Fish Cytolysins in All Their Complexity
Abstract
:1. Introduction
2. The Search for the Lethal Factor: Identification and/or Purification of Fish Cytolysins
3. Analyzing the Structural Features of Fish Cytolysins
4. The Ubiquitous Hemolytic Activity of Fish Cytolysins: From the Definition of the Pore-Forming Mechanism to its Structural Confirmation
5. Pharmacological Activities Associated to the Multifunctional Fish Cytolysins
5.1. Cardiovascular Activity
5.2. Neuromuscular Activity
5.3. Pain-Inducing and Inflammatory Activities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, W.L.; Stern, J.H.; Girard, M.G.; Davis, M.P. Evolution of Venomous Cartilaginous and Ray-Finned Fishes. Integr. Comp. Biol. 2016, 56, 950–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddad, V., Jr. Atlas de Animais Aquáticos Perigosos do Brasil: Guia Médico de Identificação e Tratamento (Atlas of Dangerous Aquatic Animals of Brazil: A Medical Guide of Identification and Treatment); Roca: São Paulo, Brazil, 2000. [Google Scholar]
- Haddad, V., Jr.; Martins, I.A.; Makyama, H.M. Injuries caused by scorpionfishes (Scorpaena plumieri Bloch, 1789 and Scorpaena brasiliensis Cuvier, 1829) in the Southwestern Atlantic Ocean (Brazilian coast): Epidemiologic, clinic and therapeutic aspects of 23 stings in humans. Toxicon 2003, 42, 79–83. [Google Scholar] [CrossRef]
- Smith, W.L.; Wheeler, W.C. Venom Evolution Widespread in Fishes: A Phylogenetic Road Map for the Bioprospecting of Piscine Venoms. J. Hered. 2006, 97, 206–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorman, L.M.; Judge, S.J.; Fezai, M.; Jemaà, M.; Harris, J.B.; Caldwell, G.S. The venoms of the lesser (Echiichthys vipera) and greater (Trachinus draco) weever fish—A review. Toxicon 2020, 6, 100025. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halstead, B.W. Injurious effects from the sting of the scorpionfish Scorpaena guttata with report of a case. Calif. Med. 1951, 74, 395–396. [Google Scholar] [PubMed]
- Roche, E.T.; Halstead, B.W. The Venom Apparatus of California Rockfishes (Family Scorpaenidae); Fish Bulletin of the Department of Fish and Game of the State of California; State of California, Department of Fish and Game: Sacramento, CA, USA, 1972; Volume 156, pp. 1–49.
- Church, J.E.; Hodgson, W.C. The pharmacological activity of fish venoms. Toxicon 2002, 40, 1083–1093. [Google Scholar] [CrossRef]
- Reckziegel, G.C.; Dourado, F.S.; Garrone-Neto, D.; Haddad, V., Jr. Injuries caused by aquatic animals in Brazil: An analysis of the data present in the information system for notifiable diseases. Rev. Soc. Bras. Med. Trop. 2015, 48, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Perriere, C.; Goudey-Perriere, F.; Petek, F. Purification of a lethal fraction from the venom of the weever fish, Trachinus vipera C.V. Toxicon 1988, 26, 1222–1227. [Google Scholar] [CrossRef]
- Poh, C.; Yuen, R.; Khoo, H.; Chung, M.; Gwee, M.; Gopalakrishnakone, P. Purification and partial characterization of stonustoxin (lethal factor) from Synanceja horrida venom. Comp. Biochem. Physiol. Part B Comp. Biochem. 1991, 99, 793–798. [Google Scholar] [CrossRef]
- Chhatwal, I.; Dreyer, F. Biological properties of a crude venom extract from the greater weever fish Trachinus draco. Toxicon 1992, 30, 77–85. [Google Scholar] [CrossRef]
- Kiriake, A.; Shiomi, K. Some properties and cDNA cloning of proteinaceous toxins from two species of lionfish (Pterois antennata and Pterois volitans). Toxicon 2011, 58, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Gomes, H.L.; Menezes, T.; Malacarne, P.F.; Roman-Campos, D.; Gondim, A.N.; Cruz, J.; Vassallo, D.; Figueiredo, S.G. Cardiovascular effects of Sp-CTx, a cytolysin from the scorpionfish (Scorpaena plumieri) venom. Toxicon 2016, 118, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.J.; Jenner, R.A. Evolutionary Ecology of Fish Venom: Adaptations and Consequences of Evolving a Venom System. Toxins 2019, 11, 60. [Google Scholar] [CrossRef] [Green Version]
- Borges, M.H.; Andrich, F.; Lemos, P.H.; Soares, T.G.; Menezes, T.N.; Campos, F.V.; Neves, L.X.; Castro-Borges, W.; Figueiredo, S.G. Combined proteomic and functional analysis reveals rich sources of protein diversity in skin mucus and venom from the Scorpaena plumieri fish. J. Proteom. 2018, 187, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Ziegman, R.; Undheim, E.A.B.; Baillie, G.; Jones, A.; Alewood, P.F. Investigation of the estuarine stonefish (Synanceia horrida) venom composition. J. Proteom. 2019, 201, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Garnier, P.; Goudey-Perrière, F.; Breton, P.; Dewulf, C.; Petek, F.; Perrière, C. Enzymatic properties of the stonefish (Synanceia verrucosa Bloch and Schneider, 1801) venom and purification of a lethal, hypotensive and cytolytic factor. Toxicon 1995, 33, 143–155. [Google Scholar] [CrossRef]
- Figueiredo, S.G.; Andrich, F.; Lima, C.; Lopes-Ferreira, M.; Haddad Jr., V. Venomous fish: A brief overview. In Animal Toxins: State of the Art. Perspectives on Health and Biotechnology; De Lima, M.E., Pimenta, A.M.C., Martin-Eauclaire, M.F., Zingali, R., Rochat, H., Eds.; UFMG: Belo Horizonte, Brazil, 2009; pp. 73–95. [Google Scholar]
- Ziegman, R.; Alewood, P. Bioactive Components in Fish Venoms. Toxins 2015, 7, 1497–1531. [Google Scholar] [CrossRef] [PubMed]
- Low, K.S.; Gwee, M.; Yuen, R.; Gopalakrishnakone, P.; Khoo, H. Stonustoxin: A highly potent endothelium-dependent vasorelaxant in the rat. Toxicon 1993, 31, 1471–1478. [Google Scholar] [CrossRef]
- Carlson, R.W.; Schaeffer, R.C., Jr.; La Grange, R.G.; Roberts, C.M.; Russell, F.E. Some pharmacological properties of the venom of the scorpionfish Scorpaena guttata. Toxicon 1971, 9, 379–391. [Google Scholar] [CrossRef]
- Shiomi, K.; Hosaka, M.; Fujita, S.; Yamanaka, H.; Kikuchi, T. Venoms from six species of marine fish: Lethal and hemolytic activities and their neutralization by commercial stonefish antivenom. Mar. Biol. 1989, 103, 285–289. [Google Scholar] [CrossRef]
- Kreger, A.S. Detection of a cytolytic toxin in the venom of the stonefish (Synanceia trachynis). Toxicon 1991, 29, 733–743. [Google Scholar] [CrossRef]
- Khoo, H.E.; Yuen, R.; Poh, C.H.; Tan, C.H. Biological activities ofSynanceja horrida (stonefish) venom. Nat. Toxins 1992, 1, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Hahn, S.; O’Connor, J. An investigation of the biological activity of bullrout (Notesthes robusta) venom. Toxicon 2000, 38, 79–89. [Google Scholar] [CrossRef]
- Carrijo, L.C.; Andrich, F.; de Lima, M.E.; Cordeiro, M.N.; Richardson, M.; Figueiredo, S.G. Biological properties of the venom from the scorpionfish (Scorpaena plumieri) and purification of a gelatinolytic protease. Toxicon 2005, 45, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.M.L.; Low, K.S.Y.; Khoo, H.E. Characterization of the mechanism underlying stonustoxin-mediated relaxant response in the rat aorta in vitro. Biochem. Pharmacol. 2002, 63, 1113–1118. [Google Scholar] [CrossRef]
- Liew, H.; Khoo, H.; Moore, P.; Bhatia, M.; Lu, J.; Moochhala, S. Synergism between hydrogen sulfide (H2S) and nitric oxide (NO) in vasorelaxation induced by stonustoxin (SNTX), a lethal and hypotensive protein factor isolated from stonefish Synanceja horrida venom. Life Sci. 2007, 80, 1664–1668. [Google Scholar] [CrossRef] [PubMed]
- Low, K.S.; Gwee, M.C.; Yuen, R.; Gopalakrishnakone, P.; Khoo, H. Stonustoxin: Effects on neuromuscular function in vitro and in vivo. Toxicon 1994, 32, 573–581. [Google Scholar] [CrossRef]
- Colasante, C.; Meunier, F.A.; Kreger, A.S.; Molgó, J. Selective Depletion of Clear Synaptic Vesicles and Enhanced Quantal Transmitter Release at Frog Motor Nerve Endings Produced by Trachynilysin, a Protein Toxin Isolated from Stonefish (Synanceia trachynis) Venom. Eur. J. Neurosci. 1996, 8, 2149–2156. [Google Scholar] [CrossRef]
- Sauviat, M.-P.; Meunier, F.A.; Kreger, A.; Molgó, J. Effects of trachynilysin, a protein isolated from stonefish (Synanceia trachynis) venom, on frog atrial heart muscle. Toxicon 2000, 38, 945–959. [Google Scholar] [CrossRef]
- Ouanounou, G.; Mattei, C.; Meunier, F.A.; Kreger, A.S.; Molgó, J. Trachynilysin, a protein neurotoxin isolated from stonefish (Synanceia trachynis) venom, increases spontaneous quantal acetylcholine release from Torpedo marmorata neuromuscular junctions. Cybium 2000, 24, 149–156. [Google Scholar]
- Meunier, F.A.; Mattei, C.; Chameau, P.; Lawrence, G.; Colasante, C.; Kreger, A.S.; Dolly, J.O.; Molgó, J. Trachynilysin mediates SNARE-dependent release of catecholamines from chromaffin cells via external and stored Ca2+. J. Cell Sci. 2000, 113, 1119–1125. [Google Scholar] [CrossRef]
- Garnier, P.; Sauviat, M.-P.; Goudey-Perriere, F.; Perriere, C. Cardiotoxicity of verrucotoxin, a protein isolated from the venom of Synanceia verrucosa. Toxicon 1997, 35, 47–55. [Google Scholar] [CrossRef]
- Wang, J.-W.; Yazawa, K.; Hao, L.-Y.; Onoue, Y.; Kameyama, M. Verrucotoxin inhibits KATP channels in cardiac myocytes through a muscarinic M3 receptor-PKC pathway. Eur. J. Pharmacol. 2007, 563, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Yazawa, K.; Wang, J.-W.; Hao, L.-Y.; Onoue, Y.; Kameyama, M. Verrucotoxin, a stonefish venom, modulates calcium channel activity in guinea-pig ventricular myocytes. Br. J. Pharmacol. 2007, 151, 1198–1203. [Google Scholar] [CrossRef] [Green Version]
- Ueda, A.; Suzuki, M.; Honma, T.; Nagai, H.; Nagashima, Y.; Shiomi, K. Purification, properties and cDNA cloning of neoverrucotoxin (neoVTX), a hemolytic lethal factor from the stonefish Synanceia verrucosa venom. Biochim. Biophys. Acta BBA-Gen. Subj. 2006, 1760, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Kiriake, A.; Suzuki, Y.; Nagashima, Y.; Shiomi, K. Proteinaceous toxins from three species of scorpaeniform fish (lionfish Pterois lunulata, devil stinger Inimicus japonicus and waspfish Hypodytes rubripinnis): Close similarity in properties and primary structures to stonefish toxins. Toxicon 2013, 70, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Andrich, F.; Carnielli, J.; Cassoli, J.; Lautner, R.; Santos, R.; Pimenta, A.; de Lima, M.; Figueiredo, S. A potent vasoactive cytolysin isolated from Scorpaena plumieri scorpionfish venom. Toxicon 2010, 56, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Gomes, H.L.; Andrich, F.; Fortes-Dias, C.L.; Perales, J.; Teixeira-Ferreira, A.; Vassallo, D.V.; Cruz, J.S.; Figueiredo, S.G. Molecular and biochemical characterization of a cytolysin from the Scorpaena plumieri (scorpionfish) venom: Evidence of pore formation on erythrocyte cell membrane. Toxicon 2013, 74, 92–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malacarne, P.F.; Menezes, T.N.; Martins, C.W.; Naumann, G.B.; Gomes, H.L.; Pires, R.G.; Figueiredo, S.G.; Campos, F.V. Advances in the characterization of the Scorpaena plumieri cytolytic toxin (Sp-CTx). Toxicon 2018, 150, 220–227. [Google Scholar] [CrossRef]
- Schaeffer, R.C.; Carlson, R.W.; Russell, F.E. Some chemical properties of the venom of the scorpionfish Scorpaena guttata. Toxicon 1971, 9, 69–78. [Google Scholar] [CrossRef]
- Chuang, P.-S.; Shiao, J.-C. Toxin gene determination and evolution in scorpaenoid fish. Toxicon 2014, 88, 21–33. [Google Scholar] [CrossRef]
- Saunders, P.R.; Tökés, L. Purification and properties of the lethal fraction of the venom of the stonefish Synanceja horrida (Linnaeus). Biochim. Biophys. Acta BBA-Bioenerg. 1961, 52, 527–532. [Google Scholar] [CrossRef]
- Frederico, A.; Américo, D.; Stéphane, B.; Beatriz, R.; Francisco, V.; Joana, R.; José, M.; Luisa, M.; Pedro, F.; Lino, C.J.; et al. A simple and practical technique for fish venom extraction—Protein content analysis for future biotechnological applications. Front. Mar. Sci. 2016, 3. [Google Scholar] [CrossRef]
- Hedrick, J.L.; Smith, A.J. Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch. Biochem. Biophys. 1968, 126, 155–164. [Google Scholar] [CrossRef]
- Church, J.E.; Hodgson, W.C. Stonefish (Synanceia spp.) antivenom neutralizes the in vitro and in vivo cardiovascular activity of soldierfish (Gymnapistes marmoratus) venom. Toxicon 2001, 39, 319–324. [Google Scholar] [CrossRef]
- Church, J.E.; Hodgson, W.C. Stonefish (Synanceia trachynis) Antivenom: In Vitro Efficacy and Clinical Use. J. Toxicol. Toxin Rev. 2003, 22, 69–76. [Google Scholar] [CrossRef]
- Gomes, H.L.; Menezes, T.N.; Carnielli, J.B.; Andrich, F.; Evangelista, K.S.; Chávez-Olórtegui, C.; Vassallo, D.V.; Figueiredo, S.G. Stonefish antivenom neutralises the inflammatory and cardiovascular effects induced by scorpionfish Scorpaena plumieri venom. Toxicon 2011, 57, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Ghadessy, F.J.; Chen, D.; Kini, M.; Chung, M.C.M.; Jeyaseelan, K.; Khoo, H.E.; Yuen, R. Stonustoxin Is a Novel Lethal Factor from Stonefish (Synanceja horrida) Venom. J. Biol. Chem. 1996, 271, 25575–25581. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.L.S.; De Lima, M.E.; Figueiredo, S.G.; Ferreira, R.S.; Prates, N.S.; Sakamoto, T.; Salas, C.E. Sequence analysis of the cDNA encoding for SpCTx: A lethal factor from scorpionfish venom (Scorpaena plumieri). J. Venom. Anim. Toxins Incl. Trop. Dis. 2018, 24, 24. [Google Scholar] [CrossRef]
- Garnier, P.; Ducancel, F.; Ogawa, T.; Boulain, J.C.; Goudey-Perrière, F.; Perrière, C.; Ménez, A. Complete amino-acid sequence of the beta-subunit of VTX from venom of the stonefish (Synanceia verrucosa) as identified from cDNA cloning experiments. Biochim. Biophys. Acta 1997, 1337, 1–5. [Google Scholar] [CrossRef]
- Ellisdon, A.; Reboul, C.; Panjikar, S.; Huynh, K.; Oellig, C.A.; Winter, K.L.; Dunstone, M.A.; Hodgson, W.; Seymour, J.; Dearden, P.; et al. Stonefish toxin defines an ancient branch of the perforin-like superfamily. Proc. Natl. Acad. Sci. USA 2015, 112, 15360–15365. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouanounou, G.; Malo, M.; Stinnakre, J.; Kreger, A.S.; Molgó, J. Trachynilysin, a Neurosecretory Protein Isolated from Stonefish (Synanceia trachynis) Venom, Forms Nonselective Pores in the Membrane of NG108-15 Cells. J. Biol. Chem. 2002, 277, 39119–39127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoo, H.; Hon, W.; Lee, S.; Yuen, R. Effects of stonustoxin (lethal factor from Synanceja horrida venom) on platelet aggregation. Toxicon 1995, 33, 1033–1041. [Google Scholar] [CrossRef]
- Hatakeyama, T.; Nagatomo, H.; Yamasaki, N. Interaction of the Hemolytic Lectin CEL-III from the Marine Invertebrate Cucumaria echinata with the Erythrocyte Membrane. J. Biol. Chem. 1995, 270, 3560–3564. [Google Scholar] [CrossRef] [Green Version]
- Oda, T.; Tsuru, M.; Hatakeyama, T.; Nagatomo, H.; Muramatsu, T.; Yamasaki, N. Temperature- and pH-dependent cytotoxic effect of the hemolytic lectin CEL-III from the marine invertebrate Cucumaria echinata on various cell lines. J. Biochem. 1997, 121, 560–567. [Google Scholar] [CrossRef]
- Hopkins, B.J.; Hodgson, W.C.; Sutherland, S.K. Pharmacological studies of stonefish (Synanceja trachynis) venom. Toxicon 1994, 32, 1197–1210. [Google Scholar] [CrossRef]
- Lopes-Ferreira, M.; Barbaro, K.; Cardoso, D.; Moura-Da-Silva, A.M.; Mota, I. Thalassophryne nattereri fish venom: Biological and biochemical characterization and serum neutralization of its toxic activities. Toxicon 1998, 36, 405–410. [Google Scholar] [CrossRef]
- Hopkins, B.J.; Hodgson, W.C. Cardiovascular studies on venom fromthe soldierfish (Gymnapistes marmoratus). Toxicon 1998, 36, 973–983. [Google Scholar] [CrossRef]
- Andrich, F.; Richardson, M.; Naumann, G.; Cordeiro, M.; Santos, A.; Santos, D.; Oliveira, J.; De Lima, M.; Figueiredo, S. Identification of C-type isolectins in the venom of the scorpionfish Scorpaena plumieri. Toxicon 2015, 95, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Campos, F.V.; Menezes, T.N.; Malacarne, P.F.; Costa, F.L.S.; Naumann, G.B.; Gomes, H.L.; Figueiredo, S.G. A review on the Scorpaena plumieri fish venom and its bioactive compounds. J. Venom. Anim. Toxins Incl. Trop. Dis. 2016, 22, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.; Kini, M.; Yuen, R.; Khoo, H.E. Haemolytic activity of stonustoxin from stonefish (Synanceja horrida) venom: Pore formation and the role of cationic amino acid residues. Biochem. J. 1997, 325, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.E.; Chen, D.S.; Yuen, R. The role of cationic amino acid residues in the lethal activity of stonustoxin from stonefish (Synanceja horrida) venom. Biochem. Mol. Biol. Int. 1998, 44, 643–646. [Google Scholar] [PubMed]
- Sáenz, A.; Ortiz, N.; Lomonte, B.; Rucavado, A.; Díaz, C. Comparison of biochemical and cytotoxic activities of extracts obtained from dorsal spines and caudal fin of adult and juvenile non-native Caribbean lionfish (Pterois volitans/miles). Toxicon 2017, 137, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Yew, W.S.; Khoo, H.E. The role of tryptophan residues in the hemolytic activity of stonustoxin, a lethal factor from stonefish (Synanceja horrida) venom. Biochimie 2000, 82, 251–257. [Google Scholar] [CrossRef]
- Breton, P.; Delamanche, I.; Bouee, J.; Goudey-Perriere, F.; Perriere, C. Toxicon. Verrucotoxin and neurotoxic effects of stonefish (Synanceia verrucosa) venom. Toxicon 1999, 37, 1213. [Google Scholar]
- Kreger, A.; Molgó, J.; Comella, J.; Hansson, B.; Thesleff, S. Effects of stonefish (Synanceia trachynis) venom on murine and frog neuromuscular junctions. Toxicon 1993, 31, 307–317. [Google Scholar] [CrossRef]
- Cohen, A.S.; Olek, A.J. An extract of lionfish (Pterois volitans) spine tissue contains acetylcholine and a toxin that affects neuromuscular transmission. Toxicon 1989, 27, 1367–1376. [Google Scholar] [CrossRef]
- Menezes, T.; Carnielli, J.B.; Gomes, H.L.; Pereira, F.E.; Lemos, E.M.; Bissoli, N.S.; Lopes-Ferreira, M.; Andrich, F.; Figueiredo, S.G. Local inflammatory response induced by scorpionfish Scorpaena plumieri venom in mice. Toxicon 2012, 60, 4–11. [Google Scholar] [CrossRef]
- Mouchbahani-Constance, S.; Lesperance, L.S.; Petitjean, H.; Davidova, A.; Macpherson, A.; Prescott, S.A.; Sharif-Naeini, R. Lionfish venom elicits pain predominantly through the activation of nonpeptidergic nociceptors. Pain 2018, 159, 2255–2266. [Google Scholar] [CrossRef] [PubMed]
Family | Species | Cytolysin | Activity Described |
---|---|---|---|
Synanceiidae | |||
Estuarine stonefish | Synanceia horrida | SNTX *-Stonustoxin | Lethal [12] Hemolytic [12] Cardiovascular [22,29,30] Neuromuscular [31] Edematogenic [12] |
Synanceia trachynis | TLY *-Trachynilysin | Lethal [25] Hemolytic [32] Cardiovascular [33] Neuromuscular [32,34,35] | |
Reef stonefish | Synanceia verrucosa | VTX *-Verrucotoxin neoVTX *-Neoverrucotoxin | Lethal [19] Hemolytic [19] Cardiovascular [36,37,38] Lethal [39] Hemolytic [39] |
Devil stinger | Inimicus japonicus | IjTx **-I. japonicus toxin | Hemolytic [40] |
Scorpaenidae | |||
Scorpionfish | Scorpaena plumieri | Sp-CTx *-S. plumieri cytolytic toxin | Lethal [15] Hemolytic [41,42] ardiovascular [15,41,42] Edematogenic [43] Nociceptive [43] |
Scorpaena guttata | Unnamed toxin ** | Lethal [44] | |
Sebastapistes strongia | SsTx ***-S. strongia toxin [45] | - | |
Scorpaenopsis oxycephala | SoTx ***-S. oxycephala toxin [45] | - | |
Dendrochirus zebra | DzTx ***-D. zebra toxin [45] | - | |
Sebasticus marmoratus | SmTx ***-S. marmoratus toxin [45] | - | |
Lionfish | Pterois volitans | PvTx ***-P. volitans toxin [14] | - |
Pterois antennata | PaTx ***-P. antennata toxin [14] | - | |
Pterois lunulata | PlTx **-P. lunulata toxin | Hemolytic [40] | |
Trachinidae | |||
Greater weeverfish | Trachinus draco | Dracotoxin * | Lethal [13] Hemolytic [13] |
Lesser weeverfish | Echiichthys vipera # | Trachinine * | Lethal [11] |
Tetrarogidae | |||
Waspfish | Hypodytes rubriprinnis | HrTx **-H. rubriprinnis toxin | Hemolytic [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos, F.V.; Fiorotti, H.B.; Coitinho, J.B.; Figueiredo, S.G. Fish Cytolysins in All Their Complexity. Toxins 2021, 13, 877. https://doi.org/10.3390/toxins13120877
Campos FV, Fiorotti HB, Coitinho JB, Figueiredo SG. Fish Cytolysins in All Their Complexity. Toxins. 2021; 13(12):877. https://doi.org/10.3390/toxins13120877
Chicago/Turabian StyleCampos, Fabiana V., Helena B. Fiorotti, Juliana B. Coitinho, and Suely G. Figueiredo. 2021. "Fish Cytolysins in All Their Complexity" Toxins 13, no. 12: 877. https://doi.org/10.3390/toxins13120877
APA StyleCampos, F. V., Fiorotti, H. B., Coitinho, J. B., & Figueiredo, S. G. (2021). Fish Cytolysins in All Their Complexity. Toxins, 13(12), 877. https://doi.org/10.3390/toxins13120877