Post-Exposure Anti-Ricin Treatment Protects Swine against Lethal Systemic and Pulmonary Exposures
Abstract
:1. Introduction
2. Results
2.1. Intramuscular Ricin Toxicity Determination in Pigs
2.2. Antitoxin Treatment against Intratracheal or Intramuscular Intoxications in Swine
2.3. Antitoxin Neutralizing Unit Determination and Quantification
2.4. Anti-Ricin Antibody Dose Requirement for Treatment—Comparison between Pulmonary and Systemic Ricin Intoxications
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Ricin Preparation
5.2. Antitoxin Preparation
5.3. Animals
5.4. Median Effective Dose (ED50) Assay for Measuring Anti-Ricin Neutralizing Antibodies—In Vitro/In Vivo Assay in Mice
5.5. Ricin Exposure and Antibody Treatment in Swine
Author Contributions
Funding
Conflicts of Interest
References
- Olsnes, S.; Kozlov, J.V. Ricin. Toxicon 2001, 39, 1723–1728. [Google Scholar] [CrossRef]
- Greenfield, R.A.; Brown, B.R.; Hutchins, J.B.; Iandolo, J.J.; Jackson, R.; Slater, L.N.; Bronze, M.S. Microbiological, biological and chemical weapons of warfare and terrorism. Am. J. Med. Sci. 2002, 323, 326–340. [Google Scholar] [CrossRef]
- Cieslak, T.J.; Kortepeter, M.G.; Wojtyk, R.J.; Jansen, H.-J.; Reyes, R.A.; Smith, J.O. The NATO Biological Medical Advisory Panel. Beyond the dirty dozen: A proposed methodology for assessing future bioweapon threats. Mil. Med. 2018, 183, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Audi, J.; Belson, M.; Patel, M.; Schier, J.; Osterloh, J. Ricin poisoning: A comprehensive review. JAMA 2005, 294, 2342–2351. [Google Scholar] [CrossRef]
- Hu, C.C.; Yin, J.; Chau, D.; Cherwonogrodzky, J.W.; Hu, W.-G. Active immunity induced by passive IgG post-exposure against ricin. Toxins 2014, 6, 380–393. [Google Scholar] [CrossRef] [Green Version]
- Gal, Y.; Mazor, O.; Falach, R.; Sapoznikov, A.; Kronman, C.; Sabo, T. Treatment for pulmonary ricin intoxication: Current aspects and future prospects. Toxins 2017, 9, 311. [Google Scholar] [CrossRef] [Green Version]
- Noy-Porat, T.; Alcalay, R.; Epstein, E.; Sabo, T.; Kronman, C. Extended therapeutic window for post-exposure treatment of ricin intoxication conferred by the use of high-affinity antibodies. Toxicon 2017, 127, 100–105. [Google Scholar] [CrossRef]
- Gal, Y.; Mazor, O.; Alcalay, R.; Selinger, N.; Aftalion, M.; Sapoznikov, A.; Falach, R.; Kronman, C.; Sabo, T. Antibody/doxycycline combined therapy for pulmonary ricinosis: Attenuation of inflammation improves survival of ricin-intoxicated mice. Toxicol. Rep. 2014, 1, 496–504. [Google Scholar] [CrossRef] [Green Version]
- Gal, Y.; Sapoznikov, A.; Falach, R.; Ehrlich, S.; Aftalion, M.; Sabo, T.; Kronman, C. Potent antiedematous and protective effects of ciprofloxacin in pulmonary ricinosis. Antimicrob. Agents Chemother. 2016, 60, 7153–7158. [Google Scholar]
- Gal, Y.; Sapoznikov, A.; Falach, R.; Ehrlich, S.; Aftalion, M.; Kronman, C.; Sabo, T. Total body irradiation mitigates inflammation and extends the therapeutic time window for anti-ricin antibody treatment against pulmonary ricinosis in mice. Toxins 2017, 9, 278. [Google Scholar] [CrossRef] [Green Version]
- Sapoznikov, A.; Falach, R.; Mazor, O.; Alcalay, R.; Gal, Y.; Seliger, N.; Sabo, T. Diverse profiles of ricin-cell interactions in the lung following intranasal exposure to ricin. Toxins 2015, 7, 4817–4831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapoznikov, A.; Rosner, A.; Falach, R.; Gal, Y.; Aftalion, M.; Evgy, Y.; Israeli, O.; Sabo, T.; Kronman, C. Intramuscular ricin poisoning of mice leads to widespread damage in the heart, spleen and bone marrow. Toxins 2019, 11, 344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falach, R.; Sapoznikov, A.; Gal, Y.; Israeli, O.; Leitner, M.; Seliger, N.; Ehrlich, S.; Kronman, C.; Sabo, T. Quantitative profiling of the in vivo enzymatic activity of ricin reveals disparate depurination of different pulmonary cell types. Toxicol. Lett. 2016, 258, 11–19. [Google Scholar] [CrossRef]
- Falach, R.; Sapoznikov, A.; Alcalay, R.; Aftalion, M.; Ehrlich, S.; Makovitzki, A.; Agami, A.; Mimran, A.; Rosner, A.; Sabo, T.; et al. Generation of highly efficient equine-derived antibodies for post-exposure treatment of ricin intoxications by vaccination with monomerized ricin. Toxins 2018, 10, 466. [Google Scholar] [CrossRef] [Green Version]
- Meurens, F.; Summerfield, A.; Nauwynck, H.; Saif, L.; Gerdts, V. The pig: A model for human infectious diseases. Trends Microbiol. 2012, 20, 50–57. [Google Scholar] [CrossRef]
- Budas, G.R.; Churchill, E.N.; Mochly-rosen, D. Cardioprotective mechanisms of PKC isozyme-selective activators and inhibitors in the treatment of ischemia-reperfusion injury. Pharmacol. Res. 2007, 55, 523–536. [Google Scholar] [CrossRef]
- Katalan, S.; Falach, R.; Rosner, A.; Goldvaser, M.; Brosh-Nissimov, T.; Dvir, A.; Mizrachi, A.; Goren, O.; Cohen, B.; Sapoznikov, A.; et al. A novel swine model of ricin-induced acute respiratory distress syndrome. Dis. Models Mech. 2017, 10, 173–183. [Google Scholar] [CrossRef] [Green Version]
- European Directorate for the Quality of Medicines and Healthcare. Botulinum antitoxin. In European Pharmacopeia, 8th ed.; EDQM Council of Europe: Strasbourg, France, 2014; 1029p. [Google Scholar]
- World Health Organization. WHO Guidelines for Production, Control and Regulation of Snake Antivenom Immunoglobulins; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- O’Hara, J.M.; Brey, R.N., 3rd; Mantis, N.J. Comparative efficacy of two leading candidate ricin toxin A subunit vaccines in mice. Clin. Vaccine Immunol. 2013, 20, 789–794. [Google Scholar] [CrossRef] [Green Version]
- Pincus, S.H.; Das, A.; Song, K.; Maresh, G.A.; Corti, M.; Berry, J. Role of fc in antibody-mediated protection from ricin toxin. Toxins 2014, 6, 1512–1525. [Google Scholar] [CrossRef]
- Pratt, T.S.; Pincus, S.H.; Hale, M.L.; Moreira, A.L.; Roy, C.J.; Tchou-Wong, K.M. Oropharyngeal aspiration ofricin as a lung challenge model for evaluation of the therapeutic index of antibodies against ricin a-chain for post-exposure treatment. Exp. Lung. Res. 2007, 33, 459–481. [Google Scholar] [CrossRef]
- Vance, D.J.; Tremblay, J.M.; Mantis, N.J.; Shoemaker, C.B. Stepwise engineering of heterodimeric single domain camelid VHH antibodies that passively protect mice from ricin toxin. J. Biol. Chem. 2013, 288, 36538–36547. [Google Scholar] [CrossRef] [Green Version]
- Whitfield, S.J.C.; Griffiths, G.D.; Jenner, D.C.; Gwyther, R.J.; Stahl, F.M.; Cork, L.J.; Holley, J.L.; Green, A.C.; Clark, G.C. Production, Characterisation and Testing of an Ovine Antitoxin against Ricin; Efficacy, Potency and Mechanisms of Action. Toxins 2017, 9, 329. [Google Scholar] [CrossRef] [Green Version]
- Roy, C.J.; Ehrbar, D.J.; Bohorova, N.; Bohorov, O.; Kim, D.; Pauly, M.; Whaley, K.; Rong, Y.; Torres-Velez, F.J.; Vitetta, E.S.; et al. Rescue of rhesus macaques from the lethality of aerosolized ricin toxin. JCI Insight 2019, 4, e124771. [Google Scholar] [CrossRef] [Green Version]
- Wilhelmsen, C.L.; Pitt, M.L. Lesions of acute inhaled lethal ricin intoxication in rhesus monkeys. Vet. Pathol. 1996, 33, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, G.F. The Spearman-Karber Method of Estimating 50% Endpoints. Biom. Unit Tech. Rep. 1961, BU-141-M, 5. [Google Scholar]
Pig ID | Weight (kg) | Ricin (µg/kg) | TTD a (Hours) | MTTD b ± SD (Hours) |
---|---|---|---|---|
6936 | 20.1 | 20 | 20 | 22 ± 2.8 |
7055 | 20.8 | 10 | 24 | |
7047 | 14.6 | 2.5 | survived | |
6843 | 14.0 | 5 | 46 | 92 ± 68 |
9101 | 17.3 | 5 | 90 | |
9307 | 14.3 | 6 | 53 | |
9243 | 13.6 | 6 | 53 | |
9244 | 14.6 | 6 | 190 | |
6914 | 14.2 | 6 | 210 | |
6954 | 13.4 | 6 | 47 | |
6842 | 12.4 | 6 | 47 | |
7128 | 14.7 | 7.5 | 48 | 47 ± 2 |
9317 | 17.2 | 7.5 | 47 | |
9507 | 14.9 | 7.5 | 45 |
RR-001 a | RR-002 a | ||||||
---|---|---|---|---|---|---|---|
Experiment I | Experiment II | Experiment III | Experiment I | Experiment II | Experiment III | ||
µL/mouse b | 1.3 | 4/4 | 4/4 | nd | nd | nd | nd |
1.08 | 4/4 | 4/4 | 4/4 | 4/4 | 4/4 | 4/4 | |
0.9 | 4/4 | 4/4 | 4/4 | 4/4 | 4/4 | 4/4 | |
0.75 | 4/4 | 4/4 | 1/4 | 4/4 | 1/4 | 4/4 | |
0.63 | 0/4 | 0/4 | 0/4 | 3/4 | 0/4 | 4/4 | |
0.53 | nd | nd | 0/4 | 0/4 | 0/4 | 0/4 | |
ED50 c (µL) | 0.68 | 0.69 | 0.8 | 0.6 | 0.79 | 0.57 | |
NU/mL | 1461 | 1461 | 1251 | 1675 | 1274 | 1753 | |
Average NU d/mL ± STDEV | 1391 ± 121 | 1567 ± 257 |
Exposure Route/Antitoxin Batch | Treatment Dose | Survival (%) (Survivors/Total) | Time-to-Death (Time Range in Hours *) | |
---|---|---|---|---|
mL/kg | NU/kg | |||
Intramuscular/RR-002 | 3.5 | 5484 | 83 (10/12) | 45, 48 |
1.5 | 2350 | 80 (12/15) | 42, 48, 48 | |
1 | 1567 | 73 (11/15) | 42–45 | |
0.75 | 1175 | 47 (7/15) | 42–66 | |
0 | 0 | 0 (0/8) | 42–60 | |
Intratracheal/RR-001 | 3.5 | 4868 | 85 (11/13) | 40, 90 |
1.5 | 2086 | 29 (4/14) | 40–65 | |
0 | 0 | 0 (0/14) | 40–60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falach, R.; Sapoznikov, A.; Evgy, Y.; Aftalion, M.; Makovitzki, A.; Agami, A.; Mimran, A.; Lerer, E.; Ben David, A.; Zichel, R.; et al. Post-Exposure Anti-Ricin Treatment Protects Swine against Lethal Systemic and Pulmonary Exposures. Toxins 2020, 12, 354. https://doi.org/10.3390/toxins12060354
Falach R, Sapoznikov A, Evgy Y, Aftalion M, Makovitzki A, Agami A, Mimran A, Lerer E, Ben David A, Zichel R, et al. Post-Exposure Anti-Ricin Treatment Protects Swine against Lethal Systemic and Pulmonary Exposures. Toxins. 2020; 12(6):354. https://doi.org/10.3390/toxins12060354
Chicago/Turabian StyleFalach, Reut, Anita Sapoznikov, Yentl Evgy, Moshe Aftalion, Arik Makovitzki, Avi Agami, Avishai Mimran, Elad Lerer, Alon Ben David, Ran Zichel, and et al. 2020. "Post-Exposure Anti-Ricin Treatment Protects Swine against Lethal Systemic and Pulmonary Exposures" Toxins 12, no. 6: 354. https://doi.org/10.3390/toxins12060354
APA StyleFalach, R., Sapoznikov, A., Evgy, Y., Aftalion, M., Makovitzki, A., Agami, A., Mimran, A., Lerer, E., Ben David, A., Zichel, R., Katalan, S., Rosner, A., Sabo, T., Kronman, C., & Gal, Y. (2020). Post-Exposure Anti-Ricin Treatment Protects Swine against Lethal Systemic and Pulmonary Exposures. Toxins, 12(6), 354. https://doi.org/10.3390/toxins12060354