Pollak, M.; Masse, B. Synchronized seasonal variations of mammographic breast density and plasma 25-hydroxyvitamin D. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.M.; Hunter, D.J.; Colditz, G.A.; Manson, J.E.; Stampfer, M.J.; Corsano, K.A.; Rosner, B.; Kriska, A.; Willett, W.C. Reproducibility and validity of a self-administered physical activity questionnaire. Int. J. Epidemiol. 1994, 23, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Leon, A.S.; Jacobs, D.R., Jr.; Montoye, H.J.; Sallis, J.F.; Paffenbarger, R.S., Jr. Compendium of physical activities. Med. Sci. Sports Exerc. 1993, 25, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Caan, B.J.; Slattery, M.L.; Potter, J.; Quesenberry, C.P., Jr.; Coates, A.O.; Schaffer, D.M. Comparison of the block and the willett self-administered semiquantitative food frequency questionnaires with an interviewer-administered dietary history. Am. J. Epidemiol. 1998, 148, 1137–1147. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [PubMed]
- Sinotte, M.; Diorio, C.; Berube, S.; Pollak, M.; Brisson, J. Genetic polymorphisms of the vitamin D binding protein and plasma concentrations of 25-hydroxyvitamin D in premenopausal women. Am. J. Clin. Nutr. 2009, 89, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Jaaskelainen, T.; Knekt, P.; Marniemi, J.; Sares-Jaske, L.; Mannisto, S.; Heliovaara, M.; Jarvinen, R. Vitamin D status is associated with sociodemographic factors, lifestyle and metabolic health. Eur. J. Nutr. 2012, 52, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Beydoun, M.A.; Boueiz, A.; Shroff, M.R.; Beydoun, H.A.; Wang, Y.; Zonderman, A.B. Associations among 25-hydroxyvitamin D, diet quality, and metabolic disturbance differ by adiposity in adults in the United States. J. Clin. Endocrinol. Metab. 2010, 95, 3814–3827. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Swain, J.; Brown, E.M.; Wyshak, G.; Albright, T.; Ravnikar, V.A.; Schiff, I. A preliminary report of the short-term effect of carbonated beverage consumption on calcium metabolism in normal women. Arch. Intern. Med. 1989, 149, 2517–2519. [Google Scholar] [CrossRef] [PubMed]
- Ventura, E.E.; Davis, J.N.; Goran, M.I. Sugar content of popular sweetened beverages based on objective laboratory analysis: Focus on fructose content. Obesity (Silver Spring) 2011, 19, 868–874. [Google Scholar]
- Lee, O.; Bruce, W.R.; Dong, Q.; Bruce, J.; Mehta, R.; O’Brien, P.J. Fructose and carbonyl metabolites as endogenous toxins. Chem. Biol. Interact. 2009, 178, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L.; Schwarz, J.M.; Keim, N.L.; Griffen, S.C.; Bremer, A.A.; Graham, J.L.; Hatcher, B.; Cox, C.L.; Dyachenko, A.; Zhang, W. Consuming fructose-sweetened,not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Investig. 2009, 119, 1322–1334. [Google Scholar] [CrossRef] [PubMed]
- Massey, L.K.; Whiting, S.J. Caffeine, urinary calcium, calcium metabolism and bone. J. Nutr. 1993, 123, 1611–1614. [Google Scholar] [PubMed]
- Hernandez-Avila, M.; Stampfer, M.J.; Ravnikar, V.A.; Willett, W.C.; Schiff, I.; Francis, M.; Longcope, C.; McKinlay, S.M.; Longscope, C. Caffeine and other predictors of bone density among pre- and perimenopausal women. Epidemiology 1993, 4, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Amato, D.; Maravilla, A.; Montoya, C.; Gaja, O.; Revilla, C.; Guerra, R.; Paniagua, R. Acute effects of soft drink intake on calcium and phosphate metabolism in immature and adult rats. Rev. Investig. Clin. 1998, 50, 185–189. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Duchaine, C.S.; Diorio, C. Association between Intake of Sugar-Sweetened Beverages and Circulating 25-Hydroxyvitamin D Concentration among Premenopausal Women. Nutrients 2014, 6, 2987-2999. https://doi.org/10.3390/nu6082987
Duchaine CS, Diorio C. Association between Intake of Sugar-Sweetened Beverages and Circulating 25-Hydroxyvitamin D Concentration among Premenopausal Women. Nutrients. 2014; 6(8):2987-2999. https://doi.org/10.3390/nu6082987
Chicago/Turabian StyleDuchaine, Caroline S., and Caroline Diorio. 2014. "Association between Intake of Sugar-Sweetened Beverages and Circulating 25-Hydroxyvitamin D Concentration among Premenopausal Women" Nutrients 6, no. 8: 2987-2999. https://doi.org/10.3390/nu6082987