Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (148)

Search Parameters:
Keywords = carnosic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1516 KiB  
Review
Ferroptosis and Nrf2 Signaling in Head and Neck Cancer: Resistance Mechanisms and Therapeutic Prospects
by Jaewang Lee, Youngin Seo and Jong-Lyel Roh
Antioxidants 2025, 14(8), 993; https://doi.org/10.3390/antiox14080993 - 13 Aug 2025
Viewed by 275
Abstract
Ferroptosis is an iron-dependent form of regulated cell death marked by lipid peroxidation in polyunsaturated phospholipids. In head and neck cancer (HNC), where resistance to chemotherapy and immunotherapy is common, ferroptosis offers a mechanistically distinct strategy to overcome therapeutic failure. However, cancer cells [...] Read more.
Ferroptosis is an iron-dependent form of regulated cell death marked by lipid peroxidation in polyunsaturated phospholipids. In head and neck cancer (HNC), where resistance to chemotherapy and immunotherapy is common, ferroptosis offers a mechanistically distinct strategy to overcome therapeutic failure. However, cancer cells often evade ferroptosis via activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant and iron-regulatory genes. HNC remains therapeutically challenging due to therapy resistance driven by redox adaptation. This review highlights the ferroptosis pathway—a form of regulated necrosis driven by iron and lipid peroxidation—and its regulation by Nrf2, a master antioxidant transcription factor. We detail how Nrf2 contributes to ferroptosis evasion in HNC and summarize emerging preclinical studies targeting this axis. The review aims to synthesize molecular insights and propose therapeutic perspectives for overcoming resistance in HNC by modulating Nrf2–ferroptosis signaling. We conducted a structured narrative review of the literature using PubMed databases. Relevant studies from 2015 to 2025 focusing on ferroptosis, Nrf2 signaling, and head and neck cancer were selected based on their experimental design, novelty, and relevance to clinical resistance mechanisms. In HNC, Nrf2 mediates resistance through transcriptional upregulation of GPX4 and SLC7A11, epigenetic stabilization by PRMT4 and ALKBH5, and activation by FGF5 and platelet-derived extracellular vesicles. Epstein–Barr virus (EBV) infection also enhances Nrf2 signaling in nasopharyngeal carcinoma. More recently, loss-of-function KEAP1 mutations have been linked to persistent Nrf2 activation and upregulation of NQO1, which confer resistance to both ferroptosis and immune checkpoint therapy. Targeting NQO1 in KEAP1-deficient models restores ferroptosis and reactivates antitumor immunity. Additionally, the natural alkaloid trigonelline has shown promise in reversing Nrf2-mediated ferroptosis resistance in cisplatin-refractory tumors. Pharmacologic agents such as auranofin, fucoxanthin, carnosic acid, and disulfiram/copper complexes have demonstrated efficacy in sensitizing HNC to ferroptosis by disrupting the Nrf2 axis. This review summarizes emerging mechanisms of ferroptosis evasion and highlights therapeutic strategies targeting the Nrf2–ferroptosis network. Integrating ferroptosis inducers with immune and chemotherapeutic approaches may provide new opportunities for overcoming resistance in head and neck malignancies. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease—2nd Edition)
Show Figures

Graphical abstract

15 pages, 752 KiB  
Article
Enhanced Anti-Inflammatory Effects of Rosemary (Salvia rosmarinus) Extracts Modified with Pseudomonas shirazensis Nanoparticles
by Enrique Gutierrez-Albanchez, Elena Fuente-González, Svitlana Plokhovska, Francisco Javier Gutierrez-Mañero and Beatriz Ramos-Solano
Antioxidants 2025, 14(8), 931; https://doi.org/10.3390/antiox14080931 - 29 Jul 2025
Viewed by 398
Abstract
Rosemary (Salvia rosmarinus) is renowned for its antioxidant, anti-inflammatory, and antihyperglycemic properties, largely attributed to its rich phytochemical profile. This study evaluates the potential of metabolites from Pseudomonas shirazensis NFV3, formulated in silver nanoparticles (AgNPs), to enhance the bioactivity of rosemary [...] Read more.
Rosemary (Salvia rosmarinus) is renowned for its antioxidant, anti-inflammatory, and antihyperglycemic properties, largely attributed to its rich phytochemical profile. This study evaluates the potential of metabolites from Pseudomonas shirazensis NFV3, formulated in silver nanoparticles (AgNPs), to enhance the bioactivity of rosemary extracts in postharvest applications. Rosemary stems were treated with AgNPs coated with bacterial metabolites (NP), bacterial cells, or metabolites (LM), and the extracts’ phytochemical composition and bioactivities were assessed. HPLC and HPLC–MS analyses revealed that the NP treatment induced significant metabolic remodeling, particularly upregulating rosmarinic acid and selected triterpenes (ursolic and betulinic acids), while reducing carnosic acid levels. NP-treated extracts exhibited significantly enhanced inhibition of cyclooxygenase (COX-1 and COX-2), indicating improved anti-inflammatory potential. The α-glucosidase inhibition and antioxidant activity (DPPH assay) of the extracts were not substantially altered, suggesting the selective enhancement of pharmacological functions. These findings demonstrate that nanoparticle-based elicitation selectively remodels secondary metabolism in rosemary, improving extract quality and bioactivity. This strategy offers a novel, sustainable tool for optimizing plant-based therapeutics in the phytopharmaceutical industry. Full article
(This article belongs to the Special Issue Applications of Antioxidant Nanoparticles, 2nd Edition)
Show Figures

Figure 1

16 pages, 1424 KiB  
Article
1H-qNMR as a Tool for the Quantitative and Qualitative Evaluation of Abietane-Type Diterpenes in Lamiaceae Species Cultivated in Greece
by Panagiotis Kallimanis, Prokopios Magiatis, Thalia Tsiaka, Panagiotis Zoumpoulakis, Angeliki Panagiotopoulou and Ioanna Chinou
Appl. Sci. 2025, 15(15), 8361; https://doi.org/10.3390/app15158361 - 28 Jul 2025
Viewed by 410
Abstract
This study aimed to quantitatively and qualitatively evaluate the content of carnosic acid (CA), 12-O-methyl-carnosic acid (12MCA), carnosol (CS), rosmanol (RO) and 7-O-methyl-epi-rosmanol (7MER) in 61 Lamiaceae plants growing in Greece, using 1H-qNMR spectroscopy as a [...] Read more.
This study aimed to quantitatively and qualitatively evaluate the content of carnosic acid (CA), 12-O-methyl-carnosic acid (12MCA), carnosol (CS), rosmanol (RO) and 7-O-methyl-epi-rosmanol (7MER) in 61 Lamiaceae plants growing in Greece, using 1H-qNMR spectroscopy as a simple, rapid and direct method without sample deterioration. For this purpose, methanol extracts from 18 genera (e.g., Salvia, Mentha, Melissa, Ocimum) were analyzed using isolated and fully characterized metabolites, previously identified by our group, as standards. At least one of the target compounds was detected in 22 species, predominantly belonging to the genus Salvia. Notably, 7MER and RO were not detected in any extract. CA, CS and 12MCA were exclusively found in Salvia species, with S. somalensis, S. officinalis and S. fruticosa emerging as the richest sources of these diterpenes. Among them, S. somalensis showed the highest concentration of CA (>30 mg/g), while 12MCA was most abundant in S. microphylla. These results highlight Salvia as the most promising genus for the accumulation of bioactive abietane-type diterpenes. The implementation of 1H-qNMR for such chemical profiling provides a reliable approach toward the phytochemical standardization of plant extracts, supporting their further use in nutraceutical or pharmaceutical formulations. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

18 pages, 502 KiB  
Review
The Preventive Power of the Mediterranean Diet Against Blue-Light-Induced Retinal Degeneration: Is the Secret in the Herbs and Spices?
by Anja Harej Hrkać, Ana Pelčić, Tea Čaljkušić-Mance, Jasenka Mršić-Pelčić and Kristina Pilipović
Curr. Issues Mol. Biol. 2025, 47(6), 418; https://doi.org/10.3390/cimb47060418 - 4 Jun 2025
Viewed by 714
Abstract
The Mediterranean diet, rich in plant-based foods, healthy fats, and herbs, has long been associated with a range of health benefits, including cardiovascular, neuroprotective, and anti-inflammatory effects. Recent studies suggest that certain components of this diet, particularly spices such as bay laurel, thyme, [...] Read more.
The Mediterranean diet, rich in plant-based foods, healthy fats, and herbs, has long been associated with a range of health benefits, including cardiovascular, neuroprotective, and anti-inflammatory effects. Recent studies suggest that certain components of this diet, particularly spices such as bay laurel, thyme, oregano, sage, and rosemary, may play a critical role in protecting the retina from oxidative damage, a key factor in blue-light-induced retinal degeneration. Blue light, emitted by digital screens and artificial lighting, has been implicated in the development of retinal conditions like age-related macular degeneration by inducing oxidative stress and inflammation. This review explores the potential of the herbs and spices commonly present in the Mediterranean diet to mitigate blue-light-induced retinal damage. These herbs are rich in polyphenols, flavonoids, essential oils, and terpenes, which offer antioxidant, anti-inflammatory, and antimicrobial properties, contributing to retinal health and reducing oxidative damage. By focusing on bioactive compounds such as eucalyptol (1,8-cineole), rosmarinic acid, carnosic acid, eugenol, and thymol, this article investigates how these herbs and spices might act as natural protectants against blue-light-induced stress and retinal degeneration. The findings highlight the promising role of these culinary staples in preventing retinal damage and offer insights into future dietary recommendations for eye health in an increasingly digital world. Full article
Show Figures

Figure 1

11 pages, 3837 KiB  
Article
Carnosic Acid Production from Sugarcane Syrup by Engineered Yeast in Fed-Batch Fermentation
by Erdem Carsanba, Sara Fernandes, Felipe Beato, Luís Carlos Carvalho, Ana Pintado, Ana Lopes, Mónica Ribeiro, Tânia Leal, Manuela Pintado and Carla Oliveira
Fermentation 2025, 11(3), 147; https://doi.org/10.3390/fermentation11030147 - 15 Mar 2025
Viewed by 1044
Abstract
Phenolic diterpene carnosic acid (CA) is widely used in the food, nutritional health, and cosmetic industries due to its antioxidative and antimicrobial properties. This work aimed to overproduce CA in Saccharomyces cerevisiae from sugarcane syrup in fed-batch 2 L bioreactor fermentation. A geranylgeranyl [...] Read more.
Phenolic diterpene carnosic acid (CA) is widely used in the food, nutritional health, and cosmetic industries due to its antioxidative and antimicrobial properties. This work aimed to overproduce CA in Saccharomyces cerevisiae from sugarcane syrup in fed-batch 2 L bioreactor fermentation. A geranylgeranyl diphosphate (GGPP)-producing strain modified with genes encoding the enzymes copalyl diphosphate synthase (Pv.CPS), miltiradiene synthase (Ro.KSL2), hydroxy ferruginol synthase (Ro.HFS), CA synthase (Ro.CYP76AK8), CYP reductase (At.ATR1), and transketolase (TKL1) was used. Lowering the feed rate from 12–26 g/L/h to 7–8 g/L/h, and the use of a dynamic dissolved oxygen (DO) trigger (min. 10%, max. 40%, threshold 70%) instead of a DO trigger of 30%, enhanced CA production by 27%. As a result, the highest CA titer ever reported to date, 191.4 mg/L, was obtained in 4-day fermentation. This study shows the feasibility of engineered yeast to produce CA from the sustainable feedstock sugarcane syrup. Full article
Show Figures

Figure 1

19 pages, 4304 KiB  
Article
diAcCA, a Pro-Drug for Carnosic Acid That Activates the Nrf2 Transcriptional Pathway, Shows Efficacy in the 5xFAD Transgenic Mouse Model of Alzheimer’s Disease
by Piu Banerjee, Yubo Wang, Lauren N. Carnevale, Parth Patel, Charlene K Raspur, Nancy Tran, Xu Zhang, Ravi Natarajan, Amanda J. Roberts, Phil S. Baran and Stuart A. Lipton
Antioxidants 2025, 14(3), 293; https://doi.org/10.3390/antiox14030293 - 28 Feb 2025
Cited by 1 | Viewed by 30584
Abstract
The antioxidant/anti-inflammatory compound carnosic acid (CA) is a phenolic diterpene found in the herbs rosemary and sage. Upon activation, CA manifests electrophilic properties to stimulate the Nrf2 transcriptional pathway via reaction with Keap1. However, purified CA is readily oxidized and thus highly unstable. [...] Read more.
The antioxidant/anti-inflammatory compound carnosic acid (CA) is a phenolic diterpene found in the herbs rosemary and sage. Upon activation, CA manifests electrophilic properties to stimulate the Nrf2 transcriptional pathway via reaction with Keap1. However, purified CA is readily oxidized and thus highly unstable. To develop CA as an Alzheimer’s disease (AD) therapeutic, we synthesized pro-drug derivatives, among which the di-acetylated form (diAcCA) showed excellent drug-like properties. diAcCA converted to CA in the stomach prior to absorption into the bloodstream, and exhibited improved stability and bioavailability as well as comparable pharmacokinetics (PK) and efficacy to CA. To test the efficacy of diAcCA in AD transgenic mice, 5xFAD mice (or littermate controls) received the drug for 3 months, followed by behavioral and immunohistochemical studies. Notably, in addition to amyloid plaques and tau tangles, a hallmark of human AD is synapse loss, a major correlate to cognitive decline. The 5xFAD animals receiving diAcCA displayed synaptic rescue on immunohistochemical analysis accompanied by improved learning and memory in the water maze test. Treatment with diAcCA reduced astrocytic and microglial inflammation, amyloid plaque formation, and phospho-tau neuritic aggregates. In toxicity studies, diAcCA was as safe or safer than CA, which is listed by the FDA as “generally regarded as safe”, indicating diAcCA is suitable for human clinical trials in AD. Full article
(This article belongs to the Special Issue Role of Nrf2 in Neurodegenerative Diseases)
Show Figures

Figure 1

18 pages, 4976 KiB  
Article
Optimising Supercritical Carbon Dioxide Extraction of Rosmarinic Acid from Rosmarinus officinalis L. and Enhancing Yield Through Soxhlet Coupling
by Meryem Boufetacha, Elkhadir Gharibi and Mohammed Benali
Processes 2025, 13(3), 655; https://doi.org/10.3390/pr13030655 - 25 Feb 2025
Cited by 1 | Viewed by 1668
Abstract
Rosmarinic acid (RA) is a bioactive phenolic compound prevalent in various medicinal plants, renowned for its significant pharmacological properties. This study aims to optimise the extraction conditions of this compound from Rosmarinus officinalis L. using the response surface methodology (RSM) with a three-variable, [...] Read more.
Rosmarinic acid (RA) is a bioactive phenolic compound prevalent in various medicinal plants, renowned for its significant pharmacological properties. This study aims to optimise the extraction conditions of this compound from Rosmarinus officinalis L. using the response surface methodology (RSM) with a three-variable, three-level Box–Behnken design. Optimising the parameters for supercritical CO2 (scCO2) extraction focused on pressure (150 to 350 bar), temperature (40 to 80 °C), and co-solvent weight percentage (5 to 15% ethanol), evaluating their impact on overall yield and RA content. The optimal conditions determined were a pressure of 150 bar, a temperature of 80 °C, and 15% ethanol, yielding a total extract of 21.86 ± 1.55%, with an RA content of 3.43 ± 0.13 mg/g dry matter (DM). Scanning electron microscopy revealed that the scCO2 treatment induced microcracks on the surface of the rosemary powder, enhancing the fluid’s ability to penetrate the plant matrix. By employing the combined scCO2-Soxhlet method, the RA content increased to 5.78 mg/g DM. Furthermore, the final extract obtained using the Soxhlet post-scCO2 treatment contained only trace amounts of carnosic acid (0.38 ± 0.10 mg/g DM) and carnosol (0.38 ± 0.20 mg/g DM), compared to the crude extract obtained solely with Soxhlet, which exhibited significantly higher concentrations of 8.45 ± 2.98 mg/g DM of carnosol and 16.67 ± 0.94 mg/g DM of carnosic acid. This work highlighted an innovative extraction strategy based on the coupling of scCO2 and Soxhlet, which significantly increased RA content while reducing concentrations of other compounds such as CA and CAR. This approach makes it possible to produce RA-enriched extracts, offering considerable potential for future large-scale applications and commercialisation. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

29 pages, 5993 KiB  
Article
The Development and Comparative Evaluation of Rosemary Hydroalcoholic Macerate-Based Dermatocosmetic Preparations: A Study on Antioxidant, Antimicrobial, and Anti-Inflammatory Properties
by Alaa Sahlabgi, Dumitru Lupuliasa, Gabriela Stanciu, Simona Lupșor, Lavinia Lia Vlaia, Ramona Rotariu, Nicoleta Corina Predescu, Cristiana Rădulescu, Radu-Lucian Olteanu, Sorina-Geanina Stănescu, Lucian Hîncu and Magdalena Mititelu
Gels 2025, 11(3), 149; https://doi.org/10.3390/gels11030149 - 20 Feb 2025
Cited by 5 | Viewed by 2244
Abstract
This study investigates the development and comparative evaluation of new dermatocosmetic preparations based on hydroalcoholic macerates of rosemary (Rosmarinus officinalis L.), focusing on their antioxidant, antimicrobial, and anti-inflammatory properties. For this purpose, rosemary hydroalcoholic macerations were analyzed by evaluating the content of [...] Read more.
This study investigates the development and comparative evaluation of new dermatocosmetic preparations based on hydroalcoholic macerates of rosemary (Rosmarinus officinalis L.), focusing on their antioxidant, antimicrobial, and anti-inflammatory properties. For this purpose, rosemary hydroalcoholic macerations were analyzed by evaluating the content of biologically active compounds, determining their antioxidant and antimicrobial capacity. Total polyphenol content (TPC), determined via the Folin–Ciocâlteu method, reached 2155 ± 2.45 mg GAE/100 g fresh weight in the 70% ethanol macerate (RDS2) of rosemary from Dobrogea, significantly exceeding (p < 0.05) the values observed in the Bulgarian samples. The highest antioxidant activity (745 ± 2.33 mg GAE/100 g fresh weight) correlated with this extraction. Atomic absorption spectroscopy (AAS) analysis revealed elevated calcium (119.5 mg/kg), zinc, and iron levels in Dobrogean rosemary compared to its Bulgarian counterparts. Antimicrobial assessments demonstrated that the 70% ethanol macerate (RDS2) of Dobrogean rosemary exhibited the strongest inhibitory effects, particularly against Staphylococcus aureus (inhibition zone: 11–23 mm), while its activity against Escherichia coli was moderate (10–17 mm at 30 µL). Candida albicans was also significantly inhibited, with an inhibition zone of 9–20 mm. In contrast, the Bulgarian rosemary macerate (RBS2) exhibited weak inhibition against the tested microorganisms. The higher antimicrobial activity of the RDS2 is likely due to its enriched polyphenolic content, including carnosic acid and rosmarinic acid, which are known for their bioactive properties. These findings highlight Dobrogean rosemary’s superior bioactive properties, supporting its use in formulations with antioxidant and antimicrobial benefits. Full article
(This article belongs to the Special Issue Gels: 10th Anniversary)
Show Figures

Figure 1

19 pages, 11843 KiB  
Article
Effects of a Rosmarinus officinalis L. Extract and Rosmarinic Acid in Improving Streptozotocin-Induced Aortic Tissue Damages in Rats
by Irina Ielciu, Gabriela Adriana Filip, Alexandra C. Sevastre-Berghian, Ioana Bâldea, Neli-Kinga Olah, Ramona Flavia Burtescu, Vlad Alexandru Toma, Remus Moldovan, Ilioara Oniga and Daniela Hanganu
Nutrients 2025, 17(1), 158; https://doi.org/10.3390/nu17010158 - 31 Dec 2024
Cited by 3 | Viewed by 1407
Abstract
Background/Aim: Rosmarinus officinalis L. (R. officinalis) is an aromatic medicinal species with important nutraceutical potential, having rosmarinic acid (RA) as one of its main metabolites. The present study aims to evaluate the effects of an extract obtained from the leaves of [...] Read more.
Background/Aim: Rosmarinus officinalis L. (R. officinalis) is an aromatic medicinal species with important nutraceutical potential, having rosmarinic acid (RA) as one of its main metabolites. The present study aims to evaluate the effects of an extract obtained from the leaves of this species and of its main metabolite in improving the streptozotocin-induced damage of hearts and aorta of diabetic rats. Methods: The leaves of the species were used to obtain a hydroethanolic extract, which was analyzed using the LC/MS method. Diabetes mellitus was induced by intraperitoneal streptozotocin administration in rats. After two weeks, oxidative stress parameters were evaluated from the heart and aorta homogenates. NOS3, AMPK, and adiponectin levels were quantified using ELISA tests, and thoracic aorta rings were isolated for contractility evaluation in the organ bath. Phospho-NF-κB, NRF2, HIF1 alfa, iNOS, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) quantification were performed using the Western blot technique. Results: Carnosic acid, together with rosmarinic acid, were proven to be the main metabolites identified in the composition of the tested extract. Administration of the extract and of RA improved the relaxation response to acetylcholine and the redox status, with the reduction in malondialdehyde (MDA), nitric oxide synthase 3 (NOS 3), AMP-activated protein kinase (AMPK), adiponectin, reduced (GSH) and oxidized glutathione (GSSG) levels, and superoxide dismutase (SOD) activity. RA significantly enhanced the expression of HIF 1α, NRF2, and pNFkB in the heart. Conclusions: Administration of the R. officinalis extract and of RA-alleviated oxidative stress, proving vascular and cardiac antioxidant properties in the hearts and aorta of diabetic rats. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

29 pages, 9567 KiB  
Article
Design, Synthesis, and Biological Evaluation of Novel Urea-Containing Carnosic Acid Derivatives with Anticancer Activity
by Sara P. S. P. Moura, Silvia Marín, Ismael Rufino, Rita C. Guedes, Marta Cascante and Jorge A. R. Salvador
Int. J. Mol. Sci. 2024, 25(24), 13332; https://doi.org/10.3390/ijms252413332 - 12 Dec 2024
Viewed by 1765
Abstract
A series of novel carnosic acid 1 derivatives incorporating urea moieties at the C-20 position was synthesized and evaluated for their antiproliferative activity against the HCT116 colorectal cancer cell line. Most derivatives demonstrated enhanced antiproliferative activity compared to that of carnosic acid 1 [...] Read more.
A series of novel carnosic acid 1 derivatives incorporating urea moieties at the C-20 position was synthesized and evaluated for their antiproliferative activity against the HCT116 colorectal cancer cell line. Most derivatives demonstrated enhanced antiproliferative activity compared to that of carnosic acid 1. The most promising derivatives were tested in other colorectal cancer cell lines (SW480, SW620, and Caco-2), melanoma (A375), and pancreatic cancer (MiaPaca-2). Derivative 14 consistently demonstrated the highest activity across all tested cancer cell lines, showing selectivity for cancer cells over normal cells. Further investigation of the mechanism of action in SW480 cells revealed that compound 14 induced cell cycle arrest at the G0/G1 phase by downregulating CDK4 and CDK6. Molecular docking studies revealed that compound 14 established several interactions with key residues in the active site of CDK6. Additionally, compound 14 also reduced ROS production. In summary, our results strongly indicate that compound 14 has potential as a lead compound in the development of innovative anticancer drugs. Full article
(This article belongs to the Special Issue Natural Products in Drug Discovery for Anticancer Treatment)
Show Figures

Graphical abstract

15 pages, 2922 KiB  
Article
Unlocking the Hidden Potential of Rosemary (Salvia rosmarinus Spenn.): New Insights into Phenolics, Terpenes, and Antioxidants of Mediterranean Cultivars
by Andrea Baptista, Felicia Menicucci, Cecilia Brunetti, Luana Beatriz dos Santos Nascimento, Dalila Pasquini, Francesca Alderotti, Cassandra Detti, Francesco Ferrini and Antonella Gori
Plants 2024, 13(23), 3395; https://doi.org/10.3390/plants13233395 - 3 Dec 2024
Cited by 3 | Viewed by 2324
Abstract
Rosemary (Salvia rosmarinus Spenn. syn. Rosmarinus officinalis L.) is a Mediterranean aromatic species used both as an official herb and as a spice. Different cultivars may exhibit diverse phytochemical compositions, making a comprehensive chemical characterization pivotal for a targeted selection of valuable [...] Read more.
Rosemary (Salvia rosmarinus Spenn. syn. Rosmarinus officinalis L.) is a Mediterranean aromatic species used both as an official herb and as a spice. Different cultivars may exhibit diverse phytochemical compositions, making a comprehensive chemical characterization pivotal for a targeted selection of valuable cultivars. This study aimed to characterize and compare the phenolic and terpene composition and content of leaf extracts of six Mediterranean rosemary cultivars: ‘Alba’, ‘Arp’ ‘Ginger’, ‘Gorizia’, ‘Tuscan Blue’, and ‘Roseus’. HPLC-DAD analysis revealed a similar phenolic composition in all the cultivars, but quantitative differences were observed. The main compounds were carnosic acid derivatives, flavonoids (e.g., luteolin, apigenin, and quercetin glucosides), rosmarinic acid, caffeic acid, and other hydroxycinnamic acid derivatives. The highest phenolic content was found in ‘Alba’, with a predominance of carnosic acid derivatives, whereas the lowest was found in ‘Ginger’ and ‘Gorizia’. The GC-MS analysis evidenced quantitative differences among the cultivars. Particularly, ‘Alba’ contained the highest terpene content, whereas ‘Arp’ and ‘Gorizia’ showed the lowest values. Regarding the antioxidant activity, ‘Alba’ exhibited the highest values as regards phenols, while for terpenes, the highest ones were obtained for ‘Ginger’ and ‘Tuscan Blue’. Significant Pearson correlations were obtained between the total phenol/terpene content and the antioxidant activity. The chemical characterization of these cultivars provides relevant information to produce the rosemary phytocomplexes, finding multiple industrial applications. Full article
(This article belongs to the Special Issue Phytochemistry of Aromatic and Medicinal Plants)
Show Figures

Figure 1

41 pages, 4668 KiB  
Review
Neuroprotective Benefits of Rosmarinus officinalis and Its Bioactives against Alzheimer’s and Parkinson’s Diseases
by Danai Kosmopoulou, Maria-Parthena Lafara, Theodora Adamantidi, Anna Ofrydopoulou, Andreas M. Grabrucker and Alexandros Tsoupras
Appl. Sci. 2024, 14(15), 6417; https://doi.org/10.3390/app14156417 - 23 Jul 2024
Cited by 16 | Viewed by 9072
Abstract
Neurodegenerative disorders (NDs) are conditions marked by progressively escalating inflammation that leads to the degeneration of neuronal structure and function. There is an increasing interest in natural compounds, especially those from pharmaceutical plants, with neuroprotective properties as part of potential therapeutic interventions. Thus, [...] Read more.
Neurodegenerative disorders (NDs) are conditions marked by progressively escalating inflammation that leads to the degeneration of neuronal structure and function. There is an increasing interest in natural compounds, especially those from pharmaceutical plants, with neuroprotective properties as part of potential therapeutic interventions. Thus, the rich bioactive content of the perennial herb rosemary (Rosmarinus officinalis) is thoroughly reviewed in this article, with an emphasis on its pleiotropic pharmacological properties, including its antioxidant, anti-inflammatory, and neuroprotective health-promoting effects. In addition, a comprehensive analysis of the existing scientific literature on the potential use of rosemary and its bioactive constituents in treating neurodegenerative disorders was also conducted. Rosemary and its bioactives’ chemical properties and neuroprotective mechanisms are discussed, focusing on their ability to mitigate oxidative stress, reduce inflammation, and modulate neurotransmitter activity. The role of rosemary in enhancing cognitive function, attenuating neuronal apoptosis, and promoting neurogenesis is outlined. Key bioactive components, such as rosmarinic acid and carnosic acid, are also highlighted for their neuroprotective act. The promising outcomes of the conducted pre-clinical studies or clinical trials confirm the efficacy of rosemary in preventing or alleviating Alzheimer’s and Parkinson’s diseases both in vitro (in cells) and in vivo (in animal models of NDs). From this perspective, the applications of rosemary’s bio-functional compounds and extracts in the food, cosmetics, and pharmaceutical sectors are also presented; in the latter, we discuss their use against neurodegenerative disorders, either alone or as adjuvant therapies. This paper critically evaluates these studies’ methodological approaches and outcomes, providing insights into the current state of the clinical research and identifying potential avenues for future investigation. All findings presented herein contribute to the growing body of literature and support the exploration of natural compounds as promising candidates for novel applications and neuroprotective interventions, paving the way for more applied scientific research. Full article
(This article belongs to the Special Issue Plant-Based Compounds or Extractions for Medical Applications)
Show Figures

Figure 1

13 pages, 3274 KiB  
Article
Carnosic Acid (CA) Induces a Brown Fat-like Phenotype, Increases Mitochondrial Biogenesis, and Activates AMPK in 3T3-L1 Adipocytes
by Filip Vlavcheski, Rebecca E. K. MacPherson, Val Fajardo, Newman Sze and Evangelia Tsiani
Biomedicines 2024, 12(7), 1569; https://doi.org/10.3390/biomedicines12071569 - 15 Jul 2024
Cited by 2 | Viewed by 2420
Abstract
Adipose tissue plays a crucial role in regulating metabolic homeostasis, and its dysfunction in obesity leads to insulin resistance and type 2 diabetes (T2D). White adipose tissue (WAT) primarily stores energy as lipids, while brown adipose tissue (BAT) regulates thermogenesis by dissipating energy [...] Read more.
Adipose tissue plays a crucial role in regulating metabolic homeostasis, and its dysfunction in obesity leads to insulin resistance and type 2 diabetes (T2D). White adipose tissue (WAT) primarily stores energy as lipids, while brown adipose tissue (BAT) regulates thermogenesis by dissipating energy as heat. The process of browning involves the transdifferentiation of WAT into brown-like or beige adipocytes, which exhibit a similar phenotype as BAT. The browning of WAT is an attractive approach against obesity and T2D, and the activation of the energy sensor AMP-activated protein kinase (AMPK) has been shown to play a role in browning. Carnosic acid (CA), a polyphenolic diterpene, found in many plants including rosemary, is reported to possess potent antioxidant, anti-inflammatory, and anti-hyperglycemic properties. The limited evidence available indicates that CA activates AMPK and may have anti-obesity and antidiabetic potential; however, the effects in adipocyte browning remain largely unexplored. This study aimed to examine the effects of CA on the markers of adipocyte browning. The treatment of 3T3L1 adipocytes with CA activated AMPK, reduced lipid accumulation, and increased the expression of browning protein markers (UCP-1, PGC-1α, PRDM16, and TFAM) and mitochondrial biogenesis. The use of compound C, an AMPK inhibitor, significantly attenuated the effects of CA, indicating AMPK involvement. These studies demonstrate that CA can activate AMPK and stimulate the browning of white adipocytes. Future animal and human studies are required to examine the effects of CA in vivo. Full article
Show Figures

Figure 1

17 pages, 523 KiB  
Article
Antifungal Potential of Carnosic Acid from Salvia somalensis against Phytopathogenic Fungi
by Valeria Iobbi, Marta Lo Vetere, Anna Paola Lanteri, Jakob K. Reinhardt, Ombeline Danton, Morris Keller, Matthias Hamburger, Annalisa Salis, Gianluca Damonte, Olivier Potterat and Angela Bisio
Agronomy 2024, 14(7), 1444; https://doi.org/10.3390/agronomy14071444 - 2 Jul 2024
Cited by 2 | Viewed by 1654
Abstract
The aims of the present study were (i) to characterize the dichloromethane extract of the fresh aerial parts of S. somalensis, cultivated in Liguria (Italy), (ii) to quantify carnosic acid production and (iii) to find an eco-friendly alternative approach to control diseases [...] Read more.
The aims of the present study were (i) to characterize the dichloromethane extract of the fresh aerial parts of S. somalensis, cultivated in Liguria (Italy), (ii) to quantify carnosic acid production and (iii) to find an eco-friendly alternative approach to control diseases caused by phytopathogenic fungi. The phytochemical investigation yielded several known terpenoids, as well as a diterpene, 4α,9α-epoxy-2H-dibenzo[a,d]cyclohepten-7(5H)-one, not previously described as a plant metabolite before. The results showed a noteworthy quantity of carnosic acid (113.90 µg/mg of dried extract). The potential antifungal activity of the plant surface extract and carnosic acid against five phytopathogenic fungi (Colletotrichum coccodes, Fusarium oxysporum, Sclerotinia sclerotiorum, Botrytis cinerea and Rhizoctonia solani) was considered. A complete inhibition of C. coccodes, S. sclerotiorum and R. solani mycelium growth was observed by carnosic acid at 500 µg/mL. High inhibition values were observed against B. cinerea and F. oxysporum compared to reference active ingredients. Four different B. cinerea strains exhibited a pronounced sensitivity to carnosic acid, as well as those originating from agricultural crop scenarios where a high load of active ingredient for gray mold control was historically adopted. Additionally, the formation and development of the germinative tube in B. cinerea were greatly slowed down. Full article
(This article belongs to the Topic Natural Products in Crop Pest Management)
Show Figures

Figure 1

13 pages, 1303 KiB  
Article
Effect of Antioxidants in Medicinal Products on Intestinal Drug Transporters
by Chetan P. Kulkarni, Jia Yang, Megan L. Koleske, Giovanni Lara, Khondoker Alam, Andre Raw, Bhagwant Rege, Liang Zhao, Dongmei Lu, Lei Zhang, Lawrence X. Yu, Robert A. Lionberger, Kathleen M. Giacomini, Deanna L. Kroetz and Sook Wah Yee
Pharmaceutics 2024, 16(5), 647; https://doi.org/10.3390/pharmaceutics16050647 - 10 May 2024
Cited by 6 | Viewed by 3082
Abstract
The presence of mutagenic and carcinogenic N-nitrosamine impurities in medicinal products poses a safety risk. While incorporating antioxidants in formulations is a potential mitigation strategy, concerns arise regarding their interference with drug absorption by inhibiting intestinal drug transporters. Our study screened thirty antioxidants [...] Read more.
The presence of mutagenic and carcinogenic N-nitrosamine impurities in medicinal products poses a safety risk. While incorporating antioxidants in formulations is a potential mitigation strategy, concerns arise regarding their interference with drug absorption by inhibiting intestinal drug transporters. Our study screened thirty antioxidants for inhibitory effects on key intestinal transporters—OATP2B1, P-gp, and BCRP in HEK-293 cells (OATP2B1) or membrane vesicles (P-gp, BCRP) using 3H-estrone sulfate, 3H-N-methyl quinidine, and 3H-CCK8 as substrates, respectively. The screen identified that butylated hydroxyanisole (BHA) and carnosic acid inhibited all three transporters (OATP2B1, P-gp, and BCRP), while ascorbyl palmitate (AP) inhibited OATP2B1 by more than 50%. BHA had IC50 values of 71 ± 20 µM, 206 ± 14 µM, and 182 ± 49 µM for OATP2B1, BCRP, and P-gp, respectively. AP exhibited IC50 values of 23 ± 10 µM for OATP2B1. The potency of AP and BHA was tested with valsartan, an OATP2B1 substrate, and revealed IC50 values of 26 ± 17 µM and 19 ± 11 µM, respectively, in HEK-293-OATP2B1 cells. Comparing IC50 values of AP and BHA with estimated intestinal concentrations suggests an unlikely inhibition of intestinal transporters at clinical concentrations of drugs formulated with antioxidants. Full article
(This article belongs to the Special Issue New Insights into Transporters in Drug Development)
Show Figures

Graphical abstract

Back to TopTop