Fructose Beverage Consumption Induces a Metabolic Syndrome Phenotype in the Rat: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Study Selection
2.3. Data Collected
2.4. Statistical Analysis
3. Results
3.1. Study Characteristics
3.2. Effect of Fructose on Rodent Body Weight and Systolic Blood Pressure
3.3. Effect of Fructose on Rodent Blood Glucose, Insulin and Triglyceride Concentrations
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Johnson, R.K.; Appel, L.J.; Brands, M.; Howard, B.V.; Lefevre, M.; Lustig, R.H.; Sacks, F.; Steffen, L.M.; Wylie-Rosett, J.; American Heart Association Nutrition Committee of the Council on Nutrition, Physical Activity, and Metabolism and the Council on Epidemiology and Prevention. Dietary sugars intake and cardiovascular health: A scientific statement from the American heart association. Circulation 2009, 120, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Wittekind, A.; Walton, J. Worldwide trends in dietary sugars intake. Nutr. Res. Rev. 2014, 27, 330–345. [Google Scholar] [CrossRef] [PubMed]
- Goran, M.I.; Ulijaszek, S.J.; Ventura, E.E. High fructose corn syrup and diabetes prevalence: A global perspective. Glob. Public Health 2013, 8, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Newens, K.J.; Walton, J. A review of sugar consumption from nationally representative dietary surveys across the world. J. Hum. Nutr. Diet. 2015, 29, 224–240. [Google Scholar] [CrossRef] [PubMed]
- Ruff, R.R. Sugar-sweetened beverage consumption is linked to global adult morbidity and mortality through diabetes mellitus, cardiovascular disease and adiposity-related cancers. Evid.-Based Med. 2015, 20, 223–224. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Sievenpiper, J.L.; de Souza, R.J.; Cozma, A.I.; Chiavaroli, L.; Ha, V.; Mirrahimi, A.; Carleton, A.J.; Di Buono, M.; Jenkins, A.L.; et al. Effect of fructose on postprandial triglycerides: A systematic review and meta-analysis of controlled feeding trials. Atherosclerosis 2014, 232, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Livesey, G.; Taylor, R. Fructose consumption and consequences for glycation, plasma triacylglycerol, and body weight: Meta-analyses and meta-regression models of intervention studies. Am. J. Clin. Nutr. 2008, 88, 1419–1437. [Google Scholar] [PubMed]
- Kelishadi, R.; Mansourian, M.; Heidari-Beni, M. Association of fructose consumption and components of metabolic syndrome in human studies: A systematic review and meta-analysis. Nutrition 2014, 50, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Lustig, R.H. Fructose: It’s “alcohol without the buzz”. Adv. Nutr. (Bethesda, MD) 2013, 4, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.S.; Ho, H.; Hoffman, B.B.; Reaven, G.M. Fructose-induced insulin resistance and hypertension in rats. Hypertension 1987, 10, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Leibowitz, A.; Rehman, A.; Paradis, P.; Schiffrin, E.L. Role of t regulatory lymphocytes in the pathogenesis of high-fructose diet–induced metabolic syndrome. Hypertension 2013, 61, 1316–1321. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, Z.; Oron-Herman, M.; Grozovski, M.; Rosenthal, T.; Pappo, O.; Link, G.; Sela, B.A. Fructose-induced fatty liver disease: Hepatic effects of blood pressure and plasma triglyceride reduction. Hypertension 2005, 45, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, R.; Ueno, M.; Silva, M.; Tavares, D.; Carvalho, C.; Saad, M. A high fructose diet affects the early steps of insulin action in muscle and liver of rats. J. Nutr. 2000, 130, 1531–1535. [Google Scholar] [PubMed]
- Huang, B.W.; Chiang, M.T.; Yao, H.T.; Chiang, W. The effect of high-fat and high-fructose diets on glucose tolerance and plasma lipid and leptin levels in rats. Diabetes Obes. Metab. 2004, 6, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Dhawan, T.; Young, S.; Yong, W.H.; Boros, L.G.; Heaney, A.P. Fructose impairs glucose-induced hepatic triglyceride synthesis. Lipids Health Dis. 2011, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.Y.; Wallig, M.A.; Chung, B.H.; Nara, T.Y.; Cho, B.H.; Nakamura, M.T. Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver. Biochim. Biophys. Acta 2008, 1782, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Igarashi, K.; Koeda, T.; Sugimoto, K.; Nakagawa, K.; Hayashi, S.; Yamaji, R.; Inui, H.; Fukusato, T.; Yamanouchi, T. Rats fed fructose-enriched diets have characteristics of nonalcoholic hepatic steatosis. J. Nutr. 2009, 139, 2067–2071. [Google Scholar] [CrossRef] [PubMed]
- Catena, C.; Giacchetti, G.; Novello, M.; Colussi, G.; Cavarape, A.; Sechi, L.A. Cellular mechanisms of insulin resistance in rats with fructose-induced hypertension. Am. J. Hypertens. 2003, 16, 973–978. [Google Scholar] [CrossRef]
- Taghibiglou, C.; Carpentier, A.; van Iderstine, S.C.; Chen, B.; Rudy, D.; Aiton, A.; Lewis, G.F.; Adeli, K. Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance. Evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation, and increased microsomal triglyceride transfer protein in a fructose-fed hamster model. J. Biol. Chem. 2000, 275, 8416–8425. [Google Scholar] [PubMed]
- Kannappan, S.; Jayaraman, T.; Rajasekar, P.; Ravichandran, M.K.; Anuradha, C.V. Cinnamon bark extract improves glucose metabolism and lipid profile in the fructose-fed rat. Singap. Med. J. 2006, 47, 858–863. [Google Scholar]
- Hirano, T.; Mamo, J.C.; Poapst, M.E.; Kuksis, A.; Steiner, G. Impaired very low-density lipoprotein-triglyceride catabolism in acute and chronic fructose-fed rats. Am. J. Physiol. 1989, 256, E559–E565. [Google Scholar] [PubMed]
- Ibrahim, S.M.; El-Denshary, E.S.; Abdallah, D.M. Geraniol, alone and in combination with pioglitazone, ameliorates fructose-induced metabolic syndrome in rats via the modulation of both inflammatory and oxidative stress status. PLoS ONE 2015, 10, e0117516. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.X.; Yu, R.; Xu, M.X.; Li, P.Q.; Fan, C.Y.; Li, J.M.; Kong, L.D. Betaine prevented fructose-induced NAFLD by regulating LXRα/PPARα pathway and alleviating ER stress in rats. Eur. J. Pharmacol. 2016, 770, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Prince, P.D.; Lanzi, C.R.; Toblli, J.E.; Elesgaray, R.; Oteiza, P.I.; Fraga, C.G.; Galleano, M. Dietary (−)-epicatechin mitigates oxidative stress, no metabolism alterations, and inflammation in renal cortex from fructose-fed rats. Free Radic. Biol. Med. 2016, 90, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Litterio, M.C.; Vazquez Prieto, M.A.; Adamo, A.M.; Elesgaray, R.; Oteiza, P.I.; Galleano, M.; Fraga, C.G. (−)-epicatechin reduces blood pressure increase in high-fructose-fed rats: Effects on the determinants of nitric oxide bioavailability. J. Nutr. Biochem. 2015, 26, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Peredo, H.A.; Lee, H.; Donoso, A.S.; Andrade, V.; Sanchez Eluchans, N.; Puyo, A.M. A high-fat plus fructose diet produces a vascular prostanoid alterations in the rat. Auton. Autacoid Pharmacol. 2015, 34, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Al-Rasheed, N.; Bassiouni, Y.; Faddah, L.; Mohamad, A.M. Potential protective effects of Nigella sativa and Allium sativum against fructose-induced metabolic syndrome in rats. J. Oleo Sci. 2014, 63, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.C.; Francini, F.; Gagliardino, J.J.; Massa, M.L. Lipoic acid prevents fructose-induced changes in liver carbohydrate metabolism: Role of oxidative stress. Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 1145–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, A.A.; Elshazly, S.M. Ursodeoxycholic acid ameliorates fructose-induced metabolic syndrome in rats. PLoS ONE 2014, 9, e106993. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, D.P.; Scacchi Bernasconi, P.A.; Reynoso, R.; Reyes Toso, C.F.; Scacchi, P. Melatonin may curtail the metabolic syndrome: Studies on initial and fully established fructose-induced metabolic syndrome in rats. Int. J. Mol. Sci. 2013, 14, 2502–2514. [Google Scholar] [CrossRef] [PubMed]
- Farina, J.P.; Garcia, M.E.; Alzamendi, A.; Giovambattista, A.; Marra, C.A.; Spinedi, E.; Gagliardino, J.J. Antioxidant treatment prevents the development of fructose-induced abdominal adipose tissue dysfunction. Clin. Sci. 2013, 125, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Larsen, L.H.; Orstrup, L.K.H.; Hansen, S.H.; Grunnet, N.; Quistorff, B.; Mortensen, O.H. The effect of long-term taurine supplementation and fructose feeding on glucose and lipid homeostasis in Wistar rats. Adv. Exp. Med. Biol. 2013, 776, 39–50. [Google Scholar] [PubMed]
- Zarfeshani, A.; Mutalib, M.S.A.; Khaza’ai, H. Evaluating of high fructose diet to induce hyperglycemia and its inflammatory complications in rats. Pak. J. Nutr. 2012, 11, 21–26. [Google Scholar]
- Maiztegui, B.; Borelli, M.I.; Madrid, V.G.; Del Zotto, H.; Raschia, M.A.; Francini, F.; Massa, M.L.; Flores, L.E.; Rebolledo, O.R.; Gagliardino, J.J. Sitagliptin prevents the development of metabolic and hormonal disturbances, increased β-cell apoptosis and liver steatosis induced by a fructose-rich diet in normal rats. Clin. Sci. 2011, 120, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Shahraki, M.R.; Harati, M.; Shahraki, A.R. Prevention of high fructose-induced metabolic syndrome in male wistar rats by aqueous extract of Tamarindus indica seed. Acta Med. Iran. 2011, 49, 277–283. [Google Scholar] [PubMed]
- Giani, J.F.; Munoz, M.C.; Mayer, M.A.; Veiras, L.C.; Arranz, C.; Taira, C.A.; Turyn, D.; Toblli, J.E.; Dominici, F.P. Angiotensin-(1-7) improves cardiac remodeling and inhibits growthpromoting pathways in the heart of fructose-fed rats. Am. J. Physiol. Heart Circ. Physiol. 2010, 298, H1003–H1013. [Google Scholar] [CrossRef] [PubMed]
- Atanasovska, E.; Jakovski, K.; Kostova, E.; Petlichkovski, A.; Dimitrovski, C.; Bitovska, I.; Kikerkov, I.; Petrovski, O.; Labachevski, N. Effects of rosiglitazone on metabolic parameters and adiponectin levels in fructose-fed rats. Maced. J. Med. Sci. 2009, 2, 22–29. [Google Scholar] [CrossRef]
- Bi, X.P.; Tan, H.W.; Xing, S.S.; Zhong, M.; Zhang, Y.; Zhang, W. Felodipine downregulates serum interleukin-18 levels in rats with fructose-induced metabolic syndrome. J. Endocrinol. Investig. 2009, 32, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.W.; Xing, S.S.; Bi, X.P.; Li, L.; Gong, H.P.; Zhong, M.; Zhang, Y.; Zhang, W. Felodipine attenuates vascular inflammation in a fructose-induced rat model of metabolic syndrome via the inhibition of NF-κB activation. Acta Pharmacol. Sin. 2008, 29, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Xing, S.S.; Tan, H.W.; Bi, X.P.; Zhong, M.; Zhang, Y.; Zhang, W. Felodipine reduces cardiac expression of IL-18 and perivascular fibrosis in fructose-fed rats. Mol. Med. 2008, 14, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Jalal, R.; Bagheri, S.M.; Moghimi, A.; Rasuli, M.B. Hypoglycemic effect of aqueous shallot and garlic extracts in rats with fructose-induced insulin resistance. J. Clin. Biochem. Nutr. 2007, 41, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Lozada, L.G.; Tapia, E.; Jimenez, A.; Bautista, P.; Cristobal, M.; Nepomuceno, T.; Soto, V.; Avila-Casado, C.; Nakagawa, T.; Johnson, R.J.; et al. Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am. J. Physiol. Ren. Physiol. 2007, 292, F423–F429. [Google Scholar] [CrossRef] [PubMed]
- Yadav, H.; Jain, S.; Sinha, P.R. Antidiabetic effect of probiotic dahi containing lactobacillus acidophilus and lactobacillus casei in high fructose fed rats. Nutrition 2007, 23, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Xi, L.; Qian, Z.; Xu, G.; Zheng, S.; Sun, S.; Wen, N.; Sheng, L.; Shi, Y.; Zhang, Y. Beneficial impact of crocetin, a carotenoid from saffron, on insulin sensitivity in fructose-fed rats. J. Nutr. Biochem. 2007, 18, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Shalam, M.; Harish, M.S.; Farhana, S.A. Prevention of dexamethasone- and fructose-induced insulin resistance in rats by SH-01D, a herbal preparation. Indian J. Pharmacol. 2006, 38, 419–422. [Google Scholar] [CrossRef]
- Light, H.R.; Tsanzi, E.; Gigliotti, J.; Morgan, K.; Tou, J.C. The type of caloric sweetener added to water influences weight gain, fat mass, and reproduction in growing Sprague-Dawley female rats. Exp. Biol. Med. (Maywood) 2009, 234, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Bergheim, I.; Weber, S.; Vos, M.; Kramer, S.; Volynets, V.; Kaserouni, S.; McClain, C.J.; Bischoff, S.C. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: Role of endotoxin. J. Hepatol. 2008, 48, 983–992. [Google Scholar] [CrossRef] [PubMed]
- Jurgens, H.; Haass, W.; Castaneda, T. Consuming fructose-sweetened beverages increases body adiposity in mice. Obes. Res. 2005, 13, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.P.; Tan, H.W.; Xing, S.S.; Wang, Z.H.; Tang, M.X.; Zhang, Y.; Zhang, W. Overexpression of TRB3 gene in adipose tissue of rats with high fructose-induced metabolic syndrome. Endocr. J. 2008, 55, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Francini, F.; Castro, M.C.; Schinella, G.; Garcia, M.E.; Maiztegui, B.; Raschia, M.A.; Gagliardino, J.J.; Massa, M.L. Changes induced by a fructose-rich diet on hepatic metabolism and the antioxidant system. Life Sci. 2010, 86, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarzer, G. Meta: General Package for Meta-Analysis. Available online: https://CRAN.R-project.org/package=meta (accessed on 10 February 2016).
- Liu, J.; Wang, R.; Desai, K.; Wu, L. Upregulation of aldolase B and overproduction of methylglyoxal in vascular tissues from rats with metabolic syndrome. Cardiovasc. Res. 2011, 92, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Bursac, B.N.; Djordjevic, A.D.; Vasiljevic, A.D.; Milutinovic, D.D.; Velickovic, N.A.; Nestorovic, N.M.; Matic, G.M. Fructose consumption enhances glucocorticoid action in rat visceral adipose tissue. J. Nutr. Biochem. 2013, 24, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Roglans, N.; Vila, L.; Farre, M.; Alegret, M.; Sanchez, R.M.; Vazquez-Carrera, M.; Laguna, J.C. Impairment of hepatic STAT-3 activation and reduction of PPARα activity in fructose-fed rats. Hepatology 2007, 45, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.C.; Lin, C.H.; Lin, W.L.; Wu, J.B. Momordica charantia extract on insulin resistance and the skeletal muscle GLUT4 protein in fructose-fed rats. J. Ethnopharmacol. 2009, 123, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Sandeva Rositsa, V.; Mihaylova Stanislava, M.; Sandeva Gergana, N.; Trifonova Katya, Y.; Popova-Katsarova Ruska, D. Effect of high-fructose solution on body weight, body fat, blood glucose and triglyceride levels in rats. J. Biomed. Clin. Res. 2015, 8, 5–8. [Google Scholar] [CrossRef]
- Nguyen, S.; Choi, H.K.; Lustig, R.H.; Hsu, C.-Y. Sugar sweetened beverages, serum uric acid, and blood pressure in adolescents. J. Pediatr. 2009, 154, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Qi, L.; Qiao, N.; Choi, H.K.; Curhan, G.; Tucker, K.L.; Ascherio, A. Intake of added sugar and sugar-sweetened drink and serum uric acid concentration in US men and women. Hypertension 2007, 50, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Regnault, T.R.; Gentili, S.; Sarr, O.; Toop, C.R.; Sloboda, D.M. Fructose, pregnancy and later life impacts. Clin. Exp. Pharmacol. Physiol. 2013, 40, 824–837. [Google Scholar] [CrossRef] [PubMed]
- Samuel, V.T. Fructose induced lipogenesis: From sugar to fat to insulin resistance. Trends Endocrinol. Metab. 2011, 22, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.T.; Yuen, V.G.; McNeill, J.H. The fructose-fed rat: A review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol. Cell. Biochem. 2009, 332, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Ritze, Y.; Bárdos, G.; D’Haese, J.G.; Ernst, B.; Thurnheer, M.; Schultes, B.; Bischoff, S.C. Effect of high sugar intake on glucose transporter and weight regulating hormones in mice and humans. PLoS ONE 2014, 9, e101702. [Google Scholar] [CrossRef] [PubMed]
Citation | Fructose Concentration (% w/v) | Duration of Intervention (Weeks) | n (% of Control) | Summary of Findings: Effect of Fructose Relative to Control | ||||
---|---|---|---|---|---|---|---|---|
Body Weight | Systolic Blood Pressure | Blood Glucose | Blood Insulin | Blood Triglycerides | ||||
Ge et al. 2016 [23] | 10 | 5 | 16 (50) | Significant increase | Data not reported | No effect | Significant increase | Significant increase |
Prince et al. 2016 [24] | 10 | 8 | 16 (50) | No effect | Data not reported | No effect | Data not reported | Significant increase |
Ibrahim et al. 2015 [22] | 10 | 20 | 14 (57.1) * | Significant increase (raw data not provided) | Data not reported | Significant increase | Significant increase | Significant increase |
Litterio et al. 2015 [25] | 10 | 8 | 18 (55.6) | No effect | Significant increase | Data not reported | Data not reported | Data not reported |
Peredo et al. 2015 [26] | 10 | 9 | 12 (50) | No effect | Significant increase | No effect | Significant increase | Significant increase |
Al-Rasheed et al. 2014 [27] | 10 | 8 | 20 (50) | Significant increase | Data not reported | Significant increase | Data not reported | Significant increase (raw data not provided) |
Castro et al. 2014 [28] | 10 | 3 | 40 (50) | No effect | Data not reported | No effect | Significant increase | Significant increase |
Mahmoud and Elshazly, 2014 [29] | 10 | 12 | 10 (50) * | Significant increase (raw data not provided) | Significant increase | Significant increase | Significant increase | Significant increase |
Cardinali et al. 2013 [30] | 10 | 8 | 16 (50) | Significant increase | Significant increase | Data not reported | Data not reported | Significant increase |
Farina et al. 2013 [31] | 10 | 3 | 20 (50) * | No effect | Data not reported | No effect | No effect | Significant increase |
Larsen et al. 2013 [32] | 10 | 26 | 12 (50) | No effect | Data not reported | No effect | No effect | No effect |
Zarfeshani et al. 2012 [33] | 21 | 10 | 12 (50) | No effect | Data not reported | No effect | Data not reported | No effect |
Maiztegui et al. 2011 [34] | 10 | 3 | 40 (50) | No effect | Data not reported | No effect | Significant increase | Significant increase |
Shahraki et al. 2011 [35] | 10 | 8 | 19 (47.4) | No effect (raw data not provided) | Data not reported | No effect | No effect | Significant increase |
Francini et al. 2010 [50] | 10 | 3 | 30 (50) | No effect | Data not reported | Significant increase | Significant increase | Significant increase |
Giani et al. 2010 [36] | 10 | 6 | 16 (50) | No effect | Significant increase | No effect | Significant increase | Data not reported |
Atanasovska et al. 2009 [37] | 10 | 12 | 28 (42.9) | No effect | Significant increase | Data not reported | Significant increase | Significant increase |
Bi et al. 2009 [38] | 10 | 32 | 30 (40) | Significant increase (raw data not provided) | Data not reported | No effect | Significant increase | Significant increase |
Bi et al. 2008 [49] | 10 | 38 | 21 (57.1) | Significant increase | Significant increase | No effect | Significant increase | Significant increase |
Tan et al. 2008 [39] | 10 | 32 | 21 (57.1) | Significant increase | Significant increase | No effect | Significant increase | Significant increase |
Xing et al. 2008 [40] | 10 | 34.7 | 21 (57.1) | Significant increase (raw data not provided) | Significant increase | No effect | Significant increase | Significant increase |
Jalal et al. 2007 [41] | 10 | 8 | 34 (29.4) | Significant increase | Data not reported | Significant increase | Data not reported | Significant increase |
Sanchez-Lozada et al. 2007 [42] | 10 | 8 | 14 (50) | No effect | Significant increase | No effect | Data not reported | No effect |
Yadav et al. 2007 [43] | 21 | 8 | 12 (50) | Significant increase | Data not reported | Significant increase | Significant increase | Significant increase |
Xi et al. 2007 [44] | 10 | 8 | 20 (50) | No effect | Significant increase | No effect | Significant increase | Significant increase |
Shalam et al. 2006 [45] | 10 | 2.86 | 12 (50) | Data not reported | Data not reported | Significant increase | Significant increase | Significant increase (raw data not provided) |
Less Than or Equal to 12 Weeks (n = 20) | Greater Than 12 Weeks (n = 6) | |
---|---|---|
Fructose beverage concentration (% w/v) | 11.1 (9.5, 12.8) | 10 * |
Study duration (weeks) | 7.0 (5.7, 8.4) | 30.5 (23.7, 37.2) |
Sample size (% of control) | 48.8 (46.4, 51.1) | 53.1 (45.7, 60.4) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toop, C.R.; Gentili, S. Fructose Beverage Consumption Induces a Metabolic Syndrome Phenotype in the Rat: A Systematic Review and Meta-Analysis. Nutrients 2016, 8, 577. https://doi.org/10.3390/nu8090577
Toop CR, Gentili S. Fructose Beverage Consumption Induces a Metabolic Syndrome Phenotype in the Rat: A Systematic Review and Meta-Analysis. Nutrients. 2016; 8(9):577. https://doi.org/10.3390/nu8090577
Chicago/Turabian StyleToop, Carla R., and Sheridan Gentili. 2016. "Fructose Beverage Consumption Induces a Metabolic Syndrome Phenotype in the Rat: A Systematic Review and Meta-Analysis" Nutrients 8, no. 9: 577. https://doi.org/10.3390/nu8090577
APA StyleToop, C. R., & Gentili, S. (2016). Fructose Beverage Consumption Induces a Metabolic Syndrome Phenotype in the Rat: A Systematic Review and Meta-Analysis. Nutrients, 8(9), 577. https://doi.org/10.3390/nu8090577