Interactions of the Insulin-Like Growth Factor Axis and Vitamin D in Prostate Cancer Risk in the Prostate Cancer Prevention Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schenk, J.M.; Till, C.A.; Tangen, C.M.; Goodman, P.J.; Song, X.; Torkko, K.C.; Kristal, A.R.; Peters, U.; Neuhouser, M.L. Serum 25-hydroxyvitamin D concentrations and risk of prostate cancer: Results from the prostate cancer prevention trial. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.J.; Stapleton, G.E.; Ferrara, J.A.; Lucia, M.S.; Pfister, S.; Hedlund, T.E.; Upadhya, P. The human prostatic carcinoma cell line lncap expresses biologically active, specific receptors for 1 alpha,25-dihydroxyvitamin D3. Cancer Res. 1992, 52, 515–520. [Google Scholar] [PubMed]
- Peehl, D.M.; Skowronski, R.J.; Leung, G.K.; Wong, S.T.; Stamey, T.A.; Feldman, D. Antiproliferative effects of 1,25-dihydroxyvitamin D3 on primary cultures of human prostatic cells. Cancer Res. 1994, 54, 805–810. [Google Scholar] [PubMed]
- Guzey, M.; Kitada, S.; Reed, J.C. Apoptosis induction by 1alpha,25-dihydroxyvitamin D3 in prostate cancer. Mol. Cancer Ther. 2002, 1, 667–677. [Google Scholar] [PubMed]
- Ahonen, M.H.; Tenkanen, L.; Teppo, L.; Hakama, M.; Tuohimaa, P. Prostate cancer risk and prediagnostic serum 25-hydroxyvitamin D levels (Finland). Cancer Causes Control 2000, 11, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Shui, I.M.; Mucci, L.A.; Kraft, P.; Tamimi, R.M.; Lindstrom, S.; Penney, K.L.; Nimptsch, K.; Hollis, B.W.; Dupre, N.; Platz, E.A.; et al. Vitamin D-related genetic variation, plasma vitamin D, and risk of lethal prostate cancer: A prospective nested case-control study. J. Natl. Cancer Inst. 2012, 104, 690–699. [Google Scholar] [CrossRef] [PubMed]
- Albanes, D.; Mondul, A.M.; Yu, K.; Parisi, D.; Horst, R.L.; Virtamo, J.; Weinstein, S.J. Serum 25-hydroxy vitamin D and prostate cancer risk in a large nested case-control study. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1850–1860. [Google Scholar] [CrossRef] [PubMed]
- Brandstedt, J.; Almquist, M.; Manjer, J.; Malm, J. Vitamin D, pth, and calcium and the risk of prostate cancer: A prospective nested case-control study. Cancer Causes Control 2012, 23, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Faupel-Badger, J.M.; Diaw, L.; Albanes, D.; Virtamo, J.; Woodson, K.; Tangrea, J.A. Lack of association between serum levels of 25-hydroxyvitamin D and the subsequent risk of prostate cancer in finnish men. Cancer Epidemiol. Biomark. Prev. 2007, 16, 2784–2786. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Stampfer, M.J.; Hollis, J.B.; Mucci, L.A.; Gaziano, J.M.; Hunter, D.; Giovannucci, E.L.; Ma, J. A prospective study of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate cancer. PLoS Med. 2007, 4, e103. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Cooney, R.V.; Wilkens, L.R.; Murphy, S.P.; Henderson, B.E.; Kolonel, L.N. Plasma 25-hydroxyvitamin D and prostate cancer risk: The multiethnic cohort. Eur. J. Cancer 2010, 46, 932–936. [Google Scholar] [CrossRef] [PubMed]
- Skaaby, T.; Husemoen, L.L.; Thuesen, B.H.; Pisinger, C.; Jorgensen, T.; Roswall, N.; Larsen, S.C.; Linneberg, A. Prospective population-based study of the association between serum 25-hydroxyvitamin-d levels and the incidence of specific types of cancer. Cancer Epidemiol. Biomark.Prev. 2014, 23, 1220–1229. [Google Scholar] [CrossRef] [PubMed]
- Stephan, C.; Lein, M.; Matalon, J.; Kilic, E.; Zhao, Z.; Busch, J.; Jung, K. Serum vitamin D is not helpful for predicting prostate cancer aggressiveness compared with the prostate health index. J. Urol. 2016, 196, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Travis, R.C.; Crowe, F.L.; Allen, N.E.; Appleby, P.N.; Roddam, A.W.; Tjonneland, A.; Olsen, A.; Linseisen, J.; Kaaks, R.; Boeing, H.; et al. Serum vitamin D and risk of prostate cancer in a case-control analysis nested within the european prospective investigation into cancer and nutrition (epic). Am. J. Epidemiol. 2009, 169, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Heidegger, I.; Ofer, P.; Doppler, W.; Rotter, V.; Klocker, H.; Massoner, P. Diverse functions of igf/insulin signaling in malignant and noncancerous prostate cells: Proliferation in cancer cells and differentiation in noncancerous cells. Endocrinology 2012, 153, 4633–4643. [Google Scholar] [CrossRef] [PubMed]
- Saikali, Z.; Setya, H.; Singh, G.; Persad, S. Role of igf-1/igf-1r in regulation of invasion in du145 prostate cancer cells. Cancer Cell Int. 2008, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Hellawell, G.O.; Turner, G.D.; Davies, D.R.; Poulsom, R.; Brewster, S.F.; Macaulay, V.M. Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res. 2002, 62, 2942–2950. [Google Scholar] [PubMed]
- Baxter, R.C. Circulating binding proteins for the insulinlike growth factors. Trends Endocrinol. Metab. 1993, 4, 91–96. [Google Scholar] [CrossRef]
- Clemmons, D.R. Insulin-like growth factor binding proteins and their role in controlling igf actions. Cytokine Growth Factor Rev. 1997, 8, 45–62. [Google Scholar] [CrossRef]
- Chan, J.M.; Stampfer, M.J.; Ma, J.; Gann, P.; Gaziano, J.M.; Pollak, M.; Giovannucci, E. Insulin-like growth factor-i (igf-i) and igf binding protein-3 as predictors of advanced-stage prostate cancer. J. Natl. Cancer Inst. 2002, 94, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Roddam, A.W.; Allen, N.E.; Appleby, P.; Key, T.J.; Ferrucci, L.; Carter, H.B.; Metter, E.J.; Chen, C.; Weiss, N.S.; Fitzpatrick, A.; et al. Insulin-like growth factors, their binding proteins, and prostate cancer risk: Analysis of individual patient data from 12 prospective studies. Ann. Intern. Med. 2008, 149, 461–471, W483–W468. [Google Scholar] [CrossRef] [PubMed]
- Degraff, D.J.; Aguiar, A.A.; Sikes, R.A. Disease evidence for igfbp-2 as a key player in prostate cancer progression and development of osteosclerotic lesions. Am. J. Transl. Res. 2009, 1, 115–130. [Google Scholar] [PubMed]
- Neuhouser, M.L.; Platz, E.A.; Till, C.; Tangen, C.M.; Goodman, P.J.; Kristal, A.; Parnes, H.L.; Tao, Y.; Figg, W.D.; Lucia, M.S.; et al. Insulin-like growth factors and insulin-like growth factor-binding proteins and prostate cancer risk: Results from the prostate cancer prevention trial. Cancer Prev. Res. (Phila.) 2013, 6, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Ameri, P.; Giusti, A.; Boschetti, M.; Murialdo, G.; Minuto, F.; Ferone, D. Interactions between vitamin D and igf-i: From physiology to clinical practice. Clin. Endocrinol. (Oxf.) 2013, 79, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Bereket, A.; Cesur, Y.; Ozkan, B.; Adal, E.; Turan, S.; Onan, S.H.; Doneray, H.; Akcay, T.; Haklar, G. Circulating insulin-like growth factor binding protein-4 (igfbp-4) is not regulated by parathyroid hormone and vitamin D in vivo: Evidence from children with rickets. J. Clin. Res. Pediatr. Endocrinol. 2010, 2, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Bogazzi, F.; Rossi, G.; Lombardi, M.; Tomisti, L.; Sardella, C.; Manetti, L.; Curzio, O.; Marcocci, C.; Grasso, L.; Gasperi, M.; et al. Vitamin D status may contribute to serum insulin-like growth factor i concentrations in healthy subjects. J. Endocrinol. Investig. 2011, 34, e200–e203. [Google Scholar]
- Nesbitt, T.; Drezner, M.K. Insulin-like growth factor-i regulation of renal 25-hydroxyvitamin d-1-hydroxylase activity. Endocrinology 1993, 132, 133–138. [Google Scholar] [PubMed]
- Bianda, T.; Hussain, M.A.; Glatz, Y.; Bouillon, R.; Froesch, E.R.; Schmid, C. Effects of short-term insulin-like growth factor-i or growth hormone treatment on bone turnover, renal phosphate reabsorption and 1,25 dihydroxyvitamin D3 production in healthy man. J. Intern. Med. 1997, 241, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Marcus, R.; Butterfield, G.; Holloway, L.; Gilliland, L.; Baylink, D.J.; Hintz, R.L.; Sherman, B.M. Effects of short term administration of recombinant human growth hormone to elderly people. J. Clin. Endocrinol. Metab. 1990, 70, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Colston, K.W.; Perks, C.M.; Xie, S.P.; Holly, J.M. Growth inhibition of both mcf-7 and hs578t human breast cancer cell lines by vitamin D analogues is associated with increased expression of insulin-like growth factor binding protein-3. J. Mol. Endocrinol. 1998, 20, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.P.; James, S.Y.; Colston, K.W. Vitamin D derivatives inhibit the mitogenic effects of igf-i on mcf-7 human breast cancer cells. J. Endocrinol. 1997, 154, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Boyle, B.J.; Zhao, X.Y.; Cohen, P.; Feldman, D. Insulin-like growth factor binding protein-3 mediates 1 alpha,25-dihydroxyvitamin D(3) growth inhibition in the lncap prostate cancer cell line through p21/waf1. J. Urol. 2001, 165, 1319–1324. [Google Scholar] [CrossRef]
- Peng, L.; Malloy, P.J.; Feldman, D. Identification of a functional vitamin D response element in the human insulin-like growth factor binding protein-3 promoter. Mol. Endocrinol. 2004, 18, 1109–1119. [Google Scholar] [CrossRef] [PubMed]
- Thompson, I.M.; Goodman, P.J.; Tangen, C.M.; Lucia, M.S.; Miller, G.J.; Ford, L.G.; Lieber, M.M.; Cespedes, R.D.; Atkins, J.N.; Lippman, S.M.; et al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 2003, 349, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Neuhouser, M.L.; Kristal, A.R.; McLerran, D.; Patterson, R.E.; Atkinson, J. Validity of short food frequency questionnaires used in cancer chemoprevention trials: Results from the prostate cancer prevention trial. Cancer Epidemiol. Biomark. Prev. 1999, 8, 721–725. [Google Scholar]
- Neuhouser, M.L.; Kristal, A.R.; Patterson, R.E.; Goodman, P.J.; Thompson, I.M. Dietary supplement use in the prostate cancer prevention trial: Implications for prevention trials. Nutr. Cancer 2001, 39, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Satia-Abouta, J.; Patterson, R.E.; Schiller, R.N.; Kristal, A.R. Energy from fat is associated with obesity in u.S. Men: Results from the prostate cancer prevention trial. Prev. Med. 2002, 34, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Greenberg, S.; Russell, S.M.; Nicoll, C.S. Effects of insulin-like growth factors i and ii on growth and differentiation of transplanted rat embryos and fetal tissues. Endocrinology 1989, 124, 3077–3082. [Google Scholar] [CrossRef] [PubMed]
- Lubik, A.A.; Gunter, J.H.; Hollier, B.G.; Ettinger, S.; Fazli, L.; Stylianou, N.; Hendy, S.C.; Adomat, H.H.; Gleave, M.E.; Pollak, M.; et al. Igf2 increases de novo steroidogenesis in prostate cancer cells. Endocr. Relat. Cancer 2013, 20, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, T.; Huynh, H.; Pollak, M. Insulin-like growth factor binding protein-3 induces apoptosis in mcf7 breast cancer cells. Biochem. Biophys. Res. Commun. 1997, 237, 690–693. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.I.; Clemmons, D.R. Insulin-like growth factors and their binding proteins: Biological actions. Endocr. Rev. 1995, 16, 3–34. [Google Scholar] [PubMed]
- Harman, S.M.; Metter, E.J.; Blackman, M.R.; Landis, P.K.; Carter, H.B. Serum levels of insulin-like growth factor i (igf-i), igf-ii, igf-binding protein-3, and prostate-specific antigen as predictors of clinical prostate cancer. J. Clin. Endocrinol. Metab. 2000, 85, 4258–4265. [Google Scholar] [CrossRef] [PubMed]
- Seligson, D.B.; Yu, H.; Tze, S.; Said, J.; Pantuck, A.J.; Cohen, P.; Lee, K.W. Igfbp-3 nuclear localization predicts human prostate cancer recurrence. Horm. Cancer 2013, 4, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Bar, R.S.; Boes, M.; Clemmons, D.R.; Busby, W.H.; Sandra, A.; Dake, B.L.; Booth, B.A. Insulin differentially alters transcapillary movement of intravascular igfbp-1, igfbp-2 and endothelial cell igf-binding proteins in the rat heart. Endocrinology 1990, 127, 497–499. [Google Scholar] [CrossRef] [PubMed]
- Pollak, M.; Beamer, W.; Zhang, J.C. Insulin-like growth factors and prostate cancer. Cancer Metastasis Rev. 1998, 17, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Berkel, H.J.; Yu, H. Insulin-like growth factor-i and prostate cancer: A meta-analysis. Br. J. Cancer 2001, 85, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.M.; Stampfer, M.J.; Giovannucci, E.; Gann, P.H.; Ma, J.; Wilkinson, P.; Hennekens, C.H.; Pollak, M. Plasma insulin-like growth factor-i and prostate cancer risk: A prospective study. Science 1998, 279, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Neuhouser, M.L.; Till, C.; Kristal, A.; Goodman, P.; Hoque, A.; Platz, E.A.; Hsing, A.W.; Albanes, D.; Parnes, H.L.; Pollak, M. Finasteride modifies the relation between serum c-peptide and prostate cancer risk: Results from the prostate cancer prevention trial. Cancer Prev. Res. (Phila.) 2010, 3, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Venkateswaran, V.; Haddad, A.Q.; Fleshner, N.E.; Fan, R.; Sugar, L.M.; Nam, R.; Klotz, L.H.; Pollak, M. Association of diet-induced hyperinsulinemia with accelerated growth of prostate cancer (lncap) xenografts. J. Natl. Cancer Inst. 2007, 99, 1793–1800. [Google Scholar] [CrossRef] [PubMed]
- Boyd, D.B. Insulin and cancer. Integr. Cancer Ther. 2003, 2, 315–329. [Google Scholar] [CrossRef] [PubMed]
- Hsing, A.W.; Gao, Y.T.; Chua, S., Jr.; Deng, J.; Stanczyk, F.Z. Insulin resistance and prostate cancer risk. J. Natl. Cancer Inst. 2003, 95, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Feldman, D.; Krishnan, A.V.; Swami, S.; Giovannucci, E.; Feldman, B.J. The role of vitamin D in reducing cancer risk and progression. Nat. Rev. Cancer 2014, 14, 342–357. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.B.; de Matos Oliveira, F.; Neves, A.F.; Araujo, G.R.; Marangoni, K.; Goulart, L.R.; Araujo, T.G. Association of vitamin D receptor variants with clinical parameters in prostate cancer. Springerplus 2016, 5, 364. [Google Scholar] [CrossRef] [PubMed]
- Egan, K.M.; Signorello, L.B.; Munro, H.M.; Hargreaves, M.K.; Hollis, B.W.; Blot, W.J. Vitamin D insufficiency among african-americans in the southeastern United States: Implications for cancer disparities (United States). Cancer Causes Control 2008, 19, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, E.; Liu, Y.; Rimm, E.B.; Hollis, B.W.; Fuchs, C.S.; Stampfer, M.J.; Willett, W.C. Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. J. Natl. Cancer Inst. 2006, 98, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Paller, C.J.; Kanaan, Y.M.; Beyene, D.A.; Naab, T.J.; Copeland, R.L.; Tsai, H.L.; Kanarek, N.F.; Hudson, T.S. Risk of prostate cancer in african-american men: Evidence of mixed effects of dietary quercetin by serum vitamin D status. Prostate 2015, 75, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Tangen, C.M.; Goodman, P.J.; Till, C.; Schenk, J.M.; Lucia, M.S.; Thompson, I.M., Jr. Biases in recommendations for and acceptance of prostate biopsy significantly affect assessment of prostate cancer risk factors: Results from two large randomized clinical trials. J. Clin. Oncol. 2016, 34, 4338–4344. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, E.; Pollak, M.; Liu, Y.; Platz, E.A.; Majeed, N.; Rimm, E.B.; Willett, W.C. Nutritional predictors of insulin-like growth factor i and their relationships to cancer in men. Cancer Epidemiol. Biomark. Prev. 2003, 12, 84–89. [Google Scholar]
- Rajaram, S.; Baylink, D.J.; Mohan, S. Insulin-like growth factor-binding proteins in serum and other biological fluids: Regulation and functions. Endocr. Rev. 1997, 18, 801–831. [Google Scholar] [CrossRef] [PubMed]
- Thissen, J.P.; Ketelslegers, J.M.; Underwood, L.E. Nutritional regulation of the insulin-like growth factors. Endocr. Rev. 1994, 15, 80–101. [Google Scholar] [PubMed]
- Yu, H.; Rohan, T. Role of the insulin-like growth factor family in cancer development and progression. J. Natl. Cancer Inst. 2000, 92, 1472–1489. [Google Scholar] [CrossRef] [PubMed]
- Hypponen, E.; Boucher, B.J.; Berry, D.J.; Power, C. 25-hydroxyvitamin D, igf-1, and metabolic syndrome at 45 years of age: A cross-sectional study in the 1958 british birth cohort. Diabetes 2008, 57, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Kamycheva, E.; Berg, V.; Jorde, R. Insulin-like growth factor i, growth hormone, and insulin sensitivity: The effects of a one-year cholecalciferol supplementation in middle-aged overweight and obese subjects. Endocrine 2013, 43, 412–418. [Google Scholar] [CrossRef] [PubMed]
Cases | Controls | |
---|---|---|
Number of participants | 1695 | 1682 |
Arm, No. (%) | ||
Placebo | 987 (58.2) | 971 (57.7) |
Finasteride | 708 (41.8) | 711 (42.3) |
Age, mean, SD | 63.7, 5.6 | 63.6, 5.6 |
Family history, No. (%) | 366 (21.6) | 362 (21.5) |
History of diabetes No. (%) | 77 (4.5) | 125 (7.4) |
Ethnicity, No. (%) | ||
White | 1603 (94.6) | 1436 (85.4) |
Black | 82 (4.8) | 171 (10.2) |
Other | 10 (0.6) | 75 (4.5) |
Education, No. (%) | ||
High school | 289 (17.1) | 333 (19.8) |
Some college | 458 (27.0) | 492 (29.25) |
College/post-graduate | 947 (55.9) | 856 (50.9) |
Alcohol intake, mean (SD) a | 9.8, 15.6 | 9.2, 13.8 |
Drinking status, No. (%) | ||
Nondrinker | 381 (22.4) | 392 (23.3) |
>0–<30 | 1161 (68.5) | 1142 (67.9) |
≥30 | 153 (9.0) | 148 (8.8) |
Smoking, No. (%) | ||
Never | 601 (35.5) | 574 (34.13) |
Current | 115 (6.8) | 124 (7.4) |
Former | 979 (57.8) | 984 (58.5) |
Pack-years, mean (SD) | 14.2 (16.3) | 15.2 (16.8) |
BMI (Kg/m2), mean (SD) | 27.4 (4.0) | 26.6 (4.0) |
Physical activity b | ||
Light | 989 (58.4) | 990 (58.9) |
Moderate | 554 (32.7) | 511 (30.4) |
Active | 145 (8.6) | 173 (10.3) |
Dietary Vitamin D, mean (SD) c | 62.0 (24.1) | 59.4 (23.1) |
Dietary Calcium, mean (SD) c | 1090 (596) | 1049 (578) |
Cases (n = 1695) | Controls (n = 1682) | |
---|---|---|
Serum biomarker, mean (SD) | ||
25(OH)D (nmol/L) | 62.1 (24.1) | 59.4 (23.1) |
IGF-1 (ng/mL) | 211.3 (65.5) | 210.2 (63.9) |
IGF-2 (ng/mL) | 1758.8 (434.3) | 1733.0 (436.5) |
IGFBP-2 (ng/mL) | 557.4 (318.7) | 511.1 (301.0) |
IGFBP-3 (ng/mL) | 4078.7 (969.2) | 4035.5 (981.8) |
IGF1:IGFBP3 (ng/mL) | 0.05 (0.01) | 0.05 (0.01) |
C-peptide (ng/mL) | 3.7 (2.3) | 3.6 (2.3) |
Leptin (ng/mL) | 9.6 (7.2) | 10.4 (8.0) |
IGF Axis Median Cutpoints (ng/mL) | 25(OH)D nmol/L b | N Upper Median/Lower c | OR (95% CI) | p d | |
---|---|---|---|---|---|
IGF-1 (204.78) | Q1 | 42.92 | 311/420 | 1.0 | |
Q2 | 42.93–56.40 | 425/424 | 1.35 (1.11–1.65) | ||
Q3 | 56.41–72.37 | 491/419 | 1.58 (1.30–1.93) | ||
Q4 | >72.38 | 460/424 | 1.47 (1.20–1.79) | 0.0004 | |
IGF-2 (1730.20) | Q1 | 0–44.04 | 372/418 | 1.0 | |
Q2 | 44.05–58.15 | 479/426 | 1.26 (1.04–1.53) | ||
Q3 | 58.16–74.00 | 449/425 | 1.19 (0.98–1.44) | ||
Q4 | >74.01 | 386/418 | 1.04 (0.85–1.26) | 0.92 | |
IGFBP-2 (461.90) | Q1 | 0–41.30 | 240/422 | 1.0 | |
Q2 | 41.31–54.03 | 340/423 | 1.41 (1.14–1.75) | ||
Q3 | 54.04–67.63 | 403/418 | 1.70 (1.38 -2.09) | ||
Q4 | >67.64 | 704/423 | 2.93 (2.40–3.57) | 0.0001 | |
IGFBP-3 (4033.35) | Q1 | 0–43.79 | 360/421 | 1.0 | |
Q2 | 43.80–57.52 | 449/419 | 1.25 (1.03–1.52) | ||
Q3 | 57.53–72.87 | 441/424 | 1.22 (1.00–1.48) | ||
Q4 | >72.88 | 437/422 | 1.21 (1.0–1.47) | 0.09 | |
IGF1:BP3 (0.05) | Q1 | 0–44.04 | 369/421 | 1.0 | |
Q2 | 44.05–57.02 | 400/420 | 1.09 (0.89–1.32) | ||
Q3 | 57.03–72.37 | 457/423 | 1.23 (1.02– 1.49) | ||
Q4 | >72.38 | 461/422 | 1.25 (1.03–1.51) | 0.01 | |
C-peptide (3.08) | Q1 | 0–46.79 | 528/423 | 1.0 | |
Q2 | 46.80–60.27 | 467/427 | 0.88 (0.73–1.05) | ||
Q3 | 60.28–76.24 | 399/417 | 0.77 (0.64–0.93) | ||
Q4 | >76.25 | 293/419 | 0.56 (0.46–0.68) | 0.0001 | |
Leptin (8.27) | Q1 | 0–48.29 | 608/441 | 1.0 | |
Q2 | 48.30–62.27 | 457/442 | 0.75 (0.63–0.90) | ||
Q3 | 62.28–77.49 | 316/438 | 0.53 (0.44–0.64) | ||
Q4 | >77.50 | 229/442 | 0.36 (0.29–0.44) | 0.0001 |
25(OH)D (nmol/L) | Cases/Controls | OR (95% CI) | 25(OH)D nmol/L | Cases/Controls | OR (95% CI) | |
---|---|---|---|---|---|---|
IGF-1 (<203.12) | IGF-1 (≥203.12) | |||||
Q1 | (0–41.30) | 161/210 | 1.0 | (0–45.60) | 182/208 | 1.0 |
Q2 | (41.31–54.40) | 200/209 | 1.06 (0.79–1.42) | (45.61–58.83) | 231/209 | 1.15(0.87–1.52) |
Q3 | (54.41–69.88) | 188/210 | 0.96 (0.71–1.28) | (58.84–73.06) | 217/205 | 1.06 (0.80–1.52) |
Q4 | (≥ 69.89) | 259/205 | 1.31 (0.98–1.74) | (≥73.07) | 239/208 | 1.10 (0.83–1.46) |
IGF-2 (<1720.22) | IGF-2 (≥1720.22) | |||||
Q1 | (0–43.30) | 189/210 | 1.0 | (0–43.86) | 163/208 | 1.0 |
Q2 | (43.31–57.15) | 189/210 | 0.83 (0.62–1.11) | (43.87–56.77) | 229/208 | 1.28 (0.97–1.70) |
Q3 | (57.16–71.64) | 188/206 | 0.81 (0.60–1.08) | (56.78–71.63) | 234/209 | 1.27 (0.96–1.68) |
Q4 | (≥71.65) | 243/207 | 1.02 (0.77–1.36) | (≥71.64) | 241/206 | 1.26 (0.95–1.68) |
IGFBP-2 (<443.40) | IGFBP-2 (≥443.40) | |||||
Q1 | (0–39.43) | 145/208 | 1.0 | (0–47.91) | 221/210 | 1.0 |
Q2 | (39.44–52.41) | 186/209 | 1.14 (0.84–1.53) | (47.92–61.14) | 213/210 | 0.89 (0.68–1.75) |
Q3 | (52.42–66.88) | 213/202 | 1.24 (0.92–1.67) | (61.15–76.24) | 230/205 | 0.97 (0.74–1.27) |
Q4 | (≥66.89) | 200/210 | 1.10 (0.82–1.49) | (≥76.25) | 268/210 | 1.08 (0.83–1.41) |
IGFBP-3 (<3999.39) | IGFBP-3 (≥ 3999.39) | |||||
Q1 | (0–42.55) | 173/210 | 1.0 | (0–44.67) | 182/210 | 1.0 |
Q2 | (42.56–56.46) | 194/210 | 0.96 (0.72–1.28) | (44.68–57.52) | 220/206 | 1.10 (0.83–1.46) |
Q3 | (56.47–71.00) | 194/207 | 0.93 (0.69–1.24) | (57.53–72.37) | 230/206 | 1.12 (0.85–1.48) |
Q4 | (≥71.01) | 237/207 | 1.10 (0.83–1.46) | (≥72.38) | 246/208 | 1.14 (0.86–1.51) |
IGF1:BP3 (<0.05) | IGF1:BP3 (≥0.05) | |||||
Q1 | (0–42.67) | 179/208 | 1.0 | (0–44.92) | 180/209 | 1.0 |
Q2 | (42.68–55.28) | 203/216 | 0.98 (0.81–1.20) | (44.93–58.27) | 201/203 | 1.02 (0.83–1.24) |
Q3 | (55.29–70.81) | 222/207 | 1.05 (0.86–1.28) | (58.28–72.62) | 206/206 | 0.95 (0.78–1.16) |
Q4 | (≥70.8) | 247/208 | 1.04 (0.85–1.26) | (≥72.63) | 238/207 | 0.96 (0.79–1.17) |
C-peptide (<3.01) | C-peptide (≥ 3.01) | |||||
Q1 | (0–45.17) | 151/213 | 1.0 | (0–42.55) | 202/211 | 1.0 |
Q2 | (45.18–59.02) | 206/203 | 0.82 (0.61–1.10) | (42.56–55.28) | 220/211 | 1.05 (0.80–1.39) |
Q3 | (59.03–74.99) | 218/208 | 0.81 (0.61–1.08) | (55.29–68.88) | 193/206 | 1.21 (0.91–1.61) |
Q4 | (≥ 75.0) | 217/210 | 0.86 (0.64–1.15) | (≥68.89) | 269/202 | 0.87 (0.66–1.14) |
Leptin (<8.57) | Leptin (≥8.57) | |||||
Q1 | 0–46.54 | 177/207 | 1.0 | (0–40.42) | 159/205 | 1.0 |
Q2 | 46.55–60.14 | 219/212 | 0.95 (0.72–1.26) | (40.43–53.72) | 206/212 | 0.90 (0.67–1.20) |
Q3 | 60.15–75.49 | 250/204 | 0.80 (0.61–1.06) | (53.73–67.32) | 200/207 | 0.96 (0.71–1.28) |
Q4 | (≥ 75.50) | 266/212 | 0.82 (0.62–1.08) | (≥67.33) | 199/205 | 0.98 (0.73–1.31) |
Finasteride | Placebo | |||||
---|---|---|---|---|---|---|
25(OH)D c | cases/controls | OR (95% CI) | 25(OH)D c | cases/controls | OR (95% CI) | p d |
IGF-1 (≥202.17) | IGF-1 (≥205.22) | |||||
<58.91 | 192/177 | 1.0 | <58.78 | 217/238 | 1.0 | |
≥58.91 | 176/172 | 0.81 (0.60–1.10) | ≥58.78 | 278/238 | 1.13 (0.87–1.47) | 0.1 |
IGF-2 (≥1722.33) | IGF-2 (≥1707.59) | |||||
<57.03 | 181/179 | 1.0 | <57.16 | 226/245 | 1.0 | |
≥57.03 | 176/179 | 0.84 (0.62–1.14) | ≥57.16 | 296/232 | 1.33 (1.00–1.65) | 0.04 |
IGFBP-2 (≥454.20) | IGFBP-2 (≥435.20) | |||||
<59.65 | 173/180 | 1.0 | <61.53 | 255/245 | 1.0 | |
≥59.65 | 205/178 | 1.11 (0.83–1.49) | ≥61.53 | 294/240 | 1.11 (0.87–1.43) | 0.98 |
IGFBP-3 (≥4001.50) | IGFBP-3 (≥3997.73) | |||||
<58.28 | 167/168 | 1.0 | <57.16 | 209/232 | 1.0 | |
≥58.28 | 165/166 | 0.83 (0.61–1.12) | ≥57.16 | 276/225 | 1.26 (0.98–1.63) | 0.03 |
IGF1:BP3 (≥0.05) | IGF1:BP-3 (≥0.05) | |||||
<58.59 | 176/176 | 1.0 | <57.97 | 208/241 | 1.0 | |
≥58.59 | 179/172 | 0.92 (0.68–1.24) | ≥57.97 | 268/239 | 1.15 (0.88–1.49) | 0.27 |
C-peptide (≥3.13) | C-peptide (≥2.92) | |||||
<54.54 | 171/175 | 1.0 | <54.54 | 223/242 | 1.0 | |
≥54.54 | 185/172 | 0.93 (0.68–1.26) | ≥54.54 | 296/236 | 1.25 (0.97–1.62) | 0.13 |
Leptin (≥8.58) | Leptin (≥8.60) | |||||
<54.16 | 169/175 | 1.0 | <53.54 | 199/239 | 1.0 | |
≥54.16 | 150/174 | 0.76 (0.56–1.04) | ≥53.54 | 243/236 | 1.13 (0.87–1.47) | 0.05 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miles, F.L.; Goodman, P.J.; Tangen, C.; Torkko, K.C.; Schenk, J.M.; Song, X.; Pollak, M.; Thompson, I.M.; Neuhouser, M.L. Interactions of the Insulin-Like Growth Factor Axis and Vitamin D in Prostate Cancer Risk in the Prostate Cancer Prevention Trial. Nutrients 2017, 9, 378. https://doi.org/10.3390/nu9040378
Miles FL, Goodman PJ, Tangen C, Torkko KC, Schenk JM, Song X, Pollak M, Thompson IM, Neuhouser ML. Interactions of the Insulin-Like Growth Factor Axis and Vitamin D in Prostate Cancer Risk in the Prostate Cancer Prevention Trial. Nutrients. 2017; 9(4):378. https://doi.org/10.3390/nu9040378
Chicago/Turabian StyleMiles, Fayth L., Phyllis J. Goodman, Catherine Tangen, Kathleen C. Torkko, Jeannette M. Schenk, Xiaoling Song, Michael Pollak, Ian M. Thompson, and Marian L. Neuhouser. 2017. "Interactions of the Insulin-Like Growth Factor Axis and Vitamin D in Prostate Cancer Risk in the Prostate Cancer Prevention Trial" Nutrients 9, no. 4: 378. https://doi.org/10.3390/nu9040378
APA StyleMiles, F. L., Goodman, P. J., Tangen, C., Torkko, K. C., Schenk, J. M., Song, X., Pollak, M., Thompson, I. M., & Neuhouser, M. L. (2017). Interactions of the Insulin-Like Growth Factor Axis and Vitamin D in Prostate Cancer Risk in the Prostate Cancer Prevention Trial. Nutrients, 9(4), 378. https://doi.org/10.3390/nu9040378