Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols
Abstract
:1. Introduction
2. Anticancer Effects of Rosemary Extract (RE): In Vitro Studies
3. Anticancer Effects of Rosemary Extract (RE): In Vivo Animal Studies
4. Mechanisms of Anticancer Effects of Rosemary Extract (RE): In Vitro Studies
5. Mechanisms of Anticancer Effects of Rosemary Extract (RE): In Vivo Animal Studies
6. Anticancer Effects of Carnosic Acid (CA): In Vitro Studies
7. Anticancer Effects of Carnosic Acid (CA): In Vivo Animal Studies
8. Anticancer Effects of Rosmarinic Acid (RA): In Vitro Studies
9. Anticancer Effects of Rosmarinic Acid (RA): In Vivo Animal Studies
10. Dosage and Bioavailability
11. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, N.A.; Neilson, E.G.; Moses, H.L. Stromal fibroblasts in cancer initiation and progression. Nature 2004, 432, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.; Chytil, A.; Shyr, Y.; Joly, A.; Moses, H.L. Transforming Growth Factor-β Signaling-Deficient Fibroblasts Enhance Hepatocyte Growth Factor Signaling in Mammary Carcinoma Cells to Promote Scattering and Invasion. Mol. Cancer Res. 2008, 6, 1521–1533. [Google Scholar] [CrossRef] [PubMed]
- Da Rocha, A.B.; Lopes, R.M.; Schwartsmann, G. Natural products in anticancer therapy. Curr. Opin. Pharmacol. 2001, 1, 364–369. [Google Scholar] [CrossRef]
- Storozhuk, Y.; Hopmans, S.N.; Sanli, T.; Barron, C.; Tsiani, E.; Cutz, J.-C.; Pond, G.; Wright, J.; Singh, G.; Tsakiridis, T. Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br. J. Cancer 2013, 108, 2021–2032. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Mao, Q.-Q.; Qin, J.; Zheng, X.-Y.; Wang, Y.-B.; Yang, K.; Shen, H.-F.; Xie, L.-P. Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in vitro and inhibits tumor growth in vivo. Cancer Sci. 2010, 101, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.; Liu, C.; Sanli, T.; Tsiani, E.; Singh, G.; Bristow, R.G.; Dayes, I.; Lukka, H.; Wright, J.; Tsakiridis, T. Resveratrol enhances prostate cancer cell response to ionizing radiation. Modulation of the AMPK, Akt and mTOR pathways. Radiat. Oncol. 2011, 6, 144. [Google Scholar] [CrossRef] [PubMed]
- Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. Anticancer Molecular Mechanisms of Resveratrol. Front. Nutr. 2016, 3. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodia, S.; Takada, Y. Role of Resveratrol in Prevention and Therapy of Cancer: Preclinical and Clinical Studies. Anticancer Res. 2004, 24, 2783–2840. [Google Scholar] [PubMed]
- Barron, C.C.; Moore, J.; Tsakiridis, T.; Pickering, G.; Tsiani, E. Inhibition of human lung cancer cell proliferation and survival by wine. Cancer Cell Int. 2014, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Cuvelier, M.E.; Berset, C.; Richard, H. Antioxidant Constituents in Sage (Salvia officinalis). J. Agric. Food Chem. 1994, 42, 665–669. [Google Scholar] [CrossRef]
- González-Vallinas, M.; Reglero, G.; Ramírez de Molina, A. Rosemary (Rosmarinus officinalis L.) Extract as a Potential Complementary Agent in Anticancer Therapy. Nutr. Cancer 2015, 67, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Petiwala, S.M.; Puthenveetil, A.G.; Johnson, J.J. Polyphenols from the Mediterranean herb rosemary (Rosmarinus officinalis) for prostate cancer. Front. Pharmacol. 2013, 4, e1–e4. [Google Scholar] [CrossRef] [PubMed]
- Petiwala, S.M.; Johnson, J.J. Diterpenes from rosemary (Rosmarinus officinalis): Defining their potential for anti-cancer activity. Cancer Lett. 2015, 367, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Slamenova, D.; Kuboskova, K.; Horvathova, E.; Robichova, S. Rosemary-stimulated reduction of DNA strand breaks and FPG-sensitive sites in mammalian cells treated with H2O2 or visible light-excited Methylene Blue. Cancer Lett. 2002, 177, 145–153. [Google Scholar] [CrossRef]
- Yi, W.; Wetzstein, H.Y. Anti-tumorigenic activity of five culinary and medicinal herbs grown under greenhouse conditions and their combination effects. J. Sci. Food Agric. 2011, 91, 1849–1854. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, C.; Simó, C.; García-Cañas, V.; Gómez-Martínez, Á.; Ferragut, J.A.; Cifuentes, A. CE/LC-MS multiplatform for broad metabolomic analysis of dietary polyphenols effect on colon cancer cells proliferation. Electrophoresis 2012, 33, 2328–2336. [Google Scholar] [CrossRef] [PubMed]
- Đilas, S.; Knez, Ž.; Četojević-Simin, D.; Tumbas, V.; Škerget, M.; Čanadanović-Brunet, J.; Ćetković, G. In vitro antioxidant and antiproliferative activity of three rosemary (Rosmarinus officinalis L.) extract formulations. Int. J. Food Sci. Technol. 2012, 47, 2052–2062. [Google Scholar] [CrossRef]
- Valdés, A.; Garcia-Canas, V.; Rocamora-Reverte, L.; Gomez-Martinez, A.; Ferragut, J.A.; Cifuentes, A. Effect of rosemary polyphenols on human colon cancer cells: Transcriptomic profiling and functional enrichment analysis. Genes Nutr. 2013, 8, 43–60. [Google Scholar] [CrossRef] [PubMed]
- González-Vallinas, M.; Molina, S.; Vicente, G.; de la Cueva, A.; Vargas, T.; Santoyo, S.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Ramírez de Molina, A. Antitumor effect of 5-fluorouracil is enhanced by rosemary extract in both drug sensitive and resistant colon cancer cells. Pharmacol. Res. 2013, 72, 61–68. [Google Scholar] [CrossRef] [PubMed]
- González-Vallinas, M.; Molina, S.; Vicente, G.; Zarza, V.; Martín-Hernández, R.; García-Risco, M.R.; Fornari, T.; Reglero, G.; de Molina, A.R. Expression of MicroRNA-15b and the Glycosyltransferase GCNT3 Correlates with Antitumor Efficacy of Rosemary Diterpenes in Colon and Pancreatic Cancer. PLoS ONE 2014, 9, e98556. [Google Scholar] [CrossRef] [PubMed]
- Borrás-Linares, I.; Pérez-Sánchez, A.; Lozano-Sánchez, J.; Barrajón-Catalán, E.; Arráez-Román, D.; Cifuentes, A.; Micol, V.; Carretero, A.S. A bioguided identification of the active compounds that contribute to the antiproliferative/cytotoxic effects of rosemary extract on colon cancer cells. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2015, 80, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Li, G.; Petiwala, S.M.; Householter, E.; Johnson, J.J. Standardized rosemary (Rosmarinus officinalis) extract induces Nrf2/sestrin-2 pathway in colon cancer cells. J. Funct. Foods 2015, 13, 137–147. [Google Scholar] [CrossRef]
- Valdés, A.; Sullini, G.; Ibáñez, E.; Cifuentes, A.; García-Cañas, V. Rosemary polyphenols induce unfolded protein response and changes in cholesterol metabolism in colon cancer cells. J. Funct. Foods 2015, 15, 429–439. [Google Scholar] [CrossRef]
- Valdés, A.; García-Cañas, V.; Koçak, E.; Simó, C.; Cifuentes, A. Foodomics study on the effects of extracellular production of hydrogen peroxide by rosemary polyphenols on the anti-proliferative activity of rosemary polyphenols against HT-29 cells. Electrophoresis 2016, 37, 1795–1804. [Google Scholar] [CrossRef] [PubMed]
- Valdés, A.; Artemenko, K.A.; Bergquist, J.; García-Cañas, V.; Cifuentes, A. Comprehensive Proteomic Study of the Antiproliferative Activity of a Polyphenol-Enriched Rosemary Extract on Colon Cancer Cells Using Nanoliquid Chromatography-Orbitrap MS/MS. J. Proteome Res. 2016, 15, 1971–1985. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, V.G.; Tomic, G.; Nikolic, I.; Nerantzaki, A.A.; Sayyad, N.; Stosic-Grujicic, S.; Stojanovic, I.; Gerothanassis, I.P.; Tzakos, A.G. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 2013, 136, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, K.; Rojas, M.; Rolando, C. DNA damage by benzo(a)pyrene in human cells is increased by cigarette smoke and decreased by a filter containing rosemary extract, which lowers free radicals. Cancer Res. 2006, 66, 11938–11945. [Google Scholar] [CrossRef] [PubMed]
- Cheung, S.; Tai, J. Anti-proliferative and antioxidant properties of rosemary Rosmarinus officinalis. Oncol. Rep. 2007, 17, 1525–1531. [Google Scholar] [CrossRef] [PubMed]
- Yesil-Celiktas, O.; Sevimli, C.; Bedir, E.; Vardar-Sukan, F. Inhibitory Effects of Rosemary Extracts, Carnosic Acid and Rosmarinic Acid on the Growth of Various Human Cancer Cell Lines. Plant Foods Hum. Nutr. 2010, 65, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Mothana, R.A.A.; Kriegisch, S.; Harms, M.; Wende, K.; Lindequist, U. Assessment of selected Yemeni medicinal plants for their in vitro antimicrobial, anticancer, and antioxidant activities. Pharm. Biol. 2011, 49, 200–210. [Google Scholar] [CrossRef] [PubMed]
- González-Vallinas, M.; Molina, S.; Vicente, G.; Sánchez-Martínez, R.; Vargas, T.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Ramírez de Molina, A. Modulation of estrogen and epidermal growth factor receptors by rosemary extract in breast cancer cells. Electrophoresis 2014, 35, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Petiwala, S.M.; Berhe, S.; Li, G.; Puthenveetil, A.G.; Rahman, O.; Nonn, L.; Johnson, J.J. Rosemary (Rosmarinus officinalis) Extract Modulates CHOP/GADD153 to Promote Androgen Receptor Degradation and Decreases Xenograft Tumor Growth. PLoS ONE 2014, 9, e89772. [Google Scholar] [CrossRef] [PubMed]
- Tai, J.; Cheung, S.; Wu, M.; Hasman, D. Antiproliferation effect of Rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomedicine 2012, 19, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Berrington, D.; Lall, N. Anticancer Activity of Certain Herbs and Spices on the Cervical Epithelial Carcinoma (HeLa) Cell Line. Evid. Based Complement. Alternat. Med. 2012, 2012, e564927. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, N.; Luo, M.; Zu, Y.; Efferth, T. Antibacterial Activity and Anticancer Activity of Rosmarinus officinalis L. Essential Oil Compared to That of Its Main Components. Molecules 2012, 17, 2704–2713. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.-H.; Su, J.-D.; Chyau, C.-C.; Sung, T.-Y.; Ho, S.-S.; Peng, C.-C.; Peng, R.Y. Supercritical Fluid Extracts of Rosemary Leaves Exhibit Potent Anti-Inflammation and Anti-Tumor Effects. Biosci. Biotechnol. Biochem. 2007, 71, 2223–2232. [Google Scholar] [CrossRef] [PubMed]
- Vicente, G.; Molina, S.; González-Vallinas, M.; García-Risco, M.R.; Fornari, T.; Reglero, G.; de Molina, A.R. Supercritical rosemary extracts, their antioxidant activity and effect on hepatic tumor progression. J. Supercrit. Fluids 2013, 79, 101–108. [Google Scholar] [CrossRef]
- Moore, J.; Megaly, M.; MacNeil, A.J.; Klentrou, P.; Tsiani, E. Rosemary extract reduces Akt/mTOR/p70S6K activation and inhibits proliferation and survival of A549 human lung cancer cells. Biomed. Pharmacother. 2016, 83, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Shabtay, A.; Sharabani, H.; Barvish, Z.; Kafka, M.; Amichay, D.; Levy, J.; Sharoni, Y.; Uskokovic, M.R.; Studzinski, G.P.; Danilenko, M. Synergistic Antileukemic Activity of Carnosic Acid-Rich Rosemary Extract and the 19-nor Gemini Vitamin D Analogue in a Mouse Model of Systemic Acute Myeloid Leukemia. Oncology 2008, 75, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Sharabani, H.; Izumchenko, E.; Wang, Q.; Kreinin, R.; Steiner, M.; Barvish, Z.; Kafka, M.; Sharoni, Y.; Levy, J.; Uskokovic, M.; et al. Cooperative antitumor effects of vitamin D3 derivatives and rosemary preparations in a mouse model of myeloid leukemia. Int. J. Cancer 2006, 118, 3012–3021. [Google Scholar] [CrossRef] [PubMed]
- Okumura, N.; Yoshida, H.; Nishimura, Y.; Kitagishi, Y.; Matsuda, S. Terpinolene, a component of herbal sage, downregulates AKT1 expression in K562 cells. Oncol. Lett. 2012, 3, 321–324. [Google Scholar] [PubMed]
- Ahmad, H.H.; Hamza, A.H.; Hassan, A.Z.; Sayed, A.H. Promising therapeutic role of Rosmarinus officinalis successive methanolic fraction against colorectal cancer. Int. J. Pharm. Pharm. Sci. 2013, 5, 164–170. [Google Scholar]
- Kitano, M.; Wanibuchi, H.; Kikuzaki, H.; Nakatani, N.; Imaoka, S.; Funae, Y.; Hayashi, S.; Fukushima, S. Chemopreventive effects of coumaperine from pepper on the initiation stage of chemical hepatocarcinogenesis in the rat. Jpn. J. Cancer Res. Gann 2000, 91, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Soyal, D.; Jindal, A.; Singh, I.; Goyal, P.K. Modulation of radiation-induced biochemical alterations in mice by rosemary (Rosemarinus officinalis) extract. Phytomed. Int. J. Phytother. Phytopharm. 2007, 14, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Sancheti, G.; Goyal, P. Modulatory influence of Rosemarinus officinalis on DMBA-induced mouse skin tumorigenesis. Asian Pac. J. Cancer Prev. 2006, 7, 331–335. [Google Scholar] [PubMed]
- Sancheti, G.; Goyal, P.K. Effect of Rosmarinus officinalis in modulating 7,12-dimethylbenz(a)anthracene induced skin tumorigenesis in mice. Phytother. Res. 2006, 20, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Visanji, J.M.; Thompson, D.G.; Padfield, P.J. Induction of G2/M phase cell cycle arrest by carnosol and carnosic acid is associated with alteration of cyclin A and cyclin B1 levels. Cancer Lett. 2006, 237, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Barni, M.V.; Carlini, M.J.; Cafferata, E.G.; Puricelli, L.; Moreno, S. Carnosic acid inhibits the proliferation and migration capacity of human colorectal cancer cells. Oncol. Rep. 2012, 27, 1041–1048. [Google Scholar] [PubMed]
- De la Roche, M.; Rutherford, T.J.; Gupta, D.; Veprintsev, D.B.; Saxty, B.; Freund, S.M.; Bienz, M. An intrinsically labile α-helix abutting the BCL9-binding site of β-catenin is required for its inhibition by carnosic acid. Nat. Commun. 2012, 3, 680. [Google Scholar] [CrossRef] [PubMed]
- Valdés, A.; García-Cañas, V.; Simó, C.; Ibáñez, C.; Micol, V.; Ferragut, J.A.; Cifuentes, A. Comprehensive Foodomics Study on the Mechanisms Operating at Various Molecular Levels in Cancer Cells in Response to Individual Rosemary Polyphenols. Anal. Chem. 2014, 86, 9807–9815. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Kim, J.-S.; Seo, Y.-R.; Park, J.-H.Y.; Choi, M.-S.; Sung, M.-K. Carnosic acid suppresses colon tumor formation in association with anti-adipogenic activity. Mol. Nutr. Food Res. 2014, 58, 2274–2285. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Park, K.-W.; Chae, I.G.; Kundu, J.; Kim, E.-H.; Kundu, J.K.; Chun, K.-S. Carnosic acid inhibits STAT3 signaling and induces apoptosis through generation of ROS in human colon cancer HCT116 cells. Mol. Carcinog. 2016, 55, 1096–1110. [Google Scholar] [CrossRef] [PubMed]
- Einbond, L.S.; Wu, H.; Kashiwazaki, R.; He, K.; Roller, M.; Su, T.; Wang, X.; Goldsberry, S. Carnosic acid inhibits the growth of ER-negative human breast cancer cells and synergizes with curcumin. Fitoterapia 2012, 83, 1160–1168. [Google Scholar] [CrossRef] [PubMed]
- Min, K.-J.; Jung, K.-J.; Kwon, T.K. Carnosic Acid Induces Apoptosis Through Reactive Oxygen Species-mediated Endoplasmic Reticulum Stress Induction in Human Renal Carcinoma Caki Cells. J. Cancer Prev. 2014, 19, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.-J.; Min, K.; Bae, J.H.; Kwon, T.K. Carnosic acid sensitized TRAIL-mediated apoptosis through down-regulation of c-FLIP and Bcl-2 expression at the post translational levels and CHOP-dependent up-regulation of DR5, Bim, and PUMA expression in human carcinoma caki cells. Oncotarget 2015, 6, 1556–1568. [Google Scholar] [CrossRef] [PubMed]
- Linnewiel-Hermoni, K.; Khanin, M.; Danilenko, M.; Zango, G.; Amosi, Y.; Levy, J.; Sharoni, Y. The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Arch. Biochem. Biophys. 2015, 572, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Palit, S.; Ball, W.B.; Das, P.K. Carnosic acid modulates Akt/IKK/NF-κB signaling by PP2A and induces intrinsic and extrinsic pathway mediated apoptosis in human prostate carcinoma PC-3 cells. Apoptosis Int. J. Program. Cell Death 2012, 17, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Liu, H.; Yao, Y.; Geng, L.; Zhang, X.; Jiang, L.; Shi, B.; Yang, F. Carnosic acid induces autophagic cell death through inhibition of the Akt/mTOR pathway in human hepatoma cells. J. Appl. Toxicol. 2014, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Wu, C.-R.; Chang, S.-W.; Wang, Y.-J.; Wu, J.-J.; Tsai, C.-W. Induction of the pi class of glutathione S-transferase by carnosic acid in rat Clone 9 cells via the p38/Nrf2 pathway. Food Funct. 2015, 6, 1936–1943. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-W.; Lin, C.-Y.; Wang, Y.-J. Carnosic acid induces the NAD(P)H: Quinone oxidoreductase 1 expression in rat clone 9 cells through the p38/nuclear factor erythroid-2 related factor 2 pathway. J. Nutr. 2011, 141, 2119–2125. [Google Scholar] [CrossRef] [PubMed]
- López-Jiménez, A.; García-Caballero, M.; Medina, M.Á.; Quesada, A.R. Anti-angiogenic properties of carnosol and carnosic acid, two major dietary compounds from rosemary. Eur. J. Nutr. 2013, 52, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Song, H.; Sung, M.-K.; Kang, Y.-H.; Lee, K.W.; Park, J.H.Y. Carnosic Acid Inhibits the Epithelial-Mesenchymal Transition in B16F10 Melanoma Cells: A Possible Mechanism for the Inhibition of Cell Migration. Int. J. Mol. Sci. 2014, 15, 12698–12713. [Google Scholar] [CrossRef] [PubMed]
- Kosaka, K.; Yokoi, T. Carnosic acid, a component of rosemary (Rosmarinus officinalis L.), promotes synthesis of nerve growth factor in T98G human glioblastoma cells. Biol. Pharm. Bull. 2003, 26, 1620–1622. [Google Scholar] [CrossRef] [PubMed]
- Mimura, J.; Kosaka, K.; Maruyama, A.; Satoh, T.; Harada, N.; Yoshida, H.; Satoh, K.; Yamamoto, M.; Itoh, K. Nrf2 regulates NGF mRNA induction by carnosic acid in T98G glioblastoma cells and normal human astrocytes. J. Biochem. 2011, 150, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-W.; Lin, C.-Y.; Lin, H.-H.; Chen, J.-H. Carnosic acid, a rosemary phenolic compound, induces apoptosis through reactive oxygen species-mediated p38 activation in human neuroblastoma IMR-32 cells. Neurochem. Res. 2011, 36, 2442–2451. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, M.R.; Ferreira, G.C.; Schuck, P.F.; dal Bosco, S.M. Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Chem. Biol. Interact. 2015, 242, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Meng, P.; Yoshida, H.; Tanji, K.; Matsumiya, T.; Xing, F.; Hayakari, R.; Wang, L.; Tsuruga, K.; Tanaka, H.; Mimura, J.; et al. Carnosic acid attenuates apoptosis induced by amyloid-β 1–42 or 1–43 in SH-SY5Y human neuroblastoma cells. Neurosci. Res. 2015, 94, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Meng, P.; Matsumiya, T.; Tanji, K.; Hayakari, R.; Xing, F.; Wang, L.; Tsuruga, K.; Tanaka, H.; Mimura, J.; et al. Carnosic acid suppresses the production of amyloid-β 1–42 and 1–43 by inducing an α-secretase TACE/ADAM17 in U373MG human astrocytoma cells. Neurosci. Res. 2014, 79, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Cortese, K.; Daga, A.; Monticone, M.; Tavella, S.; Stefanelli, A.; Aiello, C.; Bisio, A.; Bellese, G.; Castagnola, P. Carnosic acid induces proteasomal degradation of Cyclin B1, RB and SOX2 along with cell growth arrest and apoptosis in GBM cells. Phytomed. Int. J. Phytother. Phytopharm. 2016, 23, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Danilenko, M.; Wang, X.; Studzinski, G.P. Carnosic acid and promotion of monocytic differentiation of HL60-G cells initiated by other agents. J. Natl. Cancer Inst. 2001, 93, 1224–1233. [Google Scholar] [CrossRef] [PubMed]
- Steiner, M. Carnosic Acid Inhibits Proliferation and Augments Differentiation of Human Leukemic Cells Induced by 1,25-Dihydroxyvitamin Dsub3 and Retinoic Acid. Nutr. Cancer 2001, 41, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Danilenko, M.; Wang, Q.; Wang, X.; Levy, J.; Sharoni, Y.; Studzinski, G.P. Carnosic acid potentiates the antioxidant and prodifferentiation effects of 1alpha,25-dihydroxyvitamin D3 in leukemia cells but does not promote elevation of basal levels of intracellular calcium. Cancer Res. 2003, 63, 1325–1332. [Google Scholar] [PubMed]
- Wang, Q.; Harrison, J.S.; Uskokovic, M.; Kutner, A.; Studzinski, G.P. Translational study of vitamin D differentiation therapy of myeloid leukemia: Effects of the combination with a p38 MAPK inhibitor and an antioxidant. Leukemia 2005, 19, 1812–1817. [Google Scholar] [CrossRef] [PubMed]
- Chen-Deutsch, X.; Garay, E.; Zhang, J.; Harrison, J.S.; Studzinski, G.P. c-Jun N-terminal kinase 2 (JNK2) antagonizes the signaling of differentiation by JNK1 in human myeloid leukemia cells resistant to vitamin D. Leuk. Res. 2009, 33, 1372–1378. [Google Scholar] [CrossRef] [PubMed]
- Chen-Deutsch, X.; Studzinski, G.P. Dual role of hematopoietic progenitor kinase 1 (HPK1) as a positive regulator of 1α,25-dihydroxyvitamin D-induced differentiation and cell cycle arrest of AML cells and as a mediator of vitamin D resistance. Cell. Cycle Georget. Tex 2012, 11, 1364–1373. [Google Scholar] [CrossRef] [PubMed]
- Bobilev, I.; Novik, V.; Levi, I.; Shpilberg, O.; Levy, J.; Sharoni, Y.; Studzinski, G.P.; Danilenko, M. The Nrf2 transcription factor is a positive regulator of myeloid differentiation of acute myeloid leukemia cells. Cancer Biol. Ther. 2011, 11, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Nachliely, M.; Sharony, E.; Kutner, A.; Danilenko, M. Novel analogs of 1,25-dihydroxyvitamin D2 combined with a plant polyphenol as highly efficient inducers of differentiation in human acute myeloid leukemia cells. J. Steroid Biochem. Mol. Biol. 2016, 164, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, S.; Suzuki, T.; Koike, S.; Yuan, B.; Takagi, N.; Ogasawara, Y. Nrf2 activation ameliorates cytotoxic effects of arsenic trioxide in acute promyelocytic leukemia cells through increased glutathione levels and arsenic efflux from cells. Toxicol. Appl. Pharmacol. 2016, 305, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.-N.; Chen, X.-L.; Li, H.; Li, X.-X.; Li, H.-Q.; Jin, W.-R. Reversion of P-glycoprotein-mediated multidrug resistance in human leukemic cell line by carnosic acid. Chin. J. Physiol. 2008, 51, 348–356. [Google Scholar] [PubMed]
- Duggal, J.; Harrison, J.S.; Studzinski, G.P.; Wang, X. Involvement of microRNA181a in differentiation and cell cycle arrest induced by a plant-derived antioxidant carnosic acid and vitamin D analog doxercalciferol in human leukemia cells. MicroRNA Shāriqah. United Arab Emir. 2012, 1, 26–33. [Google Scholar] [CrossRef]
- Wang, R.; Cong, W.; Guo, G.; Li, X.; Chen, X.; Yu, X.; Li, H. Synergism between carnosic acid and arsenic trioxide on induction of acute myeloid leukemia cell apoptosis is associated with modulation of PTEN/Akt signaling pathway. Chin. J. Integr. Med. 2012, 18, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, S.; Vasanthaselvan, M.; Silvan, S.; Baskaran, N.; Kumar Singh, A.; Vinoth Kumar, V. Carnosic acid: A potent chemopreventive agent against oral carcinogenesis. Chem. Biol. Interact. 2010, 188, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, D.; Manoharan, S.; Silvan, S.; Vasudevan, K.; Baskaran, N.; Palanimuthu, D. Proapoptotic, anti-cell proliferative, anti-inflammatory and anti-angiogenic potential of carnosic acid during 7,12 dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Afr. J. Tradit. Complement. Altern. Med. AJTCAM Afr. Netw. Ethnomed. 2012, 10, 102–112. [Google Scholar]
- Gómez-García, F.; López-Jornet, M.; Álvarez-Sánchez, N.; Castillo-Sánchez, J.; Benavente-García, O.; Vicente Ortega, V. Effect of the phenolic compounds apigenin and carnosic acid on oral carcinogenesis in hamster induced by DMBA. Oral Dis. 2013, 19, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Petiwala, S.M.; Li, G.; Bosland, M.C.; Lantvit, D.D.; Petukhov, P.A.; Johnson, J.J. Carnosic acid promotes degradation of the androgen receptor and is regulated by the unfolded protein response pathway in vitro and in vivo. Carcinogenesis 2016, 37, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-Q.; Wang, R.; Li, X.-X.; Yu, X.-N.; Chen, X.-L.; Li, H. The anti-leukemic effect of carnosic acid combined with Adriamycin in a K562/A02/SCID leukemia mouse model. Int. J. Clin. Exp. Med. 2015, 8, 11708–11717. [Google Scholar] [PubMed]
- Scheckel, K.A.; Degner, S.C.; Romagnolo, D.F. Rosmarinic acid antagonizes activator protein-1-dependent activation of cyclooxygenase-2 expression in human cancer and nonmalignant cell lines. J. Nutr. 2008, 138, 2098–2105. [Google Scholar] [CrossRef] [PubMed]
- Xavier, C.P.R.; Lima, C.F.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Salvia fruticosa, Salvia officinalis, and rosmarinic acid induce apoptosis and inhibit proliferation of human colorectal cell lines: The role in MAPK/ERK pathway. Nutr. Cancer 2009, 61, 564–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Xu, G.; Liu, L.; Xu, D.; Liu, J. Anti-invasion effect of rosmarinic acid via the extracellular signal-regulated kinase and oxidation-reduction pathway in Ls174-T cells. J. Cell. Biochem. 2010, 111, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.A.; Pedro, D.; Collins, A.R.; Pereira-Wilson, C. Protection by Salvia extracts against oxidative and alkylation damage to DNA in human HCT15 and CO115 cells. J. Toxicol. Environ. Health A 2012, 75, 765–775. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.-O.; Kim, M.-O.; Lee, J.-D.; Choi, Y.H.; Kim, G.-Y. Rosmarinic acid sensitizes cell death through suppression of TNF-α-induced NF-κB activation and ROS generation in human leukemia U937 cells. Cancer Lett. 2010, 288, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Paluszczak, J.; Krajka-Kuźniak, V.; Baer-Dubowska, W. The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol. Lett. 2010, 192, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Berdowska, I.; Zieliński, B.; Fecka, I.; Kulbacka, J.; Saczko, J.; Gamian, A. Cytotoxic impact of phenolics from Lamiaceae species on human breast cancer cells. Food Chem. 2013, 141, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Li, F.-R.; Fu, Y.-Y.; Jiang, D.-H.; Wu, Z.; Zhou, Y.-J.; Guo, L.; Dong, Z.-M.; Wang, Z.-Z. Reversal effect of rosmarinic acid on multidrug resistance in SGC7901/Adr cell. J. Asian Nat. Prod. Res. 2013, 15, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Yang, S.; Cai, Z.; Pan, D.; Li, Z.; Huang, Z.; Zhang, P.; Zhu, H.; Lei, L.; Wang, W. Anti-Warburg effect of rosmarinic acid via miR-155 in gastric cancer cells. Drug Des. Dev. Ther. 2015, 9, 2695–2703. [Google Scholar]
- Lee, J.; Kim, Y.S.; Park, D. Rosmarinic acid induces melanogenesis through protein kinase A activation signaling. Biochem. Pharmacol. 2007, 74, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Renzulli, C.; Galvano, F.; Pierdomenico, L.; Speroni, E.; Guerra, M.C. Effects of rosmarinic acid against aflatoxin B1 and ochratoxin-A-induced cell damage in a human hepatoma cell line (HepG2). J. Appl. Toxicol. 2004, 24, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-S.; Kuo, C.-L.; Wang, J.-P.; Cheng, J.-S.; Huang, Z.-W.; Chen, C.-F. Growth inhibitory and apoptosis inducing effect of Perilla frutescens extract on human hepatoma HepG2 cells. J. Ethnopharmacol. 2007, 112, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhu, Y.; Li, F.; Zhang, G.; Shi, J.; Ou, R.; Tong, Y.; Liu, Y.; Liu, L.; Lu, L.; et al. Spica prunellae and its marker compound rosmarinic acid induced the expression of efflux transporters through activation of Nrf2-mediated signaling pathway in HepG2 cells. J. Ethnopharmacol. 2016, 193, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Wang, S.; Zhao, Y.; Sheng, X.; Wang, A.; Zheng, S.; Lu, Y. Phenolcarboxylic acids from medicinal herbs exert anticancer effects through disruption of COX-2 activity. Phytomed. Int. J. Phytother. Phytopharm. 2014, 21, 1473–1482. [Google Scholar] [CrossRef] [PubMed]
- Aquilano, K.; Filomeni, G.; Di Renzo, L.; Vito, M.D.; Stefano, C.D.; Salimei, P.S.; Ciriolo, M.R.; Marfè, G. Reactive oxygen and nitrogen species are involved in sorbitol-induced apoptosis of human erithroleukaemia cells K562. Free Radic. Res. 2007, 41, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.-K.; Noh, E.-K.; Yoon, D.-J.; Jo, J.-C.; Koh, S.; Baek, J.H.; Park, J.-H.; Min, Y.J.; Kim, H. Rosmarinic acid potentiates ATRA-induced macrophage differentiation in acute promyelocytic leukemia NB4 cells. Eur. J. Pharmacol. 2015, 747, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Saiko, P.; Steinmann, M.-T.; Schuster, H.; Graser, G.; Bressler, S.; Giessrigl, B.; Lackner, A.; Grusch, M.; Krupitza, G.; Bago-Horvath, Z.; et al. Epigallocatechin gallate, ellagic acid, and rosmarinic acid perturb dNTP pools and inhibit de novo DNA synthesis and proliferation of human HL-60 promyelocytic leukemia cells: Synergism with arabinofuranosylcytosine. Phytomedicine 2015, 22, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-F.; Hong, C.; Klauck, S.M.; Lin, Y.-L.; Efferth, T. Molecular mechanisms of rosmarinic acid from Salvia miltiorrhiza in acute lymphoblastic leukemia cells. J. Ethnopharmacol. 2015, 176, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Baena, M.-D.; Tasset, I.; Muñoz-Serrano, A.; Alonso-Moraga, Á.; de Haro-Bailón, A. Cancer Prevention and Health Benefices of Traditionally Consumed Borago officinalis Plants. Nutrients 2016, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, N.; Yasuda, A.; Natsume, M.; Yoshikawa, T. Rosmarinic acid inhibits epidermal inflammatory responses: Anticarcinogenic effect of Perilla frutescens extract in the murine two-stage skin model. Carcinogenesis 2004, 25, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Anusuya, C.; Manoharan, S. Antitumor initiating potential of rosmarinic acid in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis. J. Environ. Pathol. Toxicol. Oncol. Off. Organ Int. Soc. Environ. Toxicol. Cancer 2011, 30, 199–211. [Google Scholar] [CrossRef]
- Karmokar, A.; Marczylo, T.H.; Cai, H.; Steward, W.P.; Gescher, A.J.; Brown, K. Dietary intake of rosmarinic acid by Apc(Min) mice, a model of colorectal carcinogenesis: Levels of parent agent in the target tissue and effect on adenoma development. Mol. Nutr. Food Res. 2012, 56, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Karthikkumar, V.; Sivagami, G.; Vinothkumar, R.; Rajkumar, D.; Nalini, N. Modulatory efficacy of rosmarinic acid on premalignant lesions and antioxidant status in 1,2-dimethylhydrazine induced rat colon carcinogenesis. Environ. Toxicol. Pharmacol. 2012, 34, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Sharmila, R.; Manoharan, S. Anti-tumor activity of rosmarinic acid in 7,12-dimethylbenz(a)anthracene (DMBA) induced skin carcinogenesis in Swiss albino mice. Indian J. Exp. Biol. 2012, 50, 187–194. [Google Scholar] [PubMed]
- Venkatachalam, K.; Gunasekaran, S.; Jesudoss, V.A.S.; Namasivayam, N. The effect of rosmarinic acid on 1,2-dimethylhydrazine induced colon carcinogenesis. Exp. Toxicol. Pathol. 2013, 65, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Baldasquin-Caceres, B.; Gomez-Garcia, F.J.; López-Jornet, P.; Castillo-Sanchez, J.; Vicente-Ortega, V. Chemopreventive potential of phenolic compounds in oral carcinogenesis. Arch. Oral Biol. 2014, 59, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Furtado, R.A.; Oliveira, B.R.; Silva, L.R.; Cleto, S.S.; Munari, C.C.; Cunha, W.R.; Tavares, D.C. Chemopreventive effects of rosmarinic acid on rat colon carcinogenesis. Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. ECP 2015, 24, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Romo Vaquero, M.; García Villalba, R.; Larrosa, M.; Yáñez-Gascón, M.J.; Fromentin, E.; Flanagan, J.; Roller, M.; Tomás-Barberán, F.A.; Espín, J.C.; García-Conesa, M.-T. Bioavailability of the major bioactive diterpenoids in a rosemary extract: Metabolic profile in the intestine, liver, plasma, and brain of Zucker rats. Mol. Nutr. Food Res. 2013, 57, 1834–1846. [Google Scholar] [CrossRef] [PubMed]
- Doolaege, E.H.A.; Raes, K.; Vos, F.D.; Verhé, R.; Smet, S.D. Absorption, Distribution and Elimination of Carnosic Acid, A Natural Antioxidant from Rosmarinus officinalis, in Rats. Plant Foods Hum. Nutr. 2011, 66, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Karthikkumar, V.; Sivagami, G.; Viswanathan, P.; Nalini, N. Rosmarinic acid inhibits DMH-induced cell proliferation in experimental rats. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Romo-Vaquero, M.; Larrosa, M.; Yáñez-Gascón, M.J.; Issaly, N.; Flanagan, J.; Roller, M.; Tomás-Barberán, F.A.; Espín, J.C.; García-Conesa, M.-T. A rosemary extract enriched in carnosic acid improves circulating adipocytokines and modulates key metabolic sensors in lean Zucker rats: Critical and contrasting differences in the obese genotype. Mol. Nutr. Food Res. 2014, 58, 942–953. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Use of rosemary extracts as a food additive—Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food. EFSA J. 2008, 6, 1–29. [Google Scholar]
- Pérez-Sánchez, A.; Barrajón-Catalán, E.; Caturla, N.; Castillo, J.; Benavente-García, O.; Alcaraz, M.; Micol, V. Protective effects of citrus and rosemary extracts on UV-induced damage in skin cell model and human volunteers. J. Photochem. Photobiol. B 2014, 136, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Romo-Vaquero, M.; Selma, M.-V.; Larrosa, M.; Obiol, M.; García-Villalba, R.; González-Barrio, R.; Issaly, N.; Flanagan, J.; Roller, M.; Tomás-Barberán, F.A.; et al. A Rosemary Extract Rich in Carnosic Acid Selectively Modulates Caecum Microbiota and Inhibits β-Glucosidase Activity, Altering Fiber and Short Chain Fatty Acids Fecal Excretion in Lean and Obese Female Rats. PLoS ONE 2014, 9, e94687. [Google Scholar] [CrossRef] [PubMed]
Cancer Cell | Dose/Duration | Findings | Mechanism | Reference |
---|---|---|---|---|
CaCo-2 (Colorectal adenocarcinoma) | 0.1–30 µg/mL (3–24 h) | ↓ cell colony formation. Long and short term antioxidant effects | ↓ H2O2-induced DNA strand breaks and oxidative damage. ↓ visible light-induced oxidative damage | [15] |
SW480 (Colorectal adenocarcinoma) | 31.25–500 µg/mL (48 h) | ↓ cell proliferation. Cytotoxic above 250 µg/mL. IC50~71.8 µg/mL | [16] | |
HT-29 (Colorectal adenocarcinoma) | RE containing 10 µM total polyphenols (72 h) | ↓ cell proliferation ↑ cell cycle arrest ↑ apoptosis | [17] | |
HT29 (Colorectal adenocarcinoma) | 1.95–62.5 µg/mL (48 h) 3 RE’s standardized to 25.9%, 36.2%, 42.4% CA | ↓ cell proliferation IC50 > 62.5 µg/mL | [18] | |
SW480 (Colorectal adenocarcinoma), HT29 (Colorectal adenocarcinoma) | RE containing 10 µM total polyphenols (48 h) | ↓ cell proliferation SW480 more sensitive ↑ cell cycle arrest | ↑ antioxidant and xenobiotic effects Modulates: Nrf2, ER stress genes, cell cycle, proliferation genes | [19] |
SW620 (Colorectal adenocarcinoma), DLD-1 (Colorectal adenocarcinoma) | 20–110 µg/mL (24–48 h) | ↓ cell proliferation IC50 36.4 and 34.6 µg/mL Effect on 5-FU sensitive and resistant cells ↑ apoptosis ↓ cell transformation | Modulates TYMS and TK1. ↑ PARP cleavage | [20] |
SW620 (Colorectal adenocarcinoma), DLD-1 (Colorectal adenocarcinoma) | 20–120 µg/mL (48 h) | ↓ cell viability IC50 25 µg/mL | ↑ PARP cleavage. ↑ GCNT3. ↓ miR-15b gene expression | [21] |
HT-29 (Colorectal adenocarcinoma), W480 (Colorectal adenocarcinoma), HGUE-C-1 (Colorectal carcinoma) | 1.5–100 µg/mL (24–48 h) | ↓ cell viability | [22] | |
HCT116 (Colorectal carcinoma), SW480 (Colorectal adenocarcinoma) | 10–100 µg/mL (24 h, 48 h, 72 h) Standardized to 23% CA | ↓ cell viability ↑ apoptosis | ↑ Nrf2 ↑ PERK ↑ sestrin-2 ↑ HO-1 ↑ cleaved-casp 3 | [23] |
HT-29 (Colorectal adenocarcinoma) | 30 µg/mL (2–72 h) | ↓ cell proliferation ↑ cell cycle arrest ↑ cholesterol accumulation ↑ ROS accumulation | ↑ UPR ↑ ER-stress ↓ cell cycle genes Altered cholesterol-modulating genes | [24] |
HT-29 (Colorectal adenocarcinoma) | 30–70 µg/mL (24 h, 48 h) | ↓ cell proliferation IC50 16.2 µg/mL ↑ necrosis | ↑ Nrf2 pathway ↑ UPR ↑ autophagy | [25] |
HT-29 (Colorectal adenocarcinoma) | 30–60 µg/mL (6 h, 24 h) | ↓ cell proliferation ↑ cell cycle arrest | ↑ H2O2 in media ↑ ROS levels ↑ HO-1 and CHOP expression | [26] |
Cancer Cell | Dose/Duration | Findings | Mechanism | Reference |
---|---|---|---|---|
RINm5F (Insulinoma) | 12–100 µg/mL (24–48 h) | ↓ cell proliferation ↓ cell viability ↑ apoptosis | ↑ nitrate accumulation. ↑ TNFα production. | [27] |
MIA-PaCa-2 (Pancreatic carcinoma), PANC-1 (Pancreatic carcinoma) | 20–120 µg/mL (48 h) | ↓ cell viability | ↑ PARP-cleavage | [21] |
MCF-7 (ER+) (Breast adenocarcinoma) | 40 mg RE powder filter (inserted into cigarette) (2 h) | ↓ BP levels and associated DNA adduct formation. | [28] | |
MCF-7 (ER+) (Breast adenocarcinoma), MDA-MB-468 (Breast adenocarcinoma) | 0.1%–20% (5–120 h) | IC50 ~90 µg/mL and 26.8 µg/mL | [29] | |
MCF-7 (ER+) (Breast adenocarcinoma), MDA-MB-231 (Breast adenocarcinoma) | 6.25–50 µg/mL (48 h) | ↓ cell viability IC50 ~20.42 µg/mL | [30] | |
MCF-7 (Breast adenocarcinoma) | 1–250 µg/mL (48 h) | ↓ cell proliferation IC50 187 µg/mL | [31] | |
MCF-7 (Breast adenocarcinoma) | 1.95–62.5 µg/mL (48 h) 3 REs standardized to 25.9%, 36.2%, 42.4% CA | ↓ cell proliferation IC50 9.95–13.89 µg/mL | [18] | |
SK-BR-3 (HER2+) (Breast adenocarcinoma), UACC-812 (HER2+) (Breast ductal carcinoma), T-47D (ER+) (Breast ductal carcinoma), MCF-7 (ER+) (Breast adenocarcinoma), MDA-MB-231 (Breast adenocarcinoma) | 10–120 µg/mL (48 h) | ↓ cell viability Enhanced effect of chemotherapeutics ↑ apoptosis ↓ cell transformation | ↑ FOS levels ↑ PARP cleavage ↓ HER2 ↓ ERBB2 ↓ ERα receptor. | [32] |
Cancer Cell | Dose/Duration | Findings | Mechanism | Reference |
---|---|---|---|---|
DU145 (Prostate adenocarcinoma), PC3 (Prostate adenocarcinoma) | 6.25–50 µg/mL (48 h) | ↓ cell viability IC50 ~8.82 µg/mL | [30] | |
LNCaP (Prostate adenocarcinoma), 22RV1 (Prostate carcinoma) | 10–50 µg/mL (24–48 h) RE standardized to 40% CA | ↓ cell proliferation ↑ cell cycle arrest ↑ apoptosis modulates endoplasmic reticulum stress proteins. | ↑ CHOP ↓ PSA production ↑ Bax ↑ cleaved-casp 3 ↓ androgen receptor expression | [33] |
5637 (Bladder carcinoma) | 0–250 µg/mL (48 h) | ↓ cell proliferation IC50 48.3 µg/mL | [31] | |
A2780 (Ovarian carcinoma), A2780CP70 (cisplatin-resistant) (Ovarian carcinoma) | 0.05%–0.25% (24–48 h) | ↓ cell proliferation Enhanced sensitivity of cisplatin -resistant cell lines. ↑apoptosis ↑ cell cycle arrest Modulates expression of apoptotic genes. | ↓ P-glyco protein ↑ cytochrome c gene ↑ hsp70 gene | [34] |
HeLa (Cervical adenocarcinoma) | 1.56–400 µg/mL (72 h) | ↓ cell proliferation IC50 23.31µg/mL | [35] | |
HeLa (Cervical adenocarcinoma) | 1.95–62.5 µg/mL (48 h) 3 REs standardized to 25.9%, 36.2%, 42.4% CA | ↓ cell proliferation IC50 10.02–11.32 µg/mL | [18] | |
SK-OV3 (Ovarian adenocarcinoma), HO-8910 (Ovarian carcinoma) | 0.0625%–1% rosemary essential oil (48 h) | ↓ cell viability IC50 0.025% (SK-OV3) IC50 0.076% (HO-8910) | [36] |
Cancer Cell | Dose/Duration | Findings | Mechanism | Reference |
---|---|---|---|---|
Hep-3B (Hepatocellular carcinoma) | 0.5–5 µg/mL (24 h) | ↓ cell viability | ↑ TNFα | [37] |
Hep-3B (Hepatocellular carcinoma) | 6.25–50 µg/mL (48 h) | ↓ cell viability IC50 ~22.88 µg/mL | [30] | |
Bel-7402 (Hepatocellular carcinoma) | 0.0625%–1% rosemary essential oil (48 h) | ↓ cell viability IC50 0.13% | [36] | |
HepG2 (Hepatocellular carcinoma) | 10–120 µg/mL (48 h) | ↓ cell viability IC50 42 µg/mL GI50 20 µg/mL | [38] | |
NCI-H82 (Lung carcinoma; SCLC) | 6.25–50 µg/mL (48 h) | ↓ cell viability IC50 ~24.08 | [30] | |
V79 (Normal hamster lung) | 0.1–30 µg/mL (3–24 h) | Cytotoxic to cells at 30 µg/mL (24 h) Long and short term antioxidant effects | ↓ H2O2-induced DNA strand breaks and oxidative damage. ↓ visible-light induced oxidative damage | [15] |
A549 (Lung adenocarcinoma) | 2.5–200 µg/mL (48–72 h) | ↓ cell proliferation ↓ cell survival ↑ apoptosis IC50 ~15.9 | ↓ p-Akt ↓ p-mTOR ↓ p-P70S6K ↑ PARP cleavage | [39] |
Cancer Cell | Dose/Duration | Findings | Mechanism | Reference |
---|---|---|---|---|
WEHI-3B D (Murine myeloid leukemia), HL-60 (Myeloid leukemia), U937 (Myeloid leukemia) | RE (10 µM equivalent of CA) (48–96 h) | Potentiated following effects of VDA: ↓ cell proliferation ↑ cell cycle arrest ↑ cell differentiation ↑ apoptosis | ↑ G1 phase | [41] |
RAW 264.7 (Murine leukemia; macrophage), HL-60 (Myeloid leukemia), K-562 (Human leukemia) | 0.1%–20% (5–120 h) (1–200 mg/mL) | ↓ cell proliferation IC50 ~18.76 µg/mL and 33.5 µg/mL ↑ cell differentiation ↓ LPS-stimulated (LS) antioxidant activity | ↓ (LS) NO ↑ antioxid-ant activity ↔ basal TNFɑ, IL-1β, iNOS or COX2 ↓ (LS) IL-1β and COX2 | [29] |
WEHI-3B D (Murine myeloid leukemia) | RE (10 µM equivalent of CA) (48–96 h) | Potentiated following effects of VDA: ↑ cell differentiation ↓ cell viability ↓ cell proliferation | ↓ ROS ↑ antioxid-ant activity ↑ NADP(H)-quinone reductase | [40] |
K-562 (Human leukemia) | 6.25–50 µg/mL (48 h) | ↓ cell viability IC50 ~12.50 µg/mL | [30] | |
K-562 (Human leukemia), U937 (Myeloid leukemia) | 50 µg/mL (0–96 h) | ↓ cell proliferation | ↓ AKT1 ↑ Rb2 ↔ ERK2 | [42] |
Animal Model | Dose/Duration | Findings | Mechanism | Reference |
---|---|---|---|---|
SW620 colon xenograft (nude mice) | 1 mg/mL in drinking water (32–35 days) ad libitum | ↓ tumor size | ↓ miR-15b in plasma | [21] |
HCT116 colon xenograft (athymic nude mice) | 100 mg/kg/day in 100 µL olive oil by oral gavage (4 weeks) | ↓ tumor size | ↑ Nrf2 expression ↑ sestrin-2 expression | [23] |
NMN-induced colon cancer (Sprague-Dawley rats) | 1666.6 mg/kg/day (low dose) RE or 3333.3 mg/kg/day (high dose) RE orally (4 months) | Both RE showed comparable effects. Lead to lymphoid cell aggregation in submucosa | ↑ cyt C ↑ PCDP4 ↓CEA ↓ CCSA-4 ↓ β-catenin, K-ras, c-myc gene expression | [43] |
22RV1 prostate xenograft (athymic nude mice) | 100 mg/kg/day in olive oil, orally (22 days) | ↓ tumor volume (induces apoptosis) | ↓ androgen receptor expression ↓ PSA ↑ CHOP | [33] |
DEN-induced liver cancer (F344 rats) | 100 mg/kg/day RE intragastrically (5 days) Injected i.p with 20 mg/kg DEN on day 4. Fed normal diet until week 3 (underwent partial hepatectomy) | ↑ antioxidant activity | ↓ GST positive foci | [44] |
Swiss mice exposed to γ-IR (liver) | 6Gy γ-IR (once) followed by 1000 mg/kg/day RE orally (5 days) | Delayed onset of IR-induced mortality Attenuated negative IR effects Protective effect on liver and blood | ↓ LPx levels ↑ GSH levels | [45] |
Myeloid leukemia inoculated mice | 1% RE w/w in food ad libitum (29 days) | ↓ tumor volume ↓ tumor incidence Potentiated VDA ability to ↓ tumor volume | [41] | |
Myeloid leukemia inoculated mice | 4% w/w in food ad libitum (15 weeks) | RE alone ↔ median survival time RE+VDA ↑ median survival time | ↓ WBC | [40] |
DMBA-induced skin cancer (nude mice) | 1000 mg/kg/day RE orally in water or by gavage (15 weeks) | ↓ tumor number ↓ tumor incidence ↓ tumor burden ↓ tumor yield ↑ latency period | ↓ LPx levels ↑ GSH levels | [46] |
DMBA-induced skin cancer (nude mice) | 500 mg/kg/day RE orally in water or by gavage (15 weeks) | ↓ tumor number ↓ tumor diameter ↓ tumor weight | ↓ LPx levels ↑ GSH levels | [47] |
Cell Type | Dose/Duration | Findings | Mechanism | Reference |
---|---|---|---|---|
Caco-2 (Colorectal adenocarcinoma) | 1–50 µM CA (48 h) | ↓ cell proliferation ↑ cell cycle arrest ↑ cell doubling time IC50 23 µM | ↓ cyclin A | [48] |
Caco-2 (Colorectal adenocarcinoma), HT-29 (Colorectal adenocarcinoma), LoVo (Colorectal adenocarcinoma) | 1–388 µM CA (48 h) | ↑ apoptosis ↓ cell adhesion and migration IC50 26.4–92.1 µM (high in Caco2) | ↓ MMP-9 and uPA activity, COX-2 expression | [49] |
SW480 (Colorectal adenocarcinoma) | 25–100 µM CA (6 h) | targets activated β-catenin for proteasomal degradation and destabilizes oncogenic β-catenin | ↓ BCL9-β-catenin interaction | [50] |
SW620 (Colorectal adenocarcinoma), DLD-1 (Colorectal adenocarcinoma) | 2–18 µg/mL (6.02–54.15 µM) CA (48 h) | ↓ cell viability | ↑ GCNT3. ↓ miR-15b gene expression. | [21] |
HT-29 (Colorectal adenocarcinoma) | 5–35 µg/mL (15–105 µM) CA (24–72 h) | ↓ cell proliferation ↑ cell cycle arrest Alters activity of detoxifying enzymes and metabolites | ↑ GSH levels Altered expression of transport and biosynthesis genes ↓ N-acetylputrescine | [51] |
HT-29 (Colorectal adenocarcinoma) | 1–10 µM CA (24–48 h) | ↓ cell viability ↑ cell cycle arrest ↓ triglyceride accumulation of 3T3-L1 adipocytes | ↓ p-Akt, cyclin D1, CDK4, Bcl-xL ↑ Bax expression, Ob-R expression | [52] |
HT-29 (Colorectal adenocarcinoma), SW480 (Colorectal adenocarcinoma), HGUE-C-1 (Colorectal carcinoma) | 30–60 µg/mL (24–48 h) CA fraction of RE (98.7% purity) | ↓ cell viability | [22] | |
HT-29 (Colorectal adenocarcinoma) | 12.5 µg/mL (37.6 µM) CA (2–72 h) | ↓ cell proliferation ↑ cell cycle arrest ↑ cholesterol accumulation ↑ ROS accumulation | ↑ UPR ↑ ER-stress ↓ cell cycle genes Altered cholesterol-modulating genes | [24] |
HT-29 (Colorectal adenocarcinoma), HCT116 (Colorectal carcinoma), SW480 (Colorectal adenocarcinoma) | 20–100 µM CA (24 h) | ↓ cell viability ↑ apoptosis | ↑ p53, Bax, casp 3, casp 9, PARP cleavage ↑ ROS generation ↓ MDM2, Bcl-2, Bcl-xL ↓ survivin, cyclins STAT3 | [53] |
HT-29 (Colorectal adenocarcinoma) | 8.3–16.6 µg/mL (25–50 µM) CA (24 h) | ↓ cell proliferation | ↑ H2O2 ↑ ROS | [25] |
Cell Type | Dose/Duration | Findings | Mechanism | Reference |
---|---|---|---|---|
MCF-7 (ER+) (Breast adenocarcinoma), MDA-MB-231 (Breast adenocarcinoma) | 6.25–50 µg/mL (18.8–150 µM) CA (48 h) | ↓ cell viability | [30] | |
MCF-7 (Breast adenocarcinoma), MDA-MB-468 (Breast adenocarcinoma) | 0.5–40 µg/mL (1.5–120 µM) CA (6–96 h) | ↓ proliferation ↑ apoptosis ↑ cell cycle arrest IC50: 3µg/mL (9 µM) (88 h) | ↑ CYP4F3, GCLC, SLC7A11, CDKN1A expression | [54] |
MDA-MB-361 (Breast adenocarcinoma) | 20–60 µM CA (24 h) | ↑ apoptosis | [55] | |
MDA-MB-361 (Breast adenocarcinoma) | 20 µM CA (24 h) | ↓ proliferation ↑ apoptosis | ↑ TRAIL-mediated apoptosis ↓ c-FLIP, Bcl-2 ↑ DR5, Bim, PUMA, CHOP | [56] |
RINm5F (Insulinoma) | 12–100 µg/mL (36.1–300 µM) CA (24–48 h) | ↓ cell viability | [27] | |
MIA-PaCa-2 (Pancreatic carcinoma), PANC-1 (Pancreatic carcinoma) | 2–18 µg/mL (6.02–54.15 µM) CA (48 h) | ↓ cell viability | [21] | |
DU145 (Prostate carcinoma), PC3 (Prostate adenocarcinoma) | 6.25–50 µg/mL (18.8–150 µM) CA (48h) | ↓ cell viability | [30] | |
PC3 (Prostate adenocarcinoma) | 20–100 µM CA (0–72 h) | ↓ proliferation ↑ apoptosis | ↓ casp 8, casp 9, Bcl-2, Bid, IAP, p-Akt, p-GSK3, NF-κB ↑ casp 3, casp 7, PARP cleavage, Bax, cyt c, PP2A | [58] |
LNCaP (Prostate carcinoma), PC3 (Prostate adenocarcinoma), DU-145 (Prostate carcinoma) | 10 µM CA (72 h) | ↓ proliferation | ↓ EpRE/ARE transcription system ↓ PSA secretion | [57] |
A2780 (Ovarian carcinoma), A2780CP70 (cisplatin-resistant) (Ovarian carcinoma) | 2.5–10 µg/mL (7.2–30 µM) CA (48 h) | ↓ cell proliferation Enhanced sensitivity of cisplatin-resistant cells | [34] |
Cell Type | Dose/Duration | Findings | Mechanism | Reference |
---|---|---|---|---|
Hep-3B (Hepatocellular carcinoma) | 6.25–50 µg/mL (18.8–150 µM) CA (48 h) | ↓ cell viability | [30] | |
HepG2 (Hepatocellular carcinoma) | 20–100 µM for (12–48 h) | ↓ proliferation ↑ apoptosis ↑ autophagic vacuoles and autolysosomes | ↑ LC-3 ↓ p-Akt, p-mTOR | [59] |
SK-HEP1 (Hepatocellular carcinoma) | 20–60 µM CA (24 h) | ↑ apoptosis | [55] | |
SK-HEP1 (Hepatocellular carcinoma) | 20 µM CA (24 h) | ↓ proliferation ↑ apoptosis | ↑ TRAIL-mediated apoptosis ↓ c-FLIP, Bcl-2 ↑ DR5, Bim, PUMA, CHOP | [56] |
Rat clone 9 (Normal rat liver) | 1–20 µM CA (24 h) | ↑ reporter activity of enhancer element GPEI ↑ detoxification systems | ↑ GSTP expression ↑ Nrf2 translocation ↑ p38 | [60] |
Rat clone 9 (Normal rat liver) | 1–20 µM CA (0–24 h) | ↓ cell survival | ↑ NQO1 ↑ Nrf2 ↑ p-p38 ↑ p-ERK | [61] |
NCI-H82 (Lung carcinoma; SCLC) | 6.25–50 µg/mL (18.8–150 µM) CA (48 h) | ↓ cell viability | [30] | |
HT-1080 (Fibrosarcoma) | 25–100 µM CA (4–72 h) | ↑ apoptosis ↑ cell cycle arrest ↑ chromatin condensation and DNA fragmentation IC50 9 µM | [62] | |
BAEC Aortic endothelial cells), HUVEC (Umbilical vein endothelial cells) | 25–100 µM CA (4–72 h) | ↓ cell survival ↑ apoptosis ↑ cell cycle arrest ↓ migration IC50 36µM | ↓ MMP-2 ↓ endothelial cell tubulogenesis. | [62] |
B16F10 (Skin melanoma) | 2.5–10 µM CA (12 h) | ↓ cell migration and adhesion Suppressed mesenchymal markers Induced epithelial markers | ↓ MMP-9, TIMP-1, uPA, VCAM-1 ↓ p-Src, p-FAK, p-Akt | [63] |
Caki (Kidney clear cell carcinoma) | 20–60 µM CA (24 h) | ↑ apoptosis Promotes ROS production | ↑ PARP cleavage, casp 3, ATF4, CHOP | [55] |
Caki (Kidney clear cell carcinoma), AHCN (Kidney renal cell adenocarcinoma), A498 (Kidney carcinoma) | 20 µM CA (24 h) | ↓ proliferation ↑ apoptosis | ↑ TRAIL-mediated apoptosis ↓ c-FLIP, Bcl-2 ↑ DR5, Bim, PUMA, CHOP | [56] |
Cell Type | Dose/Duration | Findings | Mechanism | Reference |
---|---|---|---|---|
T98G (Glioblastoma) | 5–100 µM CA (0–48 h) | ↑ NGF synthesis | [64] | |
T98G (Glioblastoma) | 2–50 µM CA (24 h) | ↑ NGF synthesis ↑ Nrf2, HO-1, TXNRD1 | [65] | |
IMR-32 (Neuroblastoma) | 5–40 µM CA (0–48 h) | ↓ cell viability ↑ apoptosis ↑ ROS generation | ↑ casp 3, casp 9, PARP, p-p38 ↓ p-ERK | [66] |
U373MG (Glioblastoma) | 50 µM CA (8 h) | ↓ amyloid beta peptide release | ↑ α-secretase TACE/ADAM17 | [69] |
SH-SY5Y (Neuroblastoma) | 1 µM CA (12 h) | ↑ antioxidant defense ↑ detoxification systems Blocked activation of apoptosis | ↑ PI3K/Akt ↓ cytochrome c release ↓ caspase cascade | [67] |
SH-SY5Y (Neuroblastoma) | 10 µM CA (1 h) | ↓ apoptosis | ↓ caspase cascade | [68] |
GBM (Glioblastoma) | 17.5–40 µM CA (48 h) | ↓ cell survival ↑ cell cycle arrest ↑ apoptosis | ↓ CDK activity ↓ cyclin B1 ↓ RB ↓ SOX2 ↓ GFAP | [70] |
Cell Type | Dose/Duration | Findings | Mechanism | Reference |
---|---|---|---|---|
HL-60 (Myeloid leukemia) | 10 µM CA (0–48 h) | CA potentiated effects of 1,25D ↑ differentiation ↓ proliferation ↑ cell cycle arrest | ↑ vitamin D receptor, retinoic acid receptor | [71] |
HL-60 (Myeloid leukemia), U937 (Myeloid leukemia) | 2.5–10 µM CA (0–48 h) | CA potentiated effects of 1,25D ↑ differentiation ↓ proliferation ↑ cell cycle arrest IC50 6–7µM | ↑ p21Waf1, p27Kip1 | [72] |
HL-60-G (Myeloid leukemia) | 10 µM CA (0–48 h) | CA potentiated effects of 1,25D ↑ differentiation ↓ ROS | ↑ GSH ↑ Raf/MAPK/ERK, AP-1 | [73] |
HL-60 (Myeloid leukemia) | 10 µM CA (0–72 h) | CA potentiated effects of 1,25D ↑ differentiation | ↑ JNK pathway | [74] |
WEHI-3B (Murine myeloid leukemia), HL-60 (Myeloid leukemia), U937 (Myeloid leukemia) | 10 µM CA (0–96 h) | CA potentiated effects of 1,25D ↑ differentiation ↓ proliferation ↑ cell cycle arrest | [41] | |
WEHI-3B D (Murine myeloid leukemia) | 10 µM CA (48–96 h) | CA potentiated effects of 1,25D ↑ cell differentiation ↓ cell viability ↓ cell proliferation | ↓ ROS ↑ NADP(H)-quinone reductase | [40] |
K562 (Myeloid leukemia) | 2.5–50 µM CA (24–72 h) | ↓ cell viability CA sensitized resistant cells to Adriamycin | [80] | |
HL-60G (Myeloid leukemia), HL-60-40AF (Myeloid leukemia) | 10 µM CA (0–48 h) | CA potentiated effects of 1,25-D ↑ differentiation | ↑ JNK1, c-jun-ATF2, C/EBP | [75] |
K-562 (Myeloid leukemia) | 6.25–50 µg/mL (18.8–150 µM) CA (48 h) | ↓ cell viability | [30] | |
U937 (Myeloid leukemia) | 10 µM CA (96 h) | CA potentiated effects of 1,25-D ↑ differentiation | ↑ Nrf2, ARE, NADPH, | [77] |
HL-60 (Myeloid leukemia), U937 (Myeloid leukemia) | 10 µM CA (48 h) | Enhances activity of 1,25D ↑ cell cycle arrest Induces differentiation Sensitizes 1,25D resistant cells | ↑ HPK1 | [76] |
HL-60 (Myeloid leukemia), U937 | 10 µM CA (48 h) | Enhances activity of doxercalciferol ↑ cell cycle arrest Induces differentiation | ↓ microRNA181a | [81] |
HL-60 (Myeloid leukemia) | 5–25 µM CA (24–72 h) | ↓ viability ↑ apoptosis ↑ cell cycle arrest | ↑ p27, cleaved casp 9, PTEN expression ↓ p-BAD, p-Akt | [82] |
HL-60 (Myeloid leukemia) | 25–100 µM CA (4–72 h) | ↓ cell survival ↑ apoptosis ↑ cell cycle arrest IC50 5.7 µM | ↑ casp 3 | [62] |
HL-60 (Myeloid leukemia), U937 (Myeloid leukemia), MOLM-13 (Acute monocytic leukemia) | 10 µM CA (96 h) | CA potentiated effects of 1,25-D ↑ differentiation | [78] | |
NB4 (Human promyelocytic leukemia) | 5 µM CA (24 h) | Ameliorates arsenic trioxide-induced cytotoxic effects | ↑ GSH levels Activation of Nrf2 | [79] |
Animal Model | Dose/Duration | Findings | Mechanism | Reference |
---|---|---|---|---|
DMBA-induced oral cancer-hamster | 10 mg/kg/day CA (14 weeks) | ↓ # of tumors Anti-lipid peroxidative function ↑ detoxification enzymes | [83] | |
DMBA-induced oral cancer-hamster | 10 mg/kg/day CA orally for (14 weeks) | ↓ # of tumors | ↑ p53, Bax, Bcl-2, casp 3, casp 9 ↓ COX-2, c-fos, NF-κB, cyclin D1 | [84] |
Human prostate biopsies xenografted into mice | 100 mg/mouse dissolved in 100 µL cottonseed oil daily (25 days) | ↓ tumor growth | [86] | |
DMBA-induced oral cancer-hamster | 750 µg CA dissolved in 0.1 mL saline (20 µM) daily for (11 weeks) | ↓ progression of cancer and development of lesions | [85] | |
AOM-induced colon cancer-mice | 0.01%–0.02% CA fed with a high fat (45%) diet for (11 weeks) | ↓ # of tumors ↓ tumor size | ↓ insulin, leptin and IGF-1 serum levels compared to mice fed HFD alone ↓ insulin receptor, leptin receptor, p-ERK, cyclin D1, Bcl-xL expression | [52] |
K562 leukemia inoculated mouse | 1% (v/v) CA with standard powdered rodent diet Ad libitum | ↓ # of leukemia cells ↑ apoptotic cells ↑ survival time | [87] |
Cell Type | Dose and Duration | Findings | Mechanisms | Reference |
---|---|---|---|---|
HT-29 (Colorectal adenocarcinoma) | 5–20 μM RA (1 h) | ↓ TPA induced COX2 promoter activity | ↓ COX2 protein levels | [88] |
HCT15 (Colorectal adenocarcinoma), CO115 (Colorectal carcinoma) | 10–100 μM RA (48 h) | ↑ apoptosis of HCT15 (50 μM) and CO115 (100 μM) | ↓ p-ERK levels in HCT15 cells | [89] |
Ls174-T (Colorectal adenocarcinoma) | 20–300 μg/mL (55.5–832.6 µM) RA (24 h) | ↓ migration rate ↓ adhesion IC50 70 μg/mL | ↓ ROS | [90] |
CO115 (Colorectal carcinoma) | 50 μM RA (24 h) | ↓ BCNU-induced DNA damage | [91] | |
MCF-7 (Breast adenocarcinoma) | 60 μM RA (24 h) | ↓ cell viability | [92] | |
MCF7 (Breast adenocarcinoma) | 2–200 μM RA (72 h) | ↓ DNA methyltransferase activity | [93] | |
MCF-7 (ER+) (Breast adenocarcinoma), MDA-MB-231 (Breast adenocarcinoma) | 6.25–50 µg/mL (17.3–138.8 µM) RA (48 h) | ↓ cell viability | [30] | |
MCF-7/Adr (Breast adenocarcinoma), MCF-7/wt (Breast adenocarcinoma) | 0.08–10 mM RA EC values: 0.74 mM (in wt) and 0.81 mM (in Adr resistant) | 0.08–0.32 mM RA effective ↑ cytotoxicity to MCF-7 cells | [94] | |
DU145 (Prostate carcinoma), PC3 (Prostate adenocarcinoma) | 6.25–50 µg/mL (17.3–138.8 µM) RA (48h) | ↓ cell viability | [30] | |
A2780 (Ovarian carcinoma), A2780CP70 (Ovarian carcinoma) | 2.5–10 µg/mL (6.9–27.8 µM) RA (48 h) | ↓ cell proliferation Enhanced sensitivity of cisplatin-resistant cells | [34] | |
SGC7901/Adr (Gastric carcinoma) | 0.096–60 μM RA (48 h) | ↓ cell viability Reversed drug resistance | ↓ expression of p-glycoprotein ↓ activity of p-glycoprotein | [95] |
MKN45 (Gastric carcinoma) | 200–300 μM RA | ↓ cell viability ↓ Warburg effect | ↓ glucose uptake ↓ pro-inflammatory cytokines (IL-6 and STAT3) | [96] |
B16 (Skin melanoma) | 1–100 μM RA (48 h) | ↑ melanin content ↑ tyrosinase expression | ↑ phosphorylation of CREB | [97] |
Cell Type | Dose and Duration | Findings | Mechanisms | Reference |
---|---|---|---|---|
HepG2 (Hepatocellular carcinoma) | 25–250 μM RA (24 h) | ↓ OTA- and AFB-induced cell damage and apoptosis ↓ DNA and protein synthesis inhibition induced by OTA- and AFB- | ↓ ROS production ↓ capase-3 activation | [98] |
HepG2 (Hepatocellular carcinoma) | 5–10 μg/mL (13.9–27.8 µM) RA (72 h) | ↑ apoptosis | ↑ casp 8, NFBIA, TNFSF9 and Jun mRNA ↓ Bcl-2 mRNA expression | [99] |
HepG2 (Hepatocellular carcinoma) | 60 μM RA (24 h) | ↓ cell viability | [92] | |
Hep-3B (Hepatocellular carcinoma) | 6.25–50 µg/mL (17.3–138.8 µM) RA (48 h) | ↓ cell viability | [30] | |
HepG2 (Hepatocellular carcinoma) | 20–80 μM RA (24 h or 4 days) | ↔cell viability | ↑ translocation of Nrf2 ↑ ARE-luciferin activity ↑ efflux of p-glycoprotein ↑ MRP2 ↑ intracellular ATP | [100] |
NCI-H82 (Lung carcinoma; SCLC) | 6.25–50 µg/mL (17.3–138.8 µM) RA (48 h) | ↓ cell viability | [30] | |
A549 (Lung adenocarcinoma) | 10–500 μM RA (48 h) IC50 198.12 | ↓ cell proliferation | ↓ hCOX2 activity | [101] |
Cell Type | Dose and Duration | Findings | Mechanisms | Reference |
---|---|---|---|---|
K562 (Myeloid leukemia) | 25 μM RA (1 h) | ↓ hyperosmotic-mediated ROS/RNS production and apoptosis | [102] | |
U937 (Myeloid leukemia) | 60 μM RA (24 h) | ↑ TNF-α induced apoptosis | ↓ NF-κB activation ↓ ROS production ↑ caspases | [92] |
K562 (Myeloid leukemia) | 6.25–50 µg/mL (17.3–138.8 µM) (48 h) | ↓ cell viability | [30] | |
K562 (Myeloid leukemia), U937 (Myeloid leukemia) | 0.2 mM RA (48 h) | Not tested on proliferation | ↔ AKT1 ↔ ERK2 | [42] |
NB4 (Human promyelocytic leukemia) | 40 μM RA (72 h) | ↑ ATRA-induced macrophage differentiation | ↑ expression of CD11b | [103] |
HL-60 (Myeloid leukemia) | 50–150 μM RA (24–72 h) | ↓ cell growth ↑ apoptosis IC50 147 μM (24 h), 74 μM (48 h), 69 μM (72 h) | ↓ dNTP levels | [104] |
CCRF-CEM (Lymphoblastic leukemia), CEM/ADR5000 (Lymphoblastic leukemia) | 3–100 μM RA (72 h) | ↑ cytotoxicity ↑ apoptosis and necrosis ↑ cell cycle arrest ↑ caspase-independent apoptosis | ↑ PARP-cleavage Blocked p65 nuclear translocation from the cytosol | [105] |
HL-60 (Myeloid leukemia) | 0.07–2.2 mM RA (72 h) | DNA protection and anticarcinogenic effects | [106] |
Animal Model | Dose and Duration | Findings | Mechanisms | Reference |
---|---|---|---|---|
Seven-Nine week old male Balb/c mice | 0.25, 0.5, 1.0 and 1.35 mg/mouse (30 months) before TPA treatment | ↓ myeloperoxidase activity | ↓ COX2 induction | [107] |
C57BL/6 mice implanted with Lewis lung carcinoma | 1, 2 and 4 mg/kg RA (20 days) | ↓ tumor growth | [90] | |
Golden Syrian hamsters | 100 mg/kg RA (14 weeks) | Completely prevented tumor formation in DMBA-treated hamsters | ↓ p53 ↓ Bcl-2 | [108] |
C57BL/6J Min/+ (ApcMin) mice | 360 mg/kg RA (8 weeks) | ↓ the frequency of large adenomas | ↑ levels of parent compound in plasma | [109] |
DMH induced colon cancer (Albino Wistar male rats) | 2.5–10 mg/kg RA (16 weeks) through intragastric intubation | ↓ DMH induced aberrant crypt foci | ↓ DMH induced increase in bacterial enzymes | [110] |
DMBA induced skin cancer (Swiss albino mice) | 100 mg/kg RA administered (1 weeks) before DMBA treatment | ↓ skin tumors | ↑ status of phase I (cyt p450) detoxification agents ↑ status of phase II (GST, GR, GSH) detoxification agents. Restored activity levels of casp 3, casp 9, p53 and Bcl-2. | [111] |
DMH induced colon cancer (Male Wistar rats) | 2.5, 5 and 10 mg/kg RA (4 weeks) | ↓ DMH induced aberrant crypt foci, number of polyps, reversed the markers of oxidative stress, antioxidant status, CYP450 content and PNPH activity | [112] | |
Five month old Syrian hamsters | 1.3 mg/mL RA (2 weeks) pretreatment | ↓ incidence of tumors ↑ differentiation ↓ scores in the tumor invasion front grading system. | [113] | |
5 week old male nude Balb/c mice incubated sub-cutaneously with MKN45 cells into their flanks. | 2 mg/kg RA via celiac injection daily (14 days) | ↓ Warburg effect | ↓ glucose uptake | [114] |
DMH induced colon cancer (Male Wistar rats) | 5 mg/kg RA orally (30 weeks) | ↓ DMH induced colon tumor formation | ↓ TNF-α ↓ IL-6 ↓ COX2 | [96] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moore, J.; Yousef, M.; Tsiani, E. Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols. Nutrients 2016, 8, 731. https://doi.org/10.3390/nu8110731
Moore J, Yousef M, Tsiani E. Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols. Nutrients. 2016; 8(11):731. https://doi.org/10.3390/nu8110731
Chicago/Turabian StyleMoore, Jessy, Michael Yousef, and Evangelia Tsiani. 2016. "Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols" Nutrients 8, no. 11: 731. https://doi.org/10.3390/nu8110731
APA StyleMoore, J., Yousef, M., & Tsiani, E. (2016). Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols. Nutrients, 8(11), 731. https://doi.org/10.3390/nu8110731