Dietary Broccoli Alters Rat Cecal Microbiota to Improve Glucoraphanin Hydrolysis to Bioactive Isothiocyanates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Experimental Design
2.3. Cecal Microbiota Profiling by 16S rRNA Sequencing
2.4. Metabolism of GRP by Microbiome Ex Vivo
2.5. Total ITC Quantification
2.6. NAD(P)H: Quinone Oxidoreductase (NQO1) Activity
2.7. Statistical Analysis
3. Results
3.1. Alteration in the Cecal Microbiota Community and GRP Hydrolysis Following 1–14 Days of A Cooked Broccoli Diet; Study 1
3.2. Increased NQO1 Activity in Rat Colonic Mucosa Following 1–14 Days of Cooked Broccoli Diet
3.3. Effects of GRP on Both Cecal Microbiota Composition and GRP Hydrolysis; Study 2
3.4. Effect of A Raw Broccoli Diet and Its Withdrawal on GRP Hydrolytic Potential; Study 3
4. Discussion
4.1. Impact of Different Diets on The Cecal Microbiota Communities
4.2. GRP Hydrolysis
4.3. Bioactivity
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bauman, J.E.; Zang, Y.; Sen, M.; Li, C.; Wang, L.; Egner, P.A.; Fahey, J.W.; Normolle, D.P.; Grandis, J.R.; Kensler, T.W.; et al. Prevention of carcinogen-induced oral cancer by sulforaphane. Cancer Prev. Res. 2016, 9, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Dinkova-Kostova, A.T.; Fahey, J.W.; Wade, K.L.; Jenkins, S.N.; Shapiro, T.A.; Fuchs, E.J.; Kerns, M.L.; Talalay, P. Induction of the phase 2 response in mouse and human skin by sulforaphane-containing broccoli sprout extracts. Cancer Epidemiol. Biomark. Prev. 2007, 16, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Angelino, D.; Jeffery, E. Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: Focus on glucoraphanin. J. Funct. Foods 2014, 7, 67–76. [Google Scholar] [CrossRef]
- Wang, G.C.; Farnham, M.; Jeffery, E.H. Impact of thermal processing on sulforaphane yield from broccoli (Brassica oleracea L. ssp. italica). J. Agric. Food Chem. 2012, 60, 6743–6748. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, E.H.; Araya, M. Physiological effects of broccoli consumption. Phytochem. Rev. 2009, 8, 283–298. [Google Scholar] [CrossRef]
- Palop, M.L.; Smiths, J.P.; Brink, B.T. Degradation of sinigrin by Lactobacillus agilis strain R16. Int. J. Food Microbiol. 1995, 26, 219–229. [Google Scholar] [CrossRef]
- Mullaney, J.A.; Kelly, W.J.; McGhie, T.K.; Ansell, J.; Heyes, J.A. Lactic acid bacteria convert glucosinolates to nitriles efficiently yet differently from Enterobacteriaceae. J. Agric. Food Chem. 2013, 61, 3039–3046. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.-L.; Hashimoto, K.; Uda, Y. In vitro digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products. Food Chem. Toxicol. 2004, 42, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Elfoul, L.; Rabot, S.; Khelifa, N.; Quinsac, A.; Duguay, A.; Rimbault, A. Formation of allyl isothiocyanate from sinigrin in the digestive tract of rats monoassociated with a human colonic strain of Bacteroides thetaiotaomicron. FEMS Microbiol. Lett. 2001, 197, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Lai, R.-H.; Miller, M.J.; Jeffery, E. Glucoraphanin hydrolysis by microbiota in the rat cecum results in sulforaphane absorption. Food Funct. 2010, 1, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Matusheski, N.V.; Jeffery, E.H. Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. J. Agric. Food Chem. 2001, 49, 5743–5749. [Google Scholar] [CrossRef] [PubMed]
- Matusheski, N.V.; Swarup, R.; Juvik, J.A.; Mithen, R.; Bennett, M.; Jeffery, E.H. Epithiospecifier protein from broccoli (Brassica oleracea L. ssp. italica) inhibits formation of the anticancer agent sulforaphane. J. Agric. Food Chem. 2006, 54, 2069–2076. [Google Scholar] [CrossRef] [PubMed]
- Conaway, C.C.; Getahun, S.M.; Liebes, L.L.; Pusateri, D.J.; Topham, D.K.W.; Botero-Omary, M.; Chung, F.-L. Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutr. Cancer 2000, 38, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Oliviero, T.; Verkerk, R.; Vermeulen, M.; Dekker, M. In vivo formation and bioavailability of isothiocyanates from glucosinolates in broccoli as affected by processing conditions. Mol. Nutr. Food Res. 2014, 58, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Fahey, J.W.; Holtzclaw, W.D.; Wehage, S.L.; Wade, K.L.; Stephenson, K.K.; Talalay, P. Sulforaphane bioavailability from glucoraphanin-rich broccoli: Control by active endogenous myrosinase. PLoS ONE 2015, 10, e0140963. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, R.P.; Doria, J.H.; Zhanel, G.G.; Sparling, R.; Holley, R.A. Role of glycoside hydrolase genes in sinigrin degradation by E. coli O157:H7. Int. J. Food Microbiol. 2015, 205, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Albaser, A.; Kazana, E.; Bennett, M.H.; Cebeci, F.; Luang-In, V.; Spanu, P.D.; Rossiter, J.T. Discovery of a bacterial glycoside hydrolase family 3 (GH3) β-glucosidase with myrosinase activity from a Citrobacter strain isolated from soil. J. Agric. Food Chem. 2016, 64, 1520–1527. [Google Scholar] [CrossRef] [PubMed]
- Paturi, G.; Butts, C.; Monro, J.; Nones, K.; Martell, S.; Butler, R.; Sutherland, J. Cecal and colonic responses in rats fed 5 or 30% corn oil diets containing either 7.5% broccoli dietary fiber or microcrystalline cellulose. J. Agric. Food Chem. 2010, 58, 6510–6515. [Google Scholar] [CrossRef] [PubMed]
- Paturi, G.; Mandimika, T.; Butts, C.A.; Zhu, S.; Roy, N.C.; McNabb, W.C.; Ansell, J. Influence of dietary blueberry and broccoli on cecal microbiota activity and colon morphology in mdr1a−/− mice, a model of inflammatory bowel diseases. Nutrition 2012, 28, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Hufeldt, M.R.; Nielsen, D.S.; Vogensen, F.K.; Midtvedt, T.; Hansen, A.K. Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors. Comp. Med. 2010, 60, 336–347. [Google Scholar] [PubMed]
- USDA National Nutrient Database. Available online: http://www.nal.usda.gov/fnic/foodcomp/search/ (accessed on 12 August 2016).
- Lai, R.-H.; Keck, A.-S.; Wallig, M.A.; West, L.G.; Jeffery, E.H. Evaluation of the safety and bioactivity of purified and semi-purified glucoraphanin. Food Chem. Toxicol. 2008, 46, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Barry, K.A.; Hernot, D.C.; Middelbos, I.S.; Francis, C.; Dunsford, B.; Swanson, K.S.; Fahey, G.C. Low-level fructan supplementation of dogs enhances nutrient digestion and modifies stool metabolite concentrations, but does not alter fecal microbiota populations. J. Anim. Sci. 2009, 87, 3244–3252. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. BioTechniques 2004, 36, 808–812. [Google Scholar] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Greengenes 16S rRNA gene database. Available online: http://greengenes.secondgenome.com/downloads (accessed on 7 July 2016).
- WebPlotDigitizer. Available online: http://arohatgi.info/WebPlotDigitizer (accessed on 20 September 2016).
- Zhang, Y. The 1,2-benzenedithiole-based cyclocondensation assay: A valuable tool for the measurement of chemopreventive isothiocyanates. Crit. Rev. Food Sci. Nutr. 2012, 52, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Cramer, J.; Jeffery, E. Sulforaphane absorption and excretion following ingestion of a semi-purified broccoli powder rich in glucoraphanin and broccoli sprouts in healthy men. Nutr. Cancer 2011, 63, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.-S.; Jeffery, E.H. Effects of different processing methods on induction of quinone reductase by dietary broccoli in rats. J. Med. Food 2004, 7, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ludvigsen, J.; Svihus, B.; Rudi, K. Rearing room affects the non-dominant chicken cecum microbiota, while diet affects the dominant microbiota. Front. Vet. Sci. 2016, 3, 16. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Y.; Jeffery, E.H.; Miller, M.J. Effect of dietary broccoli on rat cecal microbiome and hepatic NAD(P)H: Quinone oxidoreductase 1 activity. University of Illinois, Urbana-Champaign: Urbana, IL, USA, Unpublished work; 2017. [Google Scholar]
- Kurilich, A.C.; Tsau, G.J.; Brown, A.; Howard, L.; Klein, B.P.; Jeffery, E.H.; Kushad, M.; Wallig, M.A.; Juvik, J.A. Carotene, tocopherol, and ascorbate contents in subspecies of Brassica oleracea. J. Agric. Food Chem. 1999, 47, 1576–1581. [Google Scholar] [CrossRef] [PubMed]
- Plumb, G.W.; Price, K.R.; Rhodes, M.J.; Williamson, G. Antioxidant properties of the major polyphenolic compounds in broccoli. Free Radic. Res. 1997, 27, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarczyk, M.M.; Miller, M.J.; Freund, G.G. The health benefits of dietary fiber: Beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism 2012, 61, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Etxeberria, U.; Arias, N.; Boqué, N.; Macarulla, M.T.; Portillo, M.P.; Martínez, J.A.; Milagro, F.I. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J. Nutr. Biochem. 2015, 26, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, T.A.; Fahey, J.W.; Wade, K.L.; Stephenson, K.K.; Talalay, P. Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiol. Biomark. Prev. 1998, 7, 1091–1100. [Google Scholar]
- Luang-In, V.; Narbad, A.; Nueno-Palop, C.; Mithen, R.; Bennett, M.; Rossiter, J.T. The metabolism of methylsulfinylalkyl- and methylthioalkyl-glucosinolates by a selection of human gut bacteria. Mol. Nutr. Food Res. 2014, 58, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Luang-In, V.; Albaser, A.A.; Nueno-Palop, C.; Bennett, M.H.; Narbad, A.; Rossiter, J.T. Glucosinolate and desulfo-glucosinolate metabolism by a selection of human gut bacteria. Curr. Microbiol. 2016, 73, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Angelino, D.; Dosz, E.B.; Sun, J.; Hoeflinger, J.L.; van Tassell, M.L.; Chen, P.; Harnly, J.M.; Miller, M.J.; Jeffery, E.H. Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis. Front. Plant Sci. 2015, 6, 831. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Hullar, M.A.J.; Beresford, S.A.A.; Lampe, J.W. Variation of glucoraphanin metabolism in vivo and ex vivo by human gut bacteria. Br. J. Nutr. 2011, 106, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Hollands, W.; Teucher, B.; Needs, P.W.; Narbad, A.; Ortori, C.A.; Barrett, D.A.; Rossiter, J.T.; Mithen, R.F.; Kroon, P.A. Isothiocyanate concentrations and interconversion of sulforaphane to erucin in human subjects after consumption of commercial frozen broccoli compared to fresh broccoli. Mol. Nutr. Food Res. 2012, 56, 1906–1916. [Google Scholar] [CrossRef] [PubMed]
Ingredients | AIN93G (CON) Diet (%) | 10% Cooked Broccoli (CB) Diet (%) | 10% GRP-Free Broccoli (CB-H) Diet (%) | GRP Diet (%) |
---|---|---|---|---|
Casein | 20.00 | 17.37 | 17.37 | 19.92 |
Cornstarch | 39.75 | 37.56 | 37.56 | 39.58 |
Maltodextrin | 13.20 | 12.30 | 12.30 | 13.14 |
Sucrose | 10.00 | 9.32 | 9.32 | 9.96 |
Cellulose | 5.00 | 2.57 | 2.57 | 4.98 |
Mineral mix 1 | 3.50 | 2.69 | 2.69 | 3.49 |
Vitamin mix | 1.00 | 1.00 | 1.00 | 1.00 |
l-cysteine | 0.30 | 0.30 | 0.30 | 0.30 |
Choline bitartrate | 0.25 | 0.25 | 0.25 | 0.25 |
Soybean oil | 7.00 | 6.66 | 6.66 | 6.97 |
Cooked broccoli | 0 | 10.00 | 0 | 0 |
Hydrolyzed broccoli | 0 | 0 | 10.00 | 0 |
GRP-rich powder | 0 | 0 | 0 | 10.00 |
Calculated GRP 2 (μmol/g diet) | 0 | 0.26 | 0 | 0.28 |
Calculated SFN 2 (μmol/g diet) | 0 | 0 | 0.17 | 0 |
Treatment 1 | OTUs 2 | Chao1 | Shannon | Simpson |
---|---|---|---|---|
<4 days | 1393.4 a ± 84.7 | 3582.6 a ± 337.4 | 8.58 a ± 0.31 | 0.988 a ± 0.005 |
≥4 days | 1481.3 b ± 105.0 | 3803.4 b ± 416.9 | 8.87 b ± 0.23 | 0.992 b ± 0.003 |
p-value | 0.005 | 0.045 | 0.002 | 0.016 |
Genus | Abundance 1 (% Total Genera) | p-Value | |||
---|---|---|---|---|---|
<4 Days | ≥4 Days | ||||
Mean | SEM | Mean | SEM | ||
Akkermansia | 0.001 | 0.001 | 0.008 | 0.003 | 0.007 |
Blautia | 0.429 | 0.078 | 0.123 | 0.024 | 0.000 |
Clostridium | 0.388 | 0.065 | 0.127 | 0.017 | 0.000 |
Dorea | 1.073 | 0.150 | 0.482 | 0.050 | 0.003 |
f__Ruminococcaceae; Other | 0.287 | 0.036 | 0.497 | 0.040 | 0.000 |
Oscillospira | 9.576 | 0.709 | 14.296 | 1.171 | 0.003 |
Diet | Reads Obtained from MiSeq (Min~Max) | Median Seqs per Sample after Quality Filtering (Min~Max) | % OTUs Assigned | Chao1 | Observed OTUs |
---|---|---|---|---|---|
CON | 13,242~45,673 | 10,917~37,747 | 99.88 ± 0.07 | 3627.1 a ± 366.6 | 1573.0 a ± 77.9 |
CB | 11,516~29,303 | 9,447~24,029 | 99.89 ± 0.07 | 3847.5 a ± 208.8 | 1576.1 a ± 23.1 |
GRP | 14,829~29,988 | 11,900~24,483 | 99.91 ± 0.05 | 3783.7 a ± 442.5 | 1557.4 a ± 122.1 |
CB-H | 12,761~116,686 | 10,441~96,729 | 99.92 ± 0.04 | 3968.5 b ± 172.1 | 1663.6 b ± 57.4 |
Genus | Abundance 2 (% Total Genera) | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
CON | CB | GRP | CB-H | ||||||
Mean | SEM | Mean | SEM | Mean | SEM | Mean | SEM | ||
Clostridium | 0.148 | 0.012 | 0.324 | 0.055 | 0.185 | 0.027 | 0.109 | 0.017 | 0.007 |
Coprococcus | 1.840 | 0.517 | 1.392 | 0.407 | 0.623 | 0.105 | 0.674 | 0.092 | 0.005 |
Dorea | 1.229 | 0.150 | 0.357 | 0.046 | 0.772 | 0.095 | 0.598 | 0.117 | 0.000 |
f__Lachnospiraceae; Other | 1.680 | 0.143 | 1.574 | 0.121 | 1.056 | 0.157 | 0.875 | 0.073 | 0.001 |
f__Ruminococcaceae; Other | 1.272 | 0.200 | 1.693 | 0.156 | 0.611 | 0.093 | 1.130 | 0.130 | 0.001 |
f__S24-7; g__ | 15.477 | 1.346 | 13.612 | 1.133 | 15.759 | 1.203 | 19.665 | 0.706 | 0.007 |
Prevotella | 0.119 | 0.049 | 0.163 | 0.083 | 0.420 | 0.077 | 0.737 | 0.285 | 0.003 |
rc4-4 | 0.965 | 0.165 | 0.214 | 0.035 | 1.063 | 0.159 | 0.592 | 0.081 | 0.000 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, Y.; Hoeflinger, J.L.; Neme, B.P.; Jeffery, E.H.; Miller, M.J. Dietary Broccoli Alters Rat Cecal Microbiota to Improve Glucoraphanin Hydrolysis to Bioactive Isothiocyanates. Nutrients 2017, 9, 262. https://doi.org/10.3390/nu9030262
Liu X, Wang Y, Hoeflinger JL, Neme BP, Jeffery EH, Miller MJ. Dietary Broccoli Alters Rat Cecal Microbiota to Improve Glucoraphanin Hydrolysis to Bioactive Isothiocyanates. Nutrients. 2017; 9(3):262. https://doi.org/10.3390/nu9030262
Chicago/Turabian StyleLiu, Xiaoji, Yanling Wang, Jennifer L. Hoeflinger, Bárbara P. Neme, Elizabeth H. Jeffery, and Michael J. Miller. 2017. "Dietary Broccoli Alters Rat Cecal Microbiota to Improve Glucoraphanin Hydrolysis to Bioactive Isothiocyanates" Nutrients 9, no. 3: 262. https://doi.org/10.3390/nu9030262
APA StyleLiu, X., Wang, Y., Hoeflinger, J. L., Neme, B. P., Jeffery, E. H., & Miller, M. J. (2017). Dietary Broccoli Alters Rat Cecal Microbiota to Improve Glucoraphanin Hydrolysis to Bioactive Isothiocyanates. Nutrients, 9(3), 262. https://doi.org/10.3390/nu9030262