Early Nutritional Interventions for Brain and Cognitive Development in Preterm Infants: A Review of the Literature
Abstract
:1. Introduction
2. Dietary Intervention Studies for Brain and Cognitive Development in Preterm Infants
2.1. Enhanced Enteral and Parenteral Nutrition
2.2. Breast Milk and Infant Formula Studies
2.3. Studies with Specific Nutrients or Nutritional Supplements for Brain and Cognitive Development
2.3.1. Protein and Amino Acids
2.3.2. Long-Chain Polyunsaturated Fatty Acids
2.3.3. Micronutrients
2.3.4. Probiotics
2.3.5. Prebiotics
2.3.6. Sphingomyelin
3. Discussion
3.1. Nutrients, Nutritional Supplements and Dietary Interventions That Have Been Shown to Be Promising for Neurodevelopmental Effects in Preterm Infants
3.2. Study Design, Expected Sample Sizes and Outcomes for Nutritional Clinical Trials among Preterm Infants to Assess and Demonstrate Changes in Neurodevelopment and Cognition
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AA | Amino acids |
ARA | Arachidonic acid |
ELBW | extremely low birth weight (less than 1000 g) |
EPT | extremely preterm (<28 weeks) |
LPT | late preterm (32 to <37 weeks) |
VLBW | very low birth weight (less than 1500 g) |
VPT | very preterm (28 to <32 weeks) |
References
- March of Dimes; Partnership for Maternal, Newborn & Child Health; Save the Children; World Health Organization. Born Too Soon: The Global Action Report on Preterm Birth; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Jakuskiene, R.; Vollmer, B.; Saferis, V.; Daugeliene, D. Neonatal outcome of very preterm infants admitted to a tertiary center in Lithuania between the years 2003 and 2005. Eur. J. Pediatr. 2011, 170, 1293–1303. [Google Scholar] [CrossRef] [PubMed]
- Nagy, Z.; Ashburner, J.; Andersson, J.; Jbabdi, S.; Draganski, B.; Skare, S.; Böhm, B.; Smedler, A.C.; Forssberg, H.; Lagererantz, H. Structural correlates of preterm birth in the adolescent brain. Pediatrics 2009, 124, e964–e972. [Google Scholar] [CrossRef] [PubMed]
- Nosarti, C.; Murray, R.; Hack, M. Neurodevelopmental Outcomes of Preterm Birth: From Childhood to Adult Life; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Lubsen, J.; Vohr, B.; Myers, E.; Hampson, M.; Lacadie, C.; Schneider, K.C.; Katz, K.H.; Constable, R.T.; Ment, L.R. Microstructural and functional connectivity in the developing preterm brain. Semin. Perinatol. 2011, 35, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Bassi, L.; Chew, A.; Merchant, N.; Ball, G.; Ramenghi, L.; Boardman, J.; Allsop, J.M.; Doria, V.; Arichi, T.; Mosca, F.; et al. Diffusion tensor imaging in preterm infants with punctate white matter lesions. Pediatr. Res. 2011, 69, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Schafer, R.J.; Lacadie, C.; Vohr, B.; Kesler, S.R.; Katz, K.H.; Schneider, K.C.; Pugh, K.R.; Makuch, R.W.; Reiss, A.L.; Constable, R.T.; et al. Alterations in functional connectivity for language in prematurely born adolescents. Brain 2009, 132, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Mullen, K.M.; Vohr, B.R.; Katz, K.H.; Schneider, K.C.; Lacadie, C.; Hampson, M.; Makuch, R.W.; Reiss, A.L.; Constable, R.T.; Ment, L.R. Preterm birth results in alterations in neural connectivity at age 16 years. Neuroimage 2011, 54, 2563–2570. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.; Hennessy, E.M.; Myles, J.; Johnson, S.J.; Draper, E.S.; Costeloe, K.L.; Marlow, N. Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: The EPICure studies. BMJ 2012, 345, e7961. [Google Scholar] [CrossRef] [PubMed]
- Moster, D.; Lie, R.T.; Markestad, T. Long-term medical and social consequences of preterm birth. N. Engl. J. Med. 2008, 359, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Barre, N.; Morgan, A.; Doyle, L.W.; Anderson, P.J. Language abilities in children who were very preterm and/or very low birth weight: A meta-analysis. J. Pediatr. 2011, 158, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Molloy, C.S.; Wilson-Ching, M.; Doyle, L.W.; Anderson, P.J. Victorian Infant Collaborative Study Group. Visual memory and learning in extremely low-birth-weight/extremely preterm adolescents compared with controls: A geographic study. J. Pediatr. Psychol. 2014, 39, 316–331. [Google Scholar] [CrossRef] [PubMed]
- Seiferth, N.; Thienel, R.; Kircher, T. Exekutive Funktionen. In Funktionelle MRT in Psychiatrie und Neurologie; Schneider, F., Fink, G., Eds.; Springer: Heidelberg, Germany, 2007; pp. 265–277. [Google Scholar]
- Narberhaus, A.; Segarra, D.; Giménez, M.; Junqué, C.; Pueyo, R.; Botet, F. Memory performance in a sample of very low birth weight adolescents. Dev. Neuropsychol. 2007, 31, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, E.; Sjölander, A.; Almquist, C.; Anckarsäter, H.; D’Onofrio, B.M.; Lichtenstein, P.; Larsson, H. Birth weight as an independent predictor of ADHD symptoms: A within-twin pair analysis. J. Child Psychol. Psychiatry 2015, 56, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Marlow, N. Preterm birth and childhood psychiatric disorders. Pediatr. Res. 2011, 69, 11R–18R. [Google Scholar] [CrossRef] [PubMed]
- Class, Q.A.; Rickert, M.E.; Larsson, H.; Lichtenstein, P.D.; D’Onofrio, B.M. Fetal growth and psychiatric and socioeconomic problems: Population-based sibling comparison. Br. J. Psychiatry 2014, 205, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Dit Trolli, S.E.; Kermorvant-Duchemin, E.; Huon, C.; Bremond-Gignac, D.; Lapillonne, A. Early lipid supply and neurological development at one year in very low birth weight (VLBW) preterm infants. Early Hum. Dev. 2012, 88, S25–S29. [Google Scholar] [CrossRef] [PubMed]
- Franz, A.R.; Pohlandt, F.; Bode, H.; Mihatsch, W.A.; Sander, S.; Kron, M.; Steinmacher, J. Intrauterine, early neonatal, and postdischarge growth and neurodevelopmental outcome at 5.4 years in extremely preterm infants after intensive neonatal nutritional support. Pediatrics 2009, 123, e101–e109. [Google Scholar] [CrossRef] [PubMed]
- Powers, G.C.; Ramamurthy, R.; Schoolfield, J.; Matula, K. Postdischarge growth and development in a predominantly Hispanic, very low birth weight population. Pediatrics 2008, 122, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, E.B.; Morley, R.; Lucas, A. Early diet and general cognitive outcome at adolescence in children born at or below 30 weeks gestation. J. Pediatr. 2009, 155, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Weisglas-Kuperus, N.; Hille, E.T.; Duivenvoorden, H.J.; Finken, M.J.; Wit, J.M.; van Buuren, S.; van Goudoever, J.B.; Verloove-Vanhorick, S.P. Dutch POPS-19 Collaborative Study Group. Intelligence of very preterm or very low birthweight infants in young adulthood. Arch. Dis. Child. Fetal Neonatal Ed. 2009, 94, F196–F200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyhälä, R.; Hovi, P.; Lahti, M.; Sammallahti, S.; Lahti, J.; Heinonen, K.; Pesonen, A.K.; Strang-Karlsson, S.; Eriksson, J.G.; Andersson, S.; et al. Very low birth weight, infant growth, and autism-spectrum traits in adulthood. Pediatrics 2014, 134, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Sammallahti, S.; Pyhälä, R.; Lahti, M.; Lahti, J.; Pesonen, A.; Heinonen, K.; Hovi, P.; Eriksson, J.G.; Strang-Karlsson, S.; Andersson, S.; et al. Infant growth after preterm birth and neurocognitive abilities in young adulthood. J. Pediatr. 2014, 165, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Latal-Hajnal, B.; von Siebenthal, K.; Kovari, H.; Bucher, H.U.; Largo, R.H. Postnatal growth in VLBW infants: Significant association with neurodevelopmental outcome. J. Pediatr. 2003, 143, 163–170. [Google Scholar] [CrossRef]
- Ehrenkranz, R.A.; Dusick, A.M.; Vohr, B.R.; Wright, L.L.; Wrage, L.A.; Poole, W.K. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 2006, 117, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Stephens, B.E.; Walden, R.V.; Gargus, R.A.; Tucker, R.; McKinley, L.; Mance, M.; Nye, J.; Vohr, B.R. First-week protein and energy intakes are associated with 18-month developmental outcomes in extremely low birth weight infants. Pediatrics 2009, 123, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Moltu, S.J.; Strømmen, K.; Blakstad, E.W.; Almaas, A.N.; Westerberg, A.C.; Braekke, K.; Rønnestad, A.E.; Nakstad, B.; Berg, J.P.; Veierød, M.B.; et al. Enhanced feeding in very-low-birth-weight infants may cause electrolyte disturbances and septicemia—A randomized, controlled trial. Clin. Nutr. 2013, 32, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Strømmen, K.; Blakstad, E.W.; Moltu, S.J.; Almaas, A.N.; Westerberg, A.C.; Amlien, I.K.; Rønnestad, A.E.; Nakstad, B.; Drevon, C.A.; Bjørnerud, A.; et al. Enhanced nutrient supply to very low birth weight infants is associated with improved white matter maturation and head growth. Neonatology 2015, 107, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Blakstad, E.W.; Strømmen, K.; Moltu, S.J.; Wattam-Bell, J.; Nordheim, T.; Almaas, A.N.; Grønn, M.; Rønnestad, A.E.; Braekke, K.; Iversen, P.O.; et al. Improved Visual Perception in Very Low Birth Weight Infants on Enhanced Nutrient Supply. Neonatology 2015, 108, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Abernethy, L.; Cooke, R. Improving head growth in preterm infants—A randomised controlled trial II: MRI and developmental outcomes in the first year. Arch. Dis. Child. Fetal Neonatal Ed. 2008, 93, F342–F346. [Google Scholar] [CrossRef] [PubMed]
- Tudehope, D.; Fewtrell, M.; Kashyap, S.; Udaeta, E. Nutritional needs of the micropreterm infant. J. Pediatr. 2013, 162, S72–S80. [Google Scholar] [CrossRef] [PubMed]
- Cooke, R.J.; Embleton, N.D.; Griffin, I.J.; Wells, J.C.; McCormick, K.P. Feeding preterm infants after hospital discharge: Growth and development at 18 months of age. Pediatr. Res. 2001, 49, 719–722. [Google Scholar] [CrossRef] [PubMed]
- Lucas, A.; Fewtrell, M.S.; Morley, R.; Lucas, P.J.; Baker, B.A.; Lister, G.; Bishop, N.J. Randomized outcome trial of human milk fortification and developmental outcome in preterm infants. Am. J. Clin. Nutr. 1996, 64, 142–151. [Google Scholar] [PubMed]
- Lucas, A.; Morley, R.; Cole, T.J. Randomised trial of early diet in preterm babies and later intelligence quotient. BMJ 1998, 317, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, H.; Pasamanick, B.; Sherard, E.S. A developmental screening inventory for infants. Pediatrics 1966, 38, 1095–1108. [Google Scholar]
- Kuschel, C.A.; Harding, J.E. Multicomponent fortified human milk for promoting growth in preterm infants. Cochrane Database Syst. Rev. 2004, 1. [Google Scholar] [CrossRef]
- Morley, R.; Cole, T.J.; Powell, R.; Lucas, A. Mother’s choice to provide breast milk and developmental outcome. Arch. Dis. Child. 1988, 63, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Lucas, A.; Morley, R.; Cole, T.J.; Lister, G.; Leeson-Payne, C. Breast milk and subsequent intelligence quotient in children born preterm. Lancet 1992, 339, 261–264. [Google Scholar] [CrossRef]
- Bier, J.A.; Oliver, T.; Ferguson, A.E.; Vohr, B.R. Human milk improves cognitive and motor development of premature infants during infancy. J. Hum. Lact. 2002, 18, 361–367. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, D.L.; Jacobs, J.; Hall, R.; Adamkin, D.; Auestad, N.; Castillo, M.; Connor, W.E.; Connor, S.L.; Fitzgerald, K.; Groh-Wargo, S.; et al. Growth and development of premature infants fed predominantly human milk, predominantly premature infant formula, or a combination of human milk and premature formula. J. Pediatr. Gastroenterol. Nutr. 2003, 37, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Eidelman, A.I.; Feldman, R. Positive effect of human milk on neurobehavioral and cognitive development of premature infants. Adv. Exp. Med. Biol. 2004, 554, 359–364. [Google Scholar] [PubMed]
- Vohr, B.R.; Poindexter, B.B.; Dusick, A.M.; McKinley, L.T.; Wright, L.L.; Langer, J.C.; Poole, W.K. Beneficial effects of breast milk in the neonatal intensive care unit on the developmental outcome of extremely low birth weight infants at 18 months of age. Pediatrics 2006, 118, e115–e123. [Google Scholar] [CrossRef] [PubMed]
- Vohr, B.R.; Poindexter, B.B.; Dusick, A.M.; McKinley, L.T.; Higgins, R.D.; Langer, J.C.; Poole, W.K. NICHD Neonatal Research Network. Persistent beneficial effects of breast milk ingested in the neonatal intensive care unit on outcomes of extremely low birth weight infants at 30 months of age. Pediatrics 2007, 120, e953–e959. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Kon, N.; Ohkawa, N.; Yoshikawa, N.; Shimizu, T. Does breastfeeding in the neonatal period influence the cognitive function of very-low-birth-weight infants at 5 years of age? Brain Dev. 2009, 31, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Gibertoni, D.; Corvaglia, L.; Vandini, S.; Rucci, P.; Savini, S.; Alessandron, R.; Sansavini, A.; Fantini, M.P.; Faldella, G. Positive effect of human milk feeding during NICU hospitalization on 24 months neurodevelopment of very low birth weight infants: An Italian cohort study. PLoS ONE 2015, 10, e0116552. [Google Scholar] [CrossRef] [PubMed]
- Furman, L.; Wilson-Costello, D.; Friedman, H.; Taylor, H.G.; Minich, N.; Hack, M. The effect of neonatal maternal milk feeding on the neurodevelopmental outcome of very low birth weight infants. J. Dev. Behav. Pediatr. 2004, 25, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Horwood, L.J.; Darlow, B.A.; Mogridge, N. Breast milk feeding and cognitive ability at 7–8 years. Arch. Dis. Child. Fetal Neonatal Ed. 2001, 84, F23–F27. [Google Scholar] [CrossRef] [PubMed]
- Quigley, M.; McGuire, W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst. Rev. 2014, 4. [Google Scholar] [CrossRef]
- Lucas, A.; Morley, R.; Cole, T.J.; Gore, S.M. A randomised multicentre study of human milk versus formula and later development in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 1994, 70, F141–F146. [Google Scholar] [CrossRef] [PubMed]
- Tyson, J.E.; Lasky, R.E.; Mize, C.E.; Richards, C.; J Blair-Smith, N.; Whyte, R.; Beer, A.E. Growth, metabolic response, and development in very-low-birth-weight infants fed banked human milk or enriched formula. I. Neonatal findings. J. Pediatr. 1983, 103, 95–104. [Google Scholar]
- Lucas, A.; Morley, R.; Cole, T.J.; Gore, S.M.; Davis, J.A.; Bamford, M.F.; Dossetor, J.F. Early diet in preterm babies and developmental status in infancy. Arch. Dis. Child. 1989, 64, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Walfisch, A.; Sermer, C.; Cressman, A.; Koren, G. Breast milk and cognitive development--the role of confounders: A systematic review. BMJ Open 2013, 3, 003259. [Google Scholar] [CrossRef] [PubMed]
- Lucas, A.; Morley, R.; Cole, T.J.; Gore, S.M.; Lucas, P.J.; Crowle, P.; Pearse, R.; Boon, A.J.; Powell, R. Early diet in preterm babies and developmental status at 18 months. Lancet 1990, 335, 1477–1481. [Google Scholar] [CrossRef]
- Isaacs, E.B.; Gadian, D.G.; Sabatini, S.; Chong, W.K.; Quinn, B.T.; Fischl, B.R.; Lucas, A. The effect of early human diet on caudate volumes and, I.Q. Pediatr. Res. 2008, 63, 308–314. [Google Scholar] [CrossRef]
- Biasini, A.; Marvulli, L.; Neri, E.; China, M.; Stella, M.; Monti, F. Growth and neurological outcome in ELBW preterms fed with human milk and extra-protein supplementation as routine practice: Do we need further evidence? J. Matern. Fetal Neonatal Med. 2012, 25, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Fenton, T.R.; Premji, S.S.; Al-Wassia, H.; Sauve, R.S. Higher versus lower protein intake in formula-fed low birth weight infants. Cochrane Database Syst. Rev. 2014, 4. [Google Scholar] [CrossRef]
- Cormack, B.E.; Bloomfield, F.H.; Dezoete, A.; Kuschel, C.A. Does more protein in the first week of life change outcomes for very low birthweight babies? J. Paediatr. Child Health. 2011, 47, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Cester, E.A.; Bloomfield, F.H.; Taylor, J.; Smith, S.; Cormack, B.E. Do recommended protein intakes improve neurodevelopment in extremely preterm babies? Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F243–F247. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, J.; Rassin, D.K.; Cerreto, M.C.; Bee, D.E. Effect of protein/energy ratio on growth and behavior of premature infants: Preliminary findings. J. Pediatr. 1991, 119, 103–110. [Google Scholar] [CrossRef]
- Goldman, H.I.; Liebman, O.B.; Freudenthal, R.; Reuben, R. Effects of early dietary protein intake on low-birth-weight infants: Evaluation at 3 years of age. J. Pediatr. 1971, 78, 126–129. [Google Scholar] [CrossRef]
- Goldman, H.I.; Goldman, J.; Kaufman, I.; Liebman, O.B. Late effects of early dietary protein intake on low-birth-weight infants. J. Pediatr. 1974, 85, 764–769. [Google Scholar] [CrossRef]
- Goldman, H.I.; Freudenthal, R.; Holland, B.; Karelitz, S. Clinical effects of two different levels of protein intake on low-birth-weight infants. J. Pediatr. 1969, 74, 881–889. [Google Scholar] [CrossRef]
- Blanco, C.L.; Gong, A.K.; Schoolfield, J.; Green, B.K.; Daniels, W.; Liechty, E.A.; Rmamurthy, R. Impact of early and high amino acid supplementation on ELBW infants at 2 years. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Poindexter, B.B.; Langer, J.C.; Dusick, A.M.; Ehrenkranz, R.A. National Institute of Child Health and Human Development Neonatal Research Network. Early provision of parenteral amino acids in extremely low birth weight infants: Relation to growth and neurodevelopmental outcome. J. Pediatr. 2006, 148, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Van den Akker, C.H.; te Braake, F.W.; Weisglas-Kuperus, N.; van Goudoever, J.B. Observational outcome results following a randomized controlled trial of early amino acid administration in preterm infants. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Wharton, B.A.; Morley, R.; Isaacs, E.B.; Cole, T.J.; Lucas, A. Low plasma taurine and later neurodevelopment. Arch. Dis. Child. Fetal Neonatal Ed. 2004, 89, F497–F498. [Google Scholar] [CrossRef] [PubMed]
- Tyson, J.E.; Lasky, R.; Flood, D.; Mize, C.; Picone, T.; Paule, C.L. Randomized trial of taurine supplementation for infants less than or equal to 1300-gram birth weight: Effect on auditory brainstem-evoked responses. Pediatrics 1989, 83, 406–415. [Google Scholar] [PubMed]
- Van den Berg, A.; van Elburg, R.M.; Westerbeek, E.A.; Twisk, J.W.; Fetter, W.P. Glutamine-enriched enteral nutrition in very-low-birth-weight infants and effects on feeding tolerance and infectious morbidity: A randomized controlled trial. Am. J. Clin. Nutr. 2005, 81, 1397–1404. [Google Scholar] [PubMed]
- Van Zwol, A.; van den Berg, A.; Huisman, J.; Vermeulen, R.; Fetter, W.P.; Twisk, J.W.; van Elburg, R.M. Neurodevelopmental outcomes of very low-birth-weight infants after enteral glutamine supplementation in the neonatal period. Acta Paediatr. 2008, 97, 562–567. [Google Scholar] [CrossRef] [PubMed]
- De Kieviet, J.F.; Oosterlaan, J.; van Zwol, A.; Boehm, G.; Lafeber, H.N.; van Elburg, R.M. Effects of neonatal enteral glutamine supplementation on cognitive, motor and behavioural outcomes in very preterm and/or very low birth weight children at school age. Br. J. Nutr. 2012, 108, 2215–2220. [Google Scholar] [CrossRef] [PubMed]
- Clandinin, M.T.; Chappell, J.E.; Leong, S.; Heim, T.; Swyer, P.R.; Chance, G.W. Intrauterine fatty acid accretion rates in human brain: Implications for fatty acid requirements. Early Hum. Dev. 1980, 4, 121–129. [Google Scholar] [CrossRef]
- Fang, P.C.; Kuo, H.K.; Huang, C.B.; Ko, T.Y.; Chen, C.C.; Chung, M.Y. The effect of supplementation of docosahexaenoic acid and arachidonic acid on visual acuity and neurodevelopment in larger preterm infants. Chang. Gung Med. J. 2005, 28, 708–715. [Google Scholar] [PubMed]
- Leaf, A.; Gosbell, A.; McKenzie, L.; Sinclair, A.; Favilla, I. Long chain polyunsaturated fatty acids and visual function in preterm infants. Early Hum. Dev. 1996, 45, 35–53. [Google Scholar] [CrossRef]
- Henriksen, C.; Haugholt, K.; Lindgren, M.; Aurvåg, A.; Rønnestad, A.; Grønn, M.; Solberg, R.; Moen, A.; Nakstad, B.; Berge, R.K.; et al. Improved cognitive development among preterm infants attributable to early supplementation of human milk with docosahexaenoic acid and arachidonic acid. Pediatrics 2008, 121, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Westerberg, A.C.; Schei, R.; Henriksen, C.; Smith, L.; Veierød, M.B.; Drevon, C.A.; Iversen, P.O. Attention among very low birth weight infants following early supplementation with docosahexaenoic and arachidonic acid. Acta Paediatr. 2011, 100, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Almaas, A.N.; Tamnes, C.K.; Nakstad, B.; Henriksen, C.; Walhovd, K.; Fjell, A.M.; Due-Tønnessen, P.; Drevon, C.A.; Iversen, P.O. Long-chain polyunsaturated fatty acids and cognition in VLBW infants at 8 years: An RCT. Pediatrics 2015, 135, 972–980. [Google Scholar] [CrossRef] [PubMed]
- Woltil, H.A.; van Beusekom, C.M.; Okken-Beukens, M.; Schaafsma, A.; Muskiet, F.A.; Okken, A. Development of low-birthweight infants at 19 months of age correlates with early intake and status of long-chain polyunsaturated fatty acids. Prostaglandins Leukot. Essent. Fat. Acids 1999, 61, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Clandinin, M.T.; Van Aerde, J.E.; Merkel, K.L.; Harris, C.L.; Springer, M.A.; Hansen, J.W.; Diersen-Schade, D.A. Growth and development of preterm infants fed infant formulas containing docosahexaenoic acid and arachidonic acid. J. Pediatr. 2005, 146, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Fewtrell, M.S.; Morley, R.; Abbott, R.A.; Singhal, A.; Isaacs, E.B.; Stephenson, T.; MacFadyan, U.; Lucas, A. Double-blind, randomized trial of long-chain polyunsaturated fatty acid supplementation in formula fed to preterm infants. Pediatrics 2002, 110, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Van Wezel-Meijler, G.; van der Knaap, M.S.; Huisman, J.; Jonkman, E.J.; Valk, J.; Lafeber, H.N. Dietary supplementation of long-chain polyunsaturated fatty acids in preterm infants: Effects on cerebral maturation. Acta Paediatr. 2002, 91, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Smithers, L.G.; Collins, C.T.; Simmonds, L.A.; Gibson, R.A.; McPhee, A.; Makrides, M. Feeding preterm infants milk with a higher dose of docosahexaenoic acid than that used in current practice does not influence language or behavior in early childhood: A follow-up study of a randomized controlled trial. Am. J. Clin. Nutr. 2010, 91, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Fewtrell, M.S.; Abbott, R.A.; Kennedy, K.; Singhal, A.; Morley, R.; Caine, E.; Jamieson, C.; Cockburn, F.; Lucas, A. Randomized, double-blind trial of long-chain polyunsaturated fatty acid supplementation with fish oil and borage oil in preterm infants. J. Pediatr. 2004, 144, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, E.B.; Ross, S.; Kennedy, K.; Weaver, L.T.; Lucas, A.; Fewtrell, M.S. 10-year cognition in preterms after random assignment to fatty acid supplementation in infancy. Pediatrics 2011, 128, e890–e898. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, D.L.; Hall, R.; Adamkin, D.; Auestad, N.; Castillo, M.; Connor, W.E.; Connor, S.L.; Fitzgerald, K.; Groh-Wargo, S.; Hartman, E.E.; et al. Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: A prospective, randomized controlled trial. Pediatrics 2001, 108, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Makrides, M.; Gibson, R.A.; McPhee, A.J.; Collins, C.T.; Davis, P.G.; Doyle, L.W.; Simmer, K.; Colditz, P.B.; Morris, S.; Smithers, L.G.; et al. Neurodevelopmental outcomes of preterm infants fed high-dose docosahexaenoic acid: A randomized controlled trial. JAMA 2009, 301, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Lundqvist-Persson, C.; Lau, G.; Nordin, P.; Strandvik, B.; Sabel, K.G. Early behaviour and development in breast-fed premature infants are influenced by omega-6 and omega-3 fatty acid status. Early Hum. Dev. 2010, 86, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Sabel, K.G.; Strandvik, B.; Petzold, M.; Lundqvist-Persson, C. Motor, mental and behavioral developments in infancy are associated with fatty acid pattern in breast milk and plasma of premature infants. Prostaglandins Leukot. Essent. Fat. Acids 2012, 86, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Bialecka-Pikul, M.; Lauterbach, R.; Pawlik, D. May the supplementation of lipid emulsion containing DHA in VLBW infants influence their psychological development evaluated at three years of age? Preliminary study. Dev. Period. Med. 2014, 18, 432–438. [Google Scholar] [PubMed]
- Smithers, L.G.; Gibson, R.A.; McPhee, A.; Makrides, M. Higher dose of docosahexaenoic acid in the neonatal period improves visual acuity of preterm infants: Results of a randomized controlled trial. Am. J. Clin. Nutr. 2008, 88, 1049–1056. [Google Scholar] [PubMed]
- Uauy, R.D.; Birch, D.G.; Birch, E.E.; Tyson, J.E.; Hoffman, D.R. Effect of dietary omega-3 fatty acids on retinal function of very-low-birth-weight neonates. Pediatr. Res. 1990, 28, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Bouglé, D.; Denise, P.; Vimard, F.; Nouvelot, A.; Penneillo, M.J.; Guillois, B. Early neurological and neuropsychological development of the preterm infant and polyunsaturated fatty acids supply. Clin. Neurophysiol. 1999, 110, 1363–1370. [Google Scholar] [CrossRef]
- Innis, S.M.; Adamkin, D.H.; Hall, R.T.; Kalhan, S.C.; Lair, C.; Lim, M.; Stevens, D.C.; Teist, P.F.; Diersen-Schade, D.A.; Harris, C.L.; et al. Docosahexaenoic acid and arachidonic acid enhance growth with no adverse effects in preterm infants fed formula. J. Pediatr. 2002, 140, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Birch, E.E.; Birch, D.G.; Hoffman, D.R.; Uauy, R. Dietary essential fatty acid supply and visual acuity development. Investig. Ophthalmol. Vis. Sci. 1992, 33, 3242–3253. [Google Scholar]
- Carlson, S.E.; Werkman, S.H.; Tolley, E.A. Effect of long-chain n-3 fatty acid supplementation on visual acuity and growth of preterm infants with and without bronchopulmonary dysplasia. Am. J. Clin. Nutr. 1996, 63, 687–697. [Google Scholar] [PubMed]
- Carlson, S.E.; Werkman, S.H.; Rhodes, P.G.; Tolley, E.A. Visual-acuity development in healthy preterm infants: Effect of marine-oil supplementation. Am. J. Clin. Nutr. 1993, 58, 35–42. [Google Scholar] [PubMed]
- Werkman, S.H.; Carlson, S.E. A randomized trial of visual attention of preterm infants fed docosahexaenoic acid until nine months. Lipids 1996, 31, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.E.; Werkman, S.H. A randomized trial of visual attention of preterm infants fed docosahexaenoic acid until two months. Lipids 1996, 31, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Faldella, G.; Govoni, M.; Alessandroni, R.; Marchiani, E.; Salvioli, G.P.; Biagi, P.L.; Spano, C. Visual evoked potentials and dietary long chain polyunsaturated fatty acids in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 1996, 75, F108–F112. [Google Scholar] [CrossRef] [PubMed]
- Birch, D.G.; Birch, E.E.; Hoffman, D.R.; Uauy, R.D. Retinal development in very-low-birth-weight infants fed diets differing in omega-3 fatty acids. Investig. Ophthalmol. Vis. Sci. 1992, 33, 2365–2376. [Google Scholar]
- Mactier, H.; Weaver, L.T. Vitamin A and preterm infants: What we know, what we don’t know, and what we need to know. Arch. Dis. Child. Fetal Neonatal Ed. 2005, 90, F103–F108. [Google Scholar] [CrossRef] [PubMed]
- Wagner, E.; Luo, T.; Dräger, U. Retinoic acid synthesis in the postnatal mouse brain marks distinct developmental stages and functional systems. Cereb. Cortex 2002, 12, 1244–1253. [Google Scholar] [CrossRef] [PubMed]
- Ambalavanan, N.; Tyson, J.E.; Kennedy, K.A.; Hansen, N.I.; Vohr, B.R.; Wright, L.L.; Carlo, W.A. National Institute of Child Health and Human Development Neonatal Research Network. Vitamin A supplementation for extremely low birth weight infants: Outcome at 18 to 22 months. Pediatrics 2005, 115, e249–e254. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.X.; Wang, R.S.; Chen, S.J.; Wang, A.P.; Liu, X.Y. Early and late iron supplementation for low birth weight infants: A meta-analysis. Ital. J. Pediatr. 2015, 41, 16. [Google Scholar] [CrossRef] [PubMed]
- Berglund, S.K.; Westrup, B.; Haraldsson, E.; Engström, B.; Domellöf, M. Effects of iron supplementation on auditory brainstem response in marginally LBW infants. Pediatr. Res. 2011, 70, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Steinmacher, J.; Pohlandt, F.; Bode, H.; Sander, S.; Kron, M.; Franz, A.R. Randomized trial of early versus late enteral iron supplementation in infants with a birth weight of less than 1301 grams: Neurocognitive development at 5.3 years’ corrected age. Pediatrics 2007, 120, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Berglund, S.K.; Westrup, B.; Hägglöf, B.; Hernell, O.; Domellöf, M. Effects of iron supplementation of LBW infants on cognition and behavior at 3 years. Pediatrics 2013, 131, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Friel, J.K.; Andrews, W.L.; Aziz, K.; Kwa, P.G.; Lepage, G.; L’Abbe, M. A randomized trial of two levels of iron supplementation and developmental outcome in low birth weight infants. J. Pediatr. 2001, 139, 254–260. [Google Scholar] [CrossRef] [PubMed]
- AlFaleh, K.; Anabrees, J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst. Rev. 2014, 3. [Google Scholar] [CrossRef]
- Diaz Heijtz, R.; Wang, S.; Anuar, F.; Qian, Y.; Björkholm, B.; Samuelsson, A.; Hibberd, M.L.; Fossberg, H.; Petersson, S. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA 2011, 108, 3047–3052. [Google Scholar] [CrossRef] [PubMed]
- Romeo, M.G.; Romeo, D.M.; Trovato, L.; Oliveri, S.; Palermo, F.; Cota, F.; Betta, P. Role of probiotics in the prevention of the enteric colonization by Candida in preterm newborns: Incidence of late-onset sepsis and neurological outcome. J. Perinatol. 2011, 31, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Sari, F.N.; Dizdar, E.A.; Oguz, S.; Erdeve, O.; Uras, N.; Dilmen, U. Oral probiotics: Lactobacillus sporogenes for prevention of necrotizing enterocolitis in very low-birth weight infants: A randomized, controlled trial. Eur. J. Clin. Nutr. 2011, 65, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Chou, I.C.; Kuo, H.T.; Chang, J.S.; Wu, S.F.; Chiu, H.Y.; Su, B.H.; Lin, H.C. Lack of effects of oral probiotics on growth and neurodevelopmental outcomes in preterm very low birth weight infants. J. Pediatr. 2010, 156, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Westerbeek, E.A.; van den Berg, A.; Lafeber, H.N.; Knol, J.; Fetter, W.P.; van Elburg, R.M. The intestinal bacterial colonisation in preterm infants: A review of the literature. Clin. Nutr. 2006, 25, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Srinivasjois, R.; Rao, S.; Patole, S. Prebiotic supplementation in preterm neonates: Updated systematic review and meta-analysis of randomised controlled trials. Clin. Nutr. 2013, 32, 958–965. [Google Scholar] [CrossRef] [PubMed]
- LeCouffe, N.E.; Westerbeek, E.A.; van Schie, P.E.; Schaaf, V.A.; Lafeber, H.N.; van Elburg, R.M. Neurodevelopmental outcome during the first year of life in preterm infants after supplementation of a prebiotic mixture in the neonatal period: A follow-up study. Neuropediatrics 2014, 45, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Westerbeek, E.A.; van Elburg, R.M.; van den Berg, A.; van den Berg, J.; Twisk, J.W.; Fetter, W.P.; Lafeber, H.N. Design of a randomised controlled trial on immune effects of acidic and neutral oligosaccharides in the nutrition of preterm infants: Carrot study. BMC Pediatr. 2008, 8, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, K.; Hosozawa, M.; Kudo, N.; Yoshikawa, N.; Hisata, K.; Shoji, H.; Shinohara, K.; Shimizu, T. The pilot study: Sphingomyelin-fortified milk has a positive association with the neurobehavioural development of very low birth weight infants during infancy, randomized control trial. Brain Dev. 2013, 35, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Koo, W.; Tank, S.; Martin, S.; Shi, R. Human milk and neurodevelopment in children with very low birth weight: A systematic review. Nutr. J. 2014, 13, 94. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.H.; Johnson, M.J.; Leaf, A.A.; Vollmer, B. Nutrition and neurodevelopmental outcomes in preterm infants: A systematic review. Acta Paediatr. 2016, 105, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Westerberg, A.C.; Henriksen, C.; Ellingvåg, A.; Veierød, M.B.; Júlíusson, P.B.; Nakstad, B.; Aurvåg, A.K.; Rønnestad, A.; Grønn, M.; Iversen, P.O.; et al. First year growth among very low birth weight infants. Acta Paediatr. 2010, 99, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Mills, R.J.; Davies, M.W. Enteral iron supplementation in preterm and low birth weight infants. Cochrane Database Syst. Rev. 2012, 3. [Google Scholar] [CrossRef]
- Qawasmi, A.; Landeros-Weisenberger, A.; Leckman, J.F.; Bloch, M.H. Meta-analysis of Long-Chain Polyunsaturated Fatty Acid Supplementation of Formula and Infant Cognition. Pediatrics 2012, 129, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Qawasmi, A.; Landeros-Weisenberger, A.; Bloch, M.H. Meta-analysis of LCPUFA Supplementation of Infant Formula and Visual Acuity. Pediatrics 2013, 131, e262–e272. [Google Scholar] [CrossRef] [PubMed]
- Hadley, K.B.; Ryan, A.S.; Nelson, E.B.; Salem, N. An assessment of dietary docosahexaenoic acid requirements for brain accretion and turnover during early childhood. World Rev. Nutr. Diet. 2009, 99, 97–104. [Google Scholar] [PubMed]
- Harris, W.S.; Baack, M.L. Beyond building better brains: Bridging the docosahexaenoic acid (DHA) gap of prematurity. J. Perinatol. 2015, 35, 1–7. [Google Scholar] [CrossRef] [PubMed]
- De Jager, C.A.; Dye, L.; de Bruin, E.A.; Butler, L.; Fletcher, J.; Lamport, D.J.; Latulippe, M.E.; Spencer, J.P.E.; Wesnes, K. Criteria for validation and selection of cognitive tests for investigating the effects of foods and nutrients. Nutr. Rev. 2014, 72, 162–179. [Google Scholar] [CrossRef] [PubMed]
- Wesnes, K.A. Evaluation of techniques to identify beneficial effects of nutrition and natural products on cognitive function. Nutr. Rev. 2010, 68 (Suppl. 1), S22–S28. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, E.; Oates, J. Nutrition and cognition: Assessing cognitive abilities in children and young people. Eur. J. Nutr. 2008, 47 (Suppl. 3), 4–24. [Google Scholar] [CrossRef] [PubMed]
- Grantham-McGregor, S.; Baker-Henningham, H. Review of the evidence linking protein and energy to mental development. Public Health Nutr. 2005, 8, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
Nutrient | N Trials | Doses Tested | Doses Reported as Effective | Feeding Mode | Intervention Paradigm |
---|---|---|---|---|---|
Protein | 4 | 2.6–7.2 g/kg/day | 3.8–4.8 g/kg/day | Breast milk or formula | from 100 Kcal/kg/day during 2 weeks; from full enteral feeds until discharge, depending on the study |
Amino acids | 3 | 0–4.0 g/kg/day | Uncertain | Parenteral solution | from <2–72 h after birth during 3–20 days, depending on the study |
Taurine | 1 | <5 vs. 45 mg/L | None | Formula | from 7–10 days after birth until discharge |
Glutamine | 3 | 0 vs. 0.3 g/kg/day | None | Breast milk or formula | from 7 to 30 days after birth |
LCPUFA: cognitive development | 13 | DHA: 0%–1.4% FAARA: 0%–1.2% FA | Uncertain | Breast milk or formula | from between birth and 10 weeks of life until either discharge or 12 months of CA, depending on the study |
LCPUFA: visual development | 14 | DHA: 0%–1.0% FAARA: 0%–0.68% FA | Uncertain | Breast milk or formula | from between <72 h and 25 days of life until either discharge or 12 months of CA, depending on the study |
Vitamin A | 1 | 5000 IU | None | Not reported | Intramuscular injection; 3 times/week; from birth to 4 weeks of age |
Iron | 3 | 1–3.4 mg/kg/day | 1–2 mg/kg/day | Breast milk or formula | from between 2 and 9 weeks of age until between 6 months and 12 months after discharge, depending on the study |
Probiotics | |||||
L. reuteri ATCC 55730 | 1 | 1 × 108 cfu/day | 1 × 108 cfu/day | Not reported | from <72 h after birth until discharge |
L. rhamnosus ATCC 53103 | 1 | 2.6 × 109 cfu/day | 2.6 × 109 cfu/day | Not reported | from <72 h after birth until discharge |
L. sporogenes | 1 | 3.5 × 108 cfu/day | None | Predominantly formula | from <48 h after birth until discharge |
Infloran | 1 | 2 × 109 cfu/kg/day | None | Breast milk | until discharge (intervention start not reported) |
Prebiotics (80% SCGOS/LCFOS + 20% pAOS) | 1 | ≤1.5 g/kg/day | None | Breast milk or formula | from 3 days after birth during 28 days |
Sphingomyelin | 1 | 13% and 20% total phospholipids | 20% total phospholipids | Predominantly breast milk | from <24 h after birth during 8 weeks |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneider, N.; Garcia‐Rodenas, C.L. Early Nutritional Interventions for Brain and Cognitive Development in Preterm Infants: A Review of the Literature. Nutrients 2017, 9, 187. https://doi.org/10.3390/nu9030187
Schneider N, Garcia‐Rodenas CL. Early Nutritional Interventions for Brain and Cognitive Development in Preterm Infants: A Review of the Literature. Nutrients. 2017; 9(3):187. https://doi.org/10.3390/nu9030187
Chicago/Turabian StyleSchneider, Nora, and Clara L. Garcia‐Rodenas. 2017. "Early Nutritional Interventions for Brain and Cognitive Development in Preterm Infants: A Review of the Literature" Nutrients 9, no. 3: 187. https://doi.org/10.3390/nu9030187
APA StyleSchneider, N., & Garcia‐Rodenas, C. L. (2017). Early Nutritional Interventions for Brain and Cognitive Development in Preterm Infants: A Review of the Literature. Nutrients, 9(3), 187. https://doi.org/10.3390/nu9030187