Physical and Chemical Methods for Reduction in Aflatoxin Content of Feed and Food
Abstract
:1. Introduction
2. Reduction in Aflatoxins in Feed and Food
2.1. Physical Methods
2.2. Chemical Methods
2.3. Agents Detoxifying AFs in Animal Husbandry
3. Potentials and Challenges of Upscaling Experimental Detoxifying Methods
4. Conclusions and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peles, F.; Sipos, P.; Győri, Z.; Pfliegler, W.P.; Giacometti, F.; Serraino, A.; Pagliuca, G.; Gazzotti, T.; Pócsi, I. Adverse effects, transformation, and channeling of aflatoxins into food raw materials in livestock. Front. Microbiol. 2019, 10, 2861. [Google Scholar] [CrossRef] [Green Version]
- Ráduly, Z.; Szabó, L.; Madar, A.; Pócsi, I.; Csernoch, L. Toxicological and medical aspects of Aspergillus-derived mycotoxins entering the feed and food chain. Front. Microbiol. 2019, 10, 2908. [Google Scholar] [CrossRef] [Green Version]
- Jalili, M. A review on aflatoxins reduction in food. Iran. J. Health Saf. Environ. 2015, 3, 445–459. [Google Scholar]
- Frisvad, J.C.; Hubka, V.; Ezekiel, C.N.; Hong, S.B.; Nováková, A.; Chen, A.J.; Arzanlou, M.; Larsen, T.O.; Sklenář, F.; Mahakarnchanakul, W.; et al. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud. Mycol. 2019, 93, 1–63. [Google Scholar] [CrossRef]
- Lizárraga-Paulín, E.G.; Miranda-Castro, S.P.; Moreno-Martínez, E.; Torres-Pacheco, I.; Lara-Sagahón, A.V. Novel methods for preventing and controlling aflatoxins in food: A worldwide daily challenge. In Aflatoxins—Recent Advances and Future Prospects; Razzaghi-Abyaneh, M., Ed.; InTech: Rijeka, Croatia, 2013; pp. 93–128. [Google Scholar]
- Caceres, I.; El Khoury, R.; Bailly, S.; Oswald, I.P.; Puel, O.; Bailly, J.D. Piperine inhibits aflatoxin B1 production in Aspergillus flavus by modulating fungal oxidative stress response. Fungal Genet. Biol. 2017, 107, 77–85. [Google Scholar] [CrossRef]
- Reverberi, M.; Punelli, F.; Scarpari, M.; Camera, E.; Zjalic, S.; Ricelli, A.; Fanelli, C.; Fabbri, A.A. Lipoperoxidation affects ochratoxin A biosynthesis in Aspergillus ochraceus and its interaction with wheat seeds. Appl. Genet. Mol. Biotechnol. 2010, 85, 1935–1946. [Google Scholar] [CrossRef]
- Hong, S.Y.; Roze, L.V.; Wee, J.; Linz, J.E. Evidence that a transcription factor regulatory network coordinates oxidative stress response and secondary metabolism in Aspergilli. Microbiologyopen 2013, 2, 144–160. [Google Scholar] [CrossRef]
- Pfliegler, V.; Pócsi, I.; Győri, Z.; Pusztahelyi, T. The Aspergilli and their mycotoxins: Metabolic interactions with plants and the soil biota. Front. Microbiol. 2020, 10, 1–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peles, F.; Sipos, P.; Kovács, S.; Győri, Z.; Pócsi, I.; Pusztahelyi, T. Biological Control and Mitigation of Aflatoxin Contamination in Commodities. Toxins 2021, 13, 104. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.M.; Barros, G.G.; Palacios, S.A.; Chulze, S.N.; Battilani, P. Review on pre- and post-harvest management of peanuts to minimize aflatoxin contamination. Food Res. Int. 2014, 62, 11–19. [Google Scholar] [CrossRef]
- Assaf, J.C.; Khoury, A.; Chokr, A.; Louka, N.; Atoui, A. A novel method for elimination of aflatoxin M1 in milk using Lactobacillus rhamnosus GG biofilm. Int. J. Dairy Technol. 2019, 72, 248–256. [Google Scholar] [CrossRef]
- Assaf, J.C.; Nahle, S.; Chokr, A.; Louka, N.; Atoui, A.; El Khoury, A. Assorted methods for decontamination of aflatoxin M1 in milk using microbial adsorbents. Toxins 2019, 11, 304. [Google Scholar] [CrossRef] [Green Version]
- Norlia, M.; Jinap, S.; Nor-Khaizura, M.; Radu, S.; Samsudin, N.; Azri, F.A. Aspergillus section Flavi and aflatoxins: Occurrence, detection, and identification in raw peanuts and peanut-based products along the supply chain. Front. Microbiol. 2019, 10, 2602. [Google Scholar] [CrossRef] [Green Version]
- Serraino, A.; Bonilauri, P.; Kerekes, K.; Farkas, Z.; Giacometti, F.; Canever, A.; Zambrini, A.V.; Ambrus, Á. Occurrence of aflatoxin M1 in raw milk marketed in Italy: Exposure assessment and risk characterization. Front. Microbiol. 2019, 10, 2516. [Google Scholar] [CrossRef]
- Tabata, S. Aflatoxin contamination in foods and foodstuffs. Mycotoxins 1998, 47, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Arab, M.; Sohrabvandi, S.; Mortazavian, A.M.; Mohammadi, R.; Rezaei Tavirani, M. Reduction of aflatoxin in fermented milks during production and storage. Toxin Rev. 2012, 31, 44–53. [Google Scholar] [CrossRef]
- Sharifzadeh, A.; Ghasemi-Dehkordi, P.; Foroughi, M.; Mardanpour-Shahrekordi, E.; Ramazie, S. Aflatoxin M1 contamination levels in cheeses sold in Isfahan Province, Iran. Osong Public Health Res. Perspect. 2017, 8, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Shigute, T.; Washe, A.P. Reduction of aflatoxin M1 levels during Ethiopian traditional fermented milk (Ergo) production. J. Food Qual. 2018, 2018, 4570238. [Google Scholar] [CrossRef] [Green Version]
- Maleki, F.; Abdi, S.; Davodian, E.; Haghani, K.; Bakhtiyari, S. Exposure of infants to aflatoxin M1 from mother’s breast milk in Ilam, Western Iran. Osong Public Health Res. Perspect. 2015, 6, 283–287. [Google Scholar] [CrossRef] [Green Version]
- Warth, B.; Braun, D.; Ezekiel, C.N.; Turner, P.C.; Degen, G.H.; Marko, D. Biomonitoring of mycotoxins in human breast milk: Current state and future perspectives. Chem. Res. Toxicol. 2016, 29, 1087–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, W.J.; Schilter, B.; Tritsher, A.M.; Stadler, R.H. Environmental contaminants. Contaminants of milk and dairy products. In Encyclopedia of Dariry Science, 2nd ed.; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: London, UK, 2011; pp. 898–905. [Google Scholar]
- Bianchini, A.; Bullerman, L.B. Biological Control of Molds and Mycotoxins in Foods. In Mycotoxin Prevention and Control in Agriculture; Appell, M., Kendra, D.F., Trucksess, M.W., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2009; pp. 1–16. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Chun, H.S. Natural products for preventing and controlling aflatoxin contamination of food. In Aflatoxin-Control, Analysis, Detection and Health Risks; Abdulra’uf, L., Ed.; IntechOpen: London, UK, 2017; pp. 13–44. [Google Scholar]
- Nagy, R.; Máthé, E.; Csapó, J.; Sipos, P. Modifying Effects of Physical Processes on Starch and Dietary Fiber Content of Foodstuffs. Processes 2021, 9, 17. [Google Scholar] [CrossRef]
- Rustom, I.Y.S. Aflatoxin in food and feed: Occurrence, legislation and inactivation by physical methods. Food Chem. 1997, 59, 57–67. [Google Scholar] [CrossRef]
- Negash, D. A review of aflatoxin: Occurrence, prevention, and gaps in both food and feed safety. J. Nutr. Health Food Eng. 2018, 8, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Matumba, L.; Van Poucke, C.; Ediage, E.N.; Jacobs, B.; De Saeger, S. Effectiveness of hand sorting, flotation/washing, dehulling and combinations thereof on the decontamination of mycotoxin-contaminated white maize. Food Addit. Contam. Part A 2015, 32, 960–969. [Google Scholar] [CrossRef]
- Benkerroum, N. Aflatoxins: Production, structure, health issues and incidence in Southeast Asian and Sub-Saharan African Countries. Int. J. Environ. Res. Public Health 2020, 17, 1215. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Chen, L.; Zhu, Y.; Huang, Y.; Hu, X.; Wu, Q.; Nüssler, A.K.; Liu, L.; Yang, W. Current major degradation methods for aflatoxins: A review. Trends Food Sci. Tech. 2018, 80, 155–166. [Google Scholar] [CrossRef]
- De Mello, F.R.; Scussel, V.M. Characteristics of in-shell Brazil nuts and their relationship to aflatoxin contamination: Criteria for sorting. J. Agric. Food Chem. 2007, 55, 9305–9310. [Google Scholar] [CrossRef]
- Shi, H.; Ileleji, K.; Stroshine, R.L.; Keener, K.; Jensen, J.L. Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food Bioproc. Tech. 2017, 10, 1042–1052. [Google Scholar] [CrossRef]
- Fandohan, P.; Zoumenou, D.; Hounhouigan, D.J.; Marasas, W.F.O.; Wingfield, M.J.; Hell, K. Fate of aflatoxins and fumonisins during the processing of maize into food products in Benin. Int. J. Food Microbiol. 2005, 98, 249–259. [Google Scholar] [CrossRef]
- Mutungi, C.; Lamuka, P.; Arimi, S.; Gathumbi, J.; Onyango, C. The fate of aflatoxins during processing of maize into muthokoi – A traditional Kenyan food. Food Control 2008, 19, 714–721. [Google Scholar] [CrossRef]
- Pearson, T.C.; Wicklow, D.T.; Pasikatan, M.C. Reduction of aflatoxin and fumonisin contamination in yellow corn by high-speed dual-wavelength sorting. Cher. Chem. 2004, 81, 490–498. [Google Scholar] [CrossRef] [Green Version]
- Stasiewicz, M.J.; OFalade, T.D.; Mutuma, M.; Mutiga, S.K.; Harvey, J.J.W.; Fox, G.; Pearson, T.C.; Muthomi, J.W.; Nelson, R.J. Multi-spectral kernel sorting to reduce aflatoxins and fumonisins in Kenyan maize. Food Control 2017, 78, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Siwela, A.H.; Siwela, M.; Matindi, G.; Dube, S.; Nziramasanga, N. Decontamination of aflatoxin-contaminated maize by dehulling. J. Sci. Food Agric. 2005, 85, 2535–2538. [Google Scholar] [CrossRef]
- Castells, M.; Ramos, A.J.; Sanchis, V.; Marín, S. Distribution of total aflatoxins in milled fractions of hulled rice. J. Agric. Food Chem. 2007, 55, 2760–2764. [Google Scholar] [CrossRef] [PubMed]
- Azam, K.; Akhtar, S.; Gong, Y.Y.; Routledge, M.N.; Ismail, A.; Oliveira, C.A.F.; Iqbal, S.Z.; Ali, H. Evaluation of the impact of activated carbon-based filtration system on the concentration of aflatoxins and selected heavy metals in roasted coffee. Food Control 2021, 121, 107583. [Google Scholar] [CrossRef]
- Hwang, J.-H.; Lee, K.-G. Reduction of aflatoxin B1 contamination in wheat by various cooking treatments. Food Chem. 2006, 98, 71–75. [Google Scholar] [CrossRef]
- Lee, J.; Her, J.-Y.; Lee, K.-G. Reduction of aflatoxins (B1, B2, G1, and G2) in soybean-based model systems. Food Chem. 2015, 189, 45–51. [Google Scholar] [CrossRef]
- Arzandeh, S.; Jinap, S. Effect of initial aflatoxin concentration, heating time and roasting temperature on aflatoxin reduction in contaminated peanuts and process optimisation using response surface modelling. Int. J. Food Sci. Technol. 2011, 46, 485–491. [Google Scholar] [CrossRef]
- Rastegar, H.; Shoeibi, S.; Yazdanpanah, H.; Amirahmadi, M.; Khaneghah, A.M.; Campagnollo, F.B.; de Souza Sant’Ana, A. Removal of aflatoxin B1 by roasting with lemon juice and/or citric acid in contaminated pistachio nuts. Food Control 2017, 71, 279–284. [Google Scholar] [CrossRef]
- Mtega, M.M.; Mgina, C.A.; Kaale, E.; Sempombe, S.; Kilulya, K.F. Occurrence of Aflatoxins in Maize and Maize Products from Selected Locations of Tanzania and the Effects of Cooking Preparation Processes on Toxin Levels. Tanz. J. Sci. 2020, 46, 407–418. [Google Scholar]
- Sani, A.M.; Azizi, E.G.; Salehi, E.A.; Rahimi, K. Reduction of aflatoxin in rice by different cooking methods. Toxicol. Ind. Health 2014, 30, 546–550. [Google Scholar] [CrossRef]
- Park, J.W.; Kim, Y.B. Effect of pressure cooking on aflatoxin B1 in rice. J. Agric. Food Chem. 2006, 54, 2431–2435. [Google Scholar] [CrossRef]
- Massarolo, K.C.; Mendoza, J.R.; Verma, T.; Kupski, L.; Badiale-Furlong, E.; Bianchini, A. 2021: Fate of aflatoxins in cornmeal during single-screw extrusion: A bioaccessibility approach. LWT 2021, 138, 110734. [Google Scholar] [CrossRef]
- Xie, H.; Li, Z.; Wang, Z.; Mao, G.; Zhang, H.; Wang, F.; Chen, H.; Yang, S.; Tsang, Y.F.; Lam, S.S.; et al. Instant Catapult Steam Explosion: A rapid technique for detoxification of aflatoxin-contaminated biomass for sustainable utilization as animal feed. J. Clean. Prod. 2020, 255, 120010. [Google Scholar] [CrossRef]
- Pallarés, N.; Berrada, H.; Tolosa, J.; Ferrer, E. Effect of high hydrostatic pressure (HPP) and pulsed electric field (PEF) technologies on reduction of aflatoxins in fruit juices. LWT 2021, 142, 111000. [Google Scholar] [CrossRef]
- Hassan, F.F.; Hussein, H.Z. Detection of aflatoxin M1 in pasteurized canned milk and using of UV radiation for detoxification. Int. J. Adv. Chem. Eng. Biol. Sci. 2017, 4, 130–133. [Google Scholar] [CrossRef]
- Ferreira, C.D.; Lang, G.H.; da Silva Lindemann, I.; da Silva Timm, N.; Hoffmann, J.F.; Ziegler, V.; de Oliveira, M. Postharvest UV-C irradiation for fungal control and reduction of mycotoxins in brown, black, and red rice during long-term storage. Food Chem. 2021, 339, 127810. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.H.; Singh, R. Effect of rotating peanuts on aflatoxin detoxification by ultraviolet C light and irradiation uniformity evaluated by AgCl-based dosimeter. Food Control 2021, 120, 107533. [Google Scholar] [CrossRef]
- Herzallah, S.; Alshawabkeh, K.; Fataftah, A.A.L. Aflatoxin decontamination of artificially contaminated feeds by sunlight, γ-radiation, and microwave heating. J. Appl. Poult. Res. 2008, 17, 515–521. [Google Scholar] [CrossRef]
- Mohamed, N.F.; El-Dine, R.S.S.; Kot, M.A.M.; Saber, A. Assessing the possible effect of gamma irradiation on the reduction of aflatoxin B1, and on the moisture content in some cereal grains. Am. J. Biomed. Sci. 2015, 7, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Markov, K.; Mihaljević, B.; Domijan, A.-M.; Pleadin, J.; Delaš, F.; Frece, J. Inactivation of aflatoxigenic fungi and the reduction of aflatoxin B1 in vitro and in situ using gamma irradiation. Food Control 2015, 54, 79–85. [Google Scholar] [CrossRef]
- Serra, M.S.; Pulles, M.B.; Mayanquer, F.T.; Vallejo, M.C.; Rosero, M.I.; Ortega, J.M.; Naranjo, L.N. Evaluation of the use of gamma radiation for reduction of aflatoxin B1 in corn (Zea mays) used in the production of feed for broiler chickens. J. Agric. Chem. Environ. 2018, 7, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.S.; Xie, Q.F.; Che, L.M. Effects of gamma irradiation on aflatoxin B 1 levels in soybean and on the properties of soybean and soybean oil. Appl. Radiat. Isot. 2018, 139, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Patil, H.; Shah, N.G.; Hajare, S.N.; Gautam, S.; Kumar, G. Combination of microwave and gamma irradiation for reduction of aflatoxin B1 and microbiological contamination in peanuts (Arachis hypogaea L.). World Mycotoxin J. 2019, 12, 269–280. [Google Scholar] [CrossRef]
- Wang, B.; Mahoney, N.E.; Pan, Z.; Khir, R.; Wu, B.; Ma, H.; Zhao, L. Effectiveness of pulsed light treatment for degradation and detoxification of aflatoxin B1 and B2 in rough rice and rice bran. Food Control 2016, 59, 461–467. [Google Scholar] [CrossRef]
- Vijayalakshmi, S.; Nadanasabhapathi, S.; Kumar, R.; Kumar, S.; Reddy, R. Effect of combination processing on aflatoxin reduction: Process optimization by response surface methodology. J. Food Process. Preserv. 2017, 41, e13230. [Google Scholar] [CrossRef]
- Vijayalakshmi, S.; Nadanasabhapathi, S.; Kumar, R.; Kumar, S.S. Effect of pH and pulsed electric field process parameters on the aflatoxin reduction in model system using response surface methodology. J. Food Sci. Technol. 2018, 55, 868–878. [Google Scholar] [CrossRef]
- Bulut, N.; Atmaca, B.; Evrendilek, G.A.; Uzuner, S. Potential of pulsed electric field to control Aspergillus parasiticus, aflatoxin and mutagenicity levels: Sesame seed quality. J. Food Saf. 2020, 40, e12855. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Bai, F.; Bian, K. Effects of pulsed ultrasound at 20 kHz on the sonochemical degradation of mycotoxins. World Mycotoxin J. 2019, 12, 357–366. [Google Scholar] [CrossRef]
- Basaran, P.; Basaran-Akgul, N.; Oksuz, L. Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiol. 2008, 25, 626–632. [Google Scholar] [CrossRef]
- Sen, Y.; Onal-Ulusoy, B.; Mutlu, M. Detoxification of hazelnuts by different cold plasmas and gamma irradiation treatments. Innov. Food Sci. Emerg. Technol. 2019, 54, 252–259. [Google Scholar] [CrossRef]
- Iqdiam, B.M.; Abuagela, M.O.; Boz, Z.; Marshall, S.M.; Goodrich-Schneider, R.; Sims, C.A.; Marshall, M.R.; MacIntosh, A.J.; Welt, B.A. Effects of atmospheric pressure plasma jet treatment on aflatoxin level, physiochemical quality, and sensory attributes of peanuts. J. Food Process. Preserv. 2020, 44, e14305. [Google Scholar] [CrossRef]
- Puligundla, P.; Lee, T.; Mok, C. 2020: Effect of corona discharge plasma jet treatment on the degradation of aflatoxin B1 on glass slides and in spiked food commodities. LWT 2020, 124, 108333. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Shi, H.; Keener, K.M. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci. Technol. 2018, 71, 73–83. [Google Scholar] [CrossRef]
- Yang, Q. Decontamination of aflatoxin B1. In Aflatoxin B1 Occurrence, Detection and Toxicological Effects; Long, X.D., Ed.; InTechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Ryu, D.; Bianchini, A.; Bullerman, L.B. Effects of processing on mycotoxins. Stewart Postharvest Rev. 2008, 6, 1–7. [Google Scholar]
- Wgiorgis, G.A.; Yildiz, F. Review on high-pressure processing of foods. Cogent Food Agric. 2019, 5, 1568725. [Google Scholar] [CrossRef]
- Pasikatan, M.C.; Dowell, F.E. Sorting systems based on optical methods for detecting and removing seeds infested internally by insects or fungi: A review. Appl. Spectrosc. Rev. 2001, 36, 399–416. [Google Scholar] [CrossRef]
- Tao, F.; Yao, H.; Hruska, Z.; Burger, L.W.; Rajasekaran, K.; Bhatnagar, D. Recent development of optical methods in rapid and non-destructive detection of aflatoxin and fungal contamination in agricultural products. Trends Analyt. Chem. 2018, 100, 65–81. [Google Scholar] [CrossRef]
- Eisa, N.A.; Ali, F.M.; El-Habbaa, G.M.; Abdel-Reheem, S.K.; Abou-El-Ella, M.F. Pulsed electric field technology for checking aflatoxin production in cultures and corn grains. Egypt. J. Phytopathol. 2020, 31, 75–86. [Google Scholar]
- Vanga, S.K.; Wang, J.; Orsat, V.; Raghavan, V. Effect of pulsed ultrasound, a green food processing technique, on the secondary structure and in-vitro digestibility of almond milk protein. Food Res. Int. 2020, 137, 109523. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.V. Aflatoxins: Properties, toxicity, and detoxification. Nutr. Food Sci. Int. J. 2018, 6, 1–4. [Google Scholar] [CrossRef]
- Patras, A.; Julakanti, S.; Yannam, S.; Bansode, R.R.; Burns, M.; Vergne, M.J. Effect of UV irradiation on aflatoxin reduction: A cytotoxicity evaluation study using human hepatoma cell line. Mycotoxin Res. 2017, 33, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Moreau, M.; Lescure, G.; Agoulon, A.; Svinareff, P.; Orange, N.; Feuilloley, M. Application of the pulsed light technology to mycotoxin degradation and inactivation. J. Appl. Toxicol. 2013, 33, 357–363. [Google Scholar] [CrossRef]
- Woldemariam, H.W.; Kießling, M.; Emire, S.A.; Teshome, P.G.; Töpfl, S.; Aganovic, K. Influence of electron beam treatment on naturally contaminated red pepper (Capsicum annuum L.) powder: Kinetics of microbial inactivation and physicochemical quality changes. Innov. Food Sci. Emerg. Technol. 2021, 67, 102588. [Google Scholar] [CrossRef]
- Misra, N.N.; Yadav, B.; Roopesh, M.S.; Jo, C. Cold plasma for effective fungal and mycotoxin control in foods: Mechanisms, inactivation effects, and applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 106–120. [Google Scholar] [CrossRef] [Green Version]
- Hojnik, N.; Cvelbar, U.; Tavcar-Kalcher, G.; Walsh, J.L.; Križaj, I. Mycotoxin decontamination of food: Cold atmospheric pressure plasma versus “classic” decontamination. Toxins 2017, 9, 151. [Google Scholar] [CrossRef]
- Hojnik, N.; Modic, M.; Walsh, J.L.; Zigon, D.; Javornik, U.; Plavec, J.; Zegura, B.; Filipic, M.; Cvelbar, U. 2021: Unravelling the pathways of air plasma induced aflatoxin B1 degradation and detoxification. J. Hazard. Mater. 2021, 403, 123593. [Google Scholar] [CrossRef] [PubMed]
- Escobedo-González, R.; Méndez-Albores, A.; Villarreal-Barajas, T.; Aceves-Hernández, J.; Miranda-Ruvalcaba, R.; Nicolás-Vázquez, I. A theoretical study of 8-chloro-9-hydroxy-aflatoxin B1, the conversion product of aflatoxin B1 by neutral electrolyzed water. Toxins 2016, 8, 225. [Google Scholar] [CrossRef] [Green Version]
- Awuah, S.K.; Kumah, P.; Tandoh, P.K. Effect of packaging materials on insect mortality and aflatoxin contamination in stored maize under different conditions. J. Exp. Agric. Int. 2019, 29, 1–8. [Google Scholar] [CrossRef]
- Nwaubani, S.I.; Otitodun, G.O.; Ajao, S.K.; Opit, G.P.; Ala, A.A.; Omobowale, M.O.; Ogwumike, J.C.; Abel, G.I.; Ogundare, M.O.; Braimah, J.A.; et al. Assessing efficacies of insect pest management methods for stored bagged maize preservation in storehouses located in Nigerian markets. J. Stored Prod. Res. 2020, 86, 101566. [Google Scholar] [CrossRef]
- Masters, W.A.; Guevara, A.G. Willingness to Pay for Hermetic Grain Storage Bags in MALAWI. 2018. Available online: https://ageconsearch.umn.edu/record/27729510.22004/ag.econ.277295 (accessed on 15 January 2021).
- Rushing, B.; Selim, M.I. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol. 2019, 124, 81–100. [Google Scholar] [CrossRef]
- Jubeen, F.; Sher, F.; Hazafa, A.; Zafar, F.; Ameen, M.; Rasheed, T. Evaluation and detoxification of aflatoxins in ground and tree nuts using food grade organic acids. Biocatal. Agric. Biotechnol. 2020, 29. [Google Scholar] [CrossRef]
- Méndez-Albores, A.; Del Río-García, J.C.; Moreno-Martínez, E. Decontamination of aflatoxin duckling feed with aqueous citric acid treatment. Anim. Feed Sci. Technol. 2007, 135, 249–262. [Google Scholar] [CrossRef]
- Méndez-Albores, A.; Martínez-Bustos, F.; Gaytán-Martínez, M.; Moreno-Martínez, E. Effect of lactic and citric acid on the stability of B-aflatoxins in extrusion cooked sorghum. Lett. Appl. Microbiol. 2008, 47, 1–7. [Google Scholar] [CrossRef]
- Čolović, R.; Puvača, N.; Cheli, F.; Avantaggiato, G.; Greco, D.; Đuragić, O.; Kos, J.; Pinotti, L. Decontamination of mycotoxin-contaminated feedstuffs and compound feed. Toxins 2019, 11, 617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altug, T.; Yousef, A.E.; Marth, E.H. Degradation of aflatoxin B1 in dried figs by sodium bisulfite with or without heat, ultraviolet energy or hydrogen peroxide. J. Food Prot. 1990, 53, 581–582. [Google Scholar] [CrossRef]
- Shi, H.; Stroshine, R.; Ileleji, K. Determination of the relative effectiveness of four food additives in degrading aflatoxin in distillers wet grains and condensed distillers solubles. J. Food Prot. 2017, 80, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Jalili, M.; Jinap, S. Role of sodium hydrosulphite and pressure on the reduction of aflatoxins and ochratoxin A in black pepper. Food Control 2012, 27, 11–15. [Google Scholar] [CrossRef]
- Jalili, M.; Jinap, S.; Son, R. The effect of chemical treatment on reduction of aflatoxins and ochratoxin A in black and white pepper during washing. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2011, 28, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Phillips, T.D. Dietary clay in the chemoprevention of aflatoxin-induced disease. Toxicol. Sci. 1999, 52, 118–126. [Google Scholar] [CrossRef]
- Loi, M.; Renaud, J.B.; Rosini, E.; Pollegioni, L.; Vignali, E.; Haidukowski, M.; Sumarah, M.W.; Logrieco, A.F.; Mul, G. 2020: Enzymatic transformation of aflatoxin B1 by Rh_DypB peroxidase and characterization of the reaction products. Chemosphere 2020, 250, 126296. [Google Scholar] [CrossRef]
- McKenzie, K.S.; Kubena, L.F.; Denvir, A.J.; Rogers, T.D.; Hitchens, G.D.; Bailey, R.H.; Harvey, R.B.; Buckley, S.A.; Phillips, T.D. Aflatoxicosis in turkey poults is prevented by treatment of naturally contaminated corn with ozone generated by electrolysis. Poult. Sci. 1998, 77, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Wang, R.; Wang, L.; Li, Y.; Bian, Y.; Chen, Z. Effect of ozone treatment on aflatoxin B1 and safety evaluation of ozonized corn. Food Control 2014, 37, 171–176. [Google Scholar] [CrossRef]
- Savi, G.D.; Piacentini, K.C.; Scussel, V.M. Ozone treatment efficiency in Aspergillus and Penicillium growth inhibition and mycotoxin degradation of stored wheat grains (Triticum aestivum L.). J. Food Process. Preserv. 2015, 39, 940–948. [Google Scholar] [CrossRef]
- Isikber, A.A.; Athanassiou, C.G. The use of ozone gas for the control of insects and micro-organisms in stored products. J. Stored Prod. Res. 2015, 64, 139–145. [Google Scholar] [CrossRef]
- Torlak, E.; Akata, I.; Erci, F.; Uncu, A.T. Use of gaseous ozone to reduce aflatoxin B1 and microorganisms in poultry feed. J. Stored Prod. Res. 2016, 68, 44–49. [Google Scholar] [CrossRef]
- Tiwari, B.W.; Brennan, C.S.; Curran, T.; Gallagher, E.; Cullen, P.J.; O’ Donnell, C.P. Application of ozone in grain processing. J. Cereal Sci. 2010, 51, 248–255. [Google Scholar] [CrossRef]
- Zhu, F. Effect of ozone treatment on the quality of grain products. Food Chem. 2018, 264, 358–366. [Google Scholar] [CrossRef]
- Ismail, A.; Gonçalves, B.L.; de Neeff, D.V.; Ponzilacqua, B.; Coppa, C.F.S.C.; Hintzsche, H.; Sajid, M.; Cruz, A.G.; Corassin, C.H.; Oliveira, C.F.A. Aflatoxin in foodstuffs: Occurrence and recent advances in decontamination. Food Res. Int. 2018, 113, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Park, D.L.; Price, W.D. Reduction of aflatoxin hazards using ammoniation. Rev. Environ. Contam. Toxicol. 2001, 171, 139–175. [Google Scholar] [CrossRef]
- Yu, Y.; Shi, J.; Xie, B.; He, Y.; Qin, Y.; Wang, D.; Shi, H.; Ke, Y.; Sun, Q. Detoxification of aflatoxin B1 in corn by chlorine dioxide gas. Food Chem. 2020, 328, 127121. [Google Scholar] [CrossRef]
- Zahoor, M.; Khan, F.A. 2012: Aflatoxin B1 detoxification by magnetic carbon nanostructures prepared from maize straw. Desalin. Water Treat. 2016, 57, 11893–11903. [Google Scholar] [CrossRef]
- Ji, J.; Xie, W. 2020: Detoxification of Aflatoxin B1 by magnetic graphene composite adsorbents from contaminated oils. J. Hazard. Mater. 2020, 381, 120915. [Google Scholar] [CrossRef] [PubMed]
- Ji , J.; Xie, W. 2021: Removal of aflatoxin B1 from contaminated peanut oils using magnetic attapulgite. Food Chem. 2021, 339, 128072. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zhao, R.; Xie, Y.; Liu, Y. Reduction of aflatoxin B1 by magnetic graphene oxide/TiO2 nanocomposite and its effect on quality of corn oil. Food Chem. 2021, 343, 128521. [Google Scholar] [CrossRef]
- Udomkun, P.; Njukwe, E. Nanotechnological methods for aflatoxin control. In Nanomycotoxicology: Treating Mycotoxins in the Nano Way; Rai, M., Abd-Elsalam, K., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 385–396. [Google Scholar] [CrossRef]
- Kujur, A.; Kumar, A.; Yadav, A.; Prakash, B. Antifungal and aflatoxin B1 inhibitory efficacy of nanoencapsulated Pelargonium graveolens L. essential oil and its mode of action. LWT 2020, 130, 109619. [Google Scholar] [CrossRef]
- Vila-Donat, P.; Marín, S.; Sanchis, V.; Ramos, A.J. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food Chem. Toxicol. 2018, 114, 246–259. [Google Scholar] [CrossRef] [Green Version]
- Wielogórska, E.; MacDonald, S.; Elliott, C.T. A review of the efficacy of mycotoxin detoxifying agents used in feed in light of changing global environment and legislation. World Mycotoxin J. 2016, 9, 419–433. [Google Scholar] [CrossRef]
- Holanda, D.M.; Kim, S.W. Mycotoxin occurrence, toxicity, and detoxifying agents in pig production with an emphasis on deoxynivalenol. Toxins 2021, 13, 171. [Google Scholar] [CrossRef]
- Hamza, Z.; El-Hashash, M.; Aly, S.; Hathout, A.; Soto, E.; Sabry, B.; Ostroff, G. Preparation and characterization of yeast cell wall beta-glucan encapsulated humic acid nanoparticles as an enhanced aflatoxin B1 binder. Carbohydr. Polym. 2019, 203, 185–192. [Google Scholar] [CrossRef]
- Nazarizadeh, H.; Pourreza, J. Evaluation of three mycotoxin binders to prevent the adverse effects of aflatoxin B1 in growing broilers. J. Appl. Anim. Res. 2019, 47, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Solís-Cruz, B.; Hernández-Patlán, D.; Beyssac, E.; Latorre, J.D.; Hernandez-Velasco, X.; Merino-Guzman, R.; Tellez, G.; López-Arellano, R. Evaluation of chitosan and cellulosic polymers as binding adsorbent materials to prevent aflatoxin B1, fumonisin B1, ochratoxin, trichothecene, deoxynivalenol, and zearalenone mycotoxicoses through an in vitro gastrointestinal model for poultry. Polymers 2017, 9, 529. [Google Scholar] [CrossRef]
- Chefchaou, H.; Mzabi, A.; Tanghort, M.; Moussa, H.; Chami, N.; Chami, F.; Remmal, A. A comparative study of different mycotoxin adsorbents against DON, T2 toxin, aflatoxins and fumonisins production in maize flour. Livest. Res. Rural. Dev. 2019, 31, 35. [Google Scholar]
- Pappas, A.C.; Tsiplakou, E.; Tsitsigiannis, D.I.; Georgiadou, M.; Iliadi, M.K.; Sotirakoglou, K.; Zervas, G. The role of bentonite binders in single or concomitant mycotoxin contamination of chicken diets. Br. Poult. Sci. 2016, 57, 551–558. [Google Scholar] [CrossRef]
- Murugesan, G.R.; Ledoux, D.R.; Naehrer, K.; Berthiller, F.; Applegate, T.J.; Grenier, B.; Phillips, T.D.; Schatzmayr, G. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poult. Sci. 2015, 94, 1298–1315. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, A.M.; Zamora-Sanabria, R.; Granados-Chinchilla, F. A Focus on aflatoxins in feedstuffs: Levels of contamination, prevalence, control strategies, and impacts on animal health. In Aflatoxin—Control, Analysis, Detection and Health Risks; Abdulra’Uf, L., Ed.; Intech Open: London, UK, 2017; pp. 116–152. [Google Scholar] [CrossRef] [Green Version]
- Duarte, D.E.; Winston, M.H., Jr.; Brinton, A.H.; Lon, W.W. Aflatoxin Binders I: In vitro binding assay for aflatoxin B1 by several potential sequestering agents. Mycopathologia 2003, 156, 223–226. [Google Scholar] [CrossRef]
- Bocarov-Stancic, A.; Adamovic, M.; Salma, N.; Bodroža-Solarov, M.; Vučković, J.; Pantić, V. In vitro efficacy of mycotoxins adsorption by natural mineral adsorbents. Biotech. Anim. Husbandry. 2011, 27, 1241–1251. [Google Scholar] [CrossRef]
- Li, J.; Suo, D.; Su, X. Binding capacity for aflatoxin B1 by different adsorbents. Agric. Sci. China 2010, 9, 449–456. [Google Scholar] [CrossRef]
- Sulzburger, S.A.; Melnichenko, S.; Cardoso, F.C. Effects of clay after an aflatoxin challenge on aflatoxin clearance, milk production, and metabolism of Holstein cows. J. Dairy Sci. 2017, 100, 1856–1869. [Google Scholar] [CrossRef]
- Gallo, A.; Masoero, F. In vitro models to evaluate the capacity of different sequestering agents to adsorb aflatoxins. Ital. J. Anim. Sci. 2010, 9, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Jaynes, W.; Zartman, R.; Hudnall, W. Aflatoxin B1 adsorption by clays from water and corn meal. Appl. Clay Sci. 2007, 36, 197–205. [Google Scholar] [CrossRef]
- Naeimipour, F.; Aghajani, J.; Kojuri, S.A.; Ayoubi, S. Useful approaches for reducing aflatoxin M1 content in milk and dairy products. Biomed. Biotechnol. Res. J. 2018, 2, 94–99. [Google Scholar] [CrossRef]
- Kissell, L.; Davidson, S.; Hopkins, B.A.; Smith, G.W.; Whitlow, L.W. Effect of experimental feed additives on aflatoxin in milk of dairy cows fed aflatoxin-contaminated diets. J. Anim. Physiol. Anim. Nutr. (Berl.) 2013, 97, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahhab, M.A.; Kholif, A.M. Mycotoxins in animal feeds and prevention strategies: A review. Asian J. Anim. Sci. 2008, 2, 7–25. [Google Scholar] [CrossRef] [Green Version]
- Zahoor, M.; Khan, F.A. Adsorption of aflatoxin B1 on magnetic carbon nanocomposites prepared from bagasse. Arab. J. Chem. 2018, 11, 729–738. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.B.; Yan, H.L.; Cao, S.C.; Hu, Y.D.; Zhang, H.F. Effects of absorbents on growth performance, blood profiles and liver gene expression in broilers fed diets naturally contaminated with aflatoxin. Asian-Australas. J. Anim. Sci. 2020, 33, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Di Gregorio, M.C.; de Neeff, D.V.; Jager, A.V.; Corassin, C.H.; de Pinho Carão, A.C.; de Albuquerque, R.; de Azevedo, A.C.; Oliveira, C.A.F. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Rev. 2014, 33, 125–135. [Google Scholar] [CrossRef]
- Baglieri, A.; Reyneri, A.; Gennari, M.; Negre, M. Organically modified clays as binders of fumonisins in feedstocks. J. Environ. Sci. Health B 2013, 48, 776–783. [Google Scholar] [CrossRef]
- Aoudia, N.; Callu, P.; Grosjean, F.; Larondelle, Y. Effectiveness of mycotoxin sequestration activity of micronized wheat fibres on distribution of ochratoxin A in plasma, liver and kidney of piglets fed a naturally contaminated diet. Food Chem. Toxicol. 2009, 47, 1485–1489. [Google Scholar] [CrossRef] [PubMed]
- Avantaggiato, G.; Solfrizzo, M.; Visconti, A. Recent advances on the use of adsorbent materials for detoxification of Fusarium mycotoxins. Food Addit. Contam. 2005, 22, 379–388. [Google Scholar] [CrossRef]
- Arak, H.; Mohammad, A.K.T.; Mehdi, H.; Shaban, R. The first in vivo application of synthetic polymers based on methacrylic acid as an aflatoxin sorbent in an animal model. Mycotoxin Res. 2019, 35, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Bodbodak, S.; Hesari, J.; Peighambardoust, S.H.; Mahkam, M. Selective decontamination of aflatoxin M1 in milk by molecularly imprinted polymer coated on the surface of stainless steel plate. Int. J. Dairy Technol. 2018, 71, 868–878. [Google Scholar] [CrossRef]
- Nowosad, K.; Sujka, M.; Pankiewicz, U.; Kowalski, R. The application of PEF technology in food processing and human nutrition. J. Food Sci. Technol. 2021, 58, 397–411. [Google Scholar] [CrossRef]
- Considine, K.M.; Kelly, A.L.; Fitzgerald, G.F.; Hill, C.; Sleator, R.D. High-pressure processing—Effects on microbial food safety and food quality. FEMS Microbiol. Lett. 2008, 281, 1–9. [Google Scholar] [CrossRef]
- Pedron, T.; Segura, F.R.; Paniz, F.P.; de Moura Souza, F.; dos Santos, M.C.; de Magalhães Júnior, A.M.; Batista, B.L. Mitigation of arsenic in rice grains by polishing and washing: Evidencing the benefit and the cost. J. Cereal Sci. 2019, 87, 52–58. [Google Scholar] [CrossRef]
- Román-Ochoa, Y.; Choque Delgado, G.T.; Tejada, T.R.; Yucra, H.R.; Durand, A.E.; Hamaker, B.R. Heavy metal contamination and health risk assessment in grains and grain-based processed food in Arequipa region of Peru. Chemosphere 2021, 274, 129792. [Google Scholar] [CrossRef] [PubMed]
- Den Besten, H.M.W.; Wells-Bennik, M.H.J.; Zwietering, M.H. Natural Diversity in Heat Resistance of Bacteria and Bacterial Spores: Impact on Food Safety and Quality. Annu. Rev. Food Sci. Technol. 2018, 9, 383–410. [Google Scholar] [CrossRef]
- Banga, J.R.; Balsa-Canto, E.; Moles, C.G.; Alonso, A.A. Improving food processing using modern optimization methods. Trends Food Sci. Technol. 2003, 14, 131–144. [Google Scholar] [CrossRef]
- Sevda, S.; Garlapati, V.K.; Singh, A. Role of mathematical and statistical modelling in food engineering. In Mathematical and Statistical Applications in Food Engineering; Sevda, S., Singh, A., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Lonsane, B.K.; Saucedo-Castaneda, G.; Raimbault, M.; Roussos, S.; Viniegra-Gonzalez, G.; Ghildyal, N.P.; Ramakrishna, M.; Krishnaiah, M.M. Scale-Up Strategies for Solid State Fermentation Systems. Process Biochem. 1992, 27, 259–273. [Google Scholar] [CrossRef]
- Akoto, E.Y.; Klu, Y.A.K.; Lamptey, M.; Asibuo, J.Y.; Davis, J.; Phillips, R.; Jordan, D.; Rhoads, J.; Hoistington, D.; Chen, J. Use of peanut meal as a model matrix to study the effect of composting on aflatoxin decontamination. World Mycotoxin J. 2017, 10, 131–141. [Google Scholar] [CrossRef]
- Kramer, B.; Wunderlich, J.; Muranyi, P. Recent findings in pulsed light disinfection. J. Appl. Microbiol. 2017, 122, 830–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mir, S.A.; Dar, B.N.; Shah, M.A.; Sofi, S.A.; Hamdani, A.M.; Oliveira, C.A.F.; Moosavi, M.H.; Khanegha, A.M.; Sant’Ana, A.S. Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food Chem. Toxicol. 2021, 148, 111976. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, J.L.; Pareyt, B.; Gerits, L.R.; Delcour, J.A. Effect of wheat grain steaming and washing on lipase activity in whole grain flour. Cereal Chem. 2014, 91, 321–326. [Google Scholar] [CrossRef]
- Reungoat, J.; Macova, M.; Escher, B.I.; Carswell, S.; Mueller, J.F.; Kellera, J. Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. Water Res. 2010, 44, 625–637. [Google Scholar] [CrossRef]
- Lima, F.; Vieira, K.; Santos, M.; de Souza, P.M. Effects of radiation technologies on food nutritional quality. In Descriptive Food Science; Diaz, A.V., Garcia-Gimeno, R.M., Eds.; IntechOpen: London, UK. [CrossRef] [Green Version]
- Ahmed, M.M.; Abdalla, I.G.; Salih, A.M.; Hassan, A.B. Effect of gamma radiation on storability and functional properties of sorghum grains (Sorghum bicolor L.). Food Sci. Nutr. 2018, 6, 1933–1939. [Google Scholar] [CrossRef] [PubMed]
- Picart-Palmade, L.; Cunault, C.; Chevalier-Lucia, D.; Belleville, M.P.; Marchesseau, S. Potentialities and Limits of Some Non-Thermal Technologies to Improve Sustainability of Food Processing. Front. Nutr. 2019, 5. [Google Scholar] [CrossRef]
- Ojha, K.S.; Tiwari, B.K.; O’Donnell, C.P. Chapter Six—Effect of Ultrasound Technology on Food and Nutritional Quality. Adv. Food Nutr. Res. 2018, 84, 207–240. [Google Scholar] [CrossRef]
- Gallo, M.; Ferrara, L.; Naviglio, D. Application of ultrasound in food science and technology: A perspective. Foods 2018, 7, 164. [Google Scholar] [CrossRef] [Green Version]
- Dasan, B.G.; Yildirim, T.; Boyaci, I.H. Surface decontamination of eggshells by using non-thermal atmospheric plasma. Int. J. Food Microbiol. Int. J. Food Microbiol. 2018, 266, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Misra, N.N.; Jo, C. Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci. Technol. 2017, 64, 74–86. [Google Scholar] [CrossRef]
- Charoux, C.M.G.; Free, L.; Hinds, L.M.; Vijayaraghavan, R.K.; Daniels, S.; O’Donnell, C.P.; Tiwari, B.K. Effect of non-thermal plasma technology on microbial inactivation and total phenolic content of model liquid food and black pepper grains. LWT 2019, 108716. [Google Scholar] [CrossRef]
- Thirumdas, R.; Saragapani, C.; Ajinkya, M.T.; Deshmukh, R.R.; Annapure, U.S. Influence of low pressure cold plasma on cooking and textural properties of brown rice. Innov. Food Sci. Emerg. Technol. 2016, 37, 53–60. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Zhao, Z.; Liu, W.; Chen, Y.; Yang, G.; Xia, X.; Cao, Y. The application of slightly acidic electrolyzed water in pea sprout production to ensure food safety, biological and nutritional quality of the sprout. Food Control 2019, 104, 83–90. [Google Scholar] [CrossRef]
- Udomkun, P.; Wiredu, A.N.; Nagle, M.; Müller, J.; Vanlauwe, B.; Bandyopadhyay, R. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application—A review. Food Control 2017, 76, 127–138. [Google Scholar] [CrossRef]
- Zhang, Y.; He, S.; Simpson, B.K. Enzymes in Food Bioprocessing—Novel food enzymes, applications, and related techniques. Curr. Opin. Food Sci. 2018, 19, S2214799317300838. [Google Scholar] [CrossRef]
Level 1: Prevention | Level 2: Decontamination | Level 3: Detoxification |
---|---|---|
Biological control in field Good agricultural practice Good storage practice Good manufacturing practice | Removal Sorting Classification Absorption Filtration | Radiation and light treatments Thermal and pressure treatments Nonthermal plasma treatments Chemical agents |
Principle | Method | Commodity | Reducing Efficiency |
---|---|---|---|
Removal | Sorting by size and density | Brazil nuts [31], Corn [32] | Only small nuts contained AFB1 98% |
Washing | Corn [28,33,34] | 90–97% | |
Color classification using UV fluorescent and multispectral analysis | Corn [35,36], | 81–83% | |
Removal of external grain parts (dehulling, polishing) | Corn [28,33,34,37], Rice [38] | <92% 88–92% | |
Carbon filtration | AFs spiked liquid coffee samples [39] | 74–79% | |
Reduction, Destruction | Thermal treatment | Wheat [40], Soybean [41], Peanuts [42], Pistachio [43] | 50–90% 42–81% 57–80% 93% |
High moisture thermal treatment (roasting, extrusion, cooking, High-pressure cooking, instant catapult steam explosion) | Maize [44], Rice [45,46], Corn starch [47], Corn stalk [48] | 51–85% 25–88% 75–87% 100% | |
High hydrostatic pressure | Spiked grape juice [49], water [49] | 14–29% 61–87% | |
UV light, near-infrared radiation | Milk [50], Rice [51], Peanuts [52] | 65–100% <99% 14–17% | |
Gamma irradiation | Mixed poultry feed [53], Corn [54,55,56], Wheat [54], Rice [54], Soybean [57], Peanuts [58] | 43% 15–90% 22–69% 27–65% 62–76% 20–43% | |
Pulsed light treatment | Rice kernel and bran [59] | 39–90% | |
Pulsed electric field | Potato dextrose agar: [60,61], Sesame seed [62], Spiked grape juice [49] | 79–96% 86.9–98.7% 24–82% | |
Ultrasound | Corn flour [63] | 11% | |
Cold or nonthermal plasma treatment | Corn [32], Hazelnuts [64,65], Peanuts [66], Spiked food samples [67] | 62–82 21–50% 23–38% 45–56% | |
Electrolyzed water | Peanuts [68,69], Olive oil [69] | 85–90% <99% |
Method | Commodity | Reducing Efficiency |
---|---|---|
Use of organic and inorganic acids (e.g., citric, lactic, tartaric, propionic, and hydrochloric acids) | Grains, mixed feed, black pepper, distillers’ grains, and condensed distillers’ solubles [87,88,89,90,92,94,95] | <92% |
Ammoniation | Milk [96] | 79–90% |
Redox-active enzymes | AFs spiked liquid coffee samples [97] | <96% |
Ozone treatment | Corn [98,99] Wheat [100] Pistachios [101] Poultry feed [102] | 79–95% 85–95% 13% 86% |
Name of Binder | Concentration | Binding Efficiency | References |
---|---|---|---|
Activated carbon | 1% suspension | >99.5% | [124] |
Calcium bentonite | 1% suspension | 98.5% | [124] |
Diatomite | 50 mg/2 µg/mL AFB1 | 90–95% | [125] |
Esterified glucomannan | 1% suspension | 96.6% | [124] |
Hydrated sodium calcium aluminosilicate (HSCAS) | 100 mg/2 µg/mL AFB1 | 98–100% | [126] |
Vermiculite, nontronite, and montmorillonite | 2% of feed | 41% | [127] |
Zeolite | 82 mg/0.821 µg/mL AFB1 | 80% | [128] |
Method | Principle | Method | Effect |
---|---|---|---|
Washing | Changes in enzyme activity [152] | ||
Removal of external grain parts (dehulling, polishing | Losses in nutritional value (e.g., fibers, minerals vitamins) [143] Removal of contaminants (pesticide residues, toxic elements, microbes, other toxins) [143,144] | ||
Carbon filtration | Reduction in organic micropollutants [153] | ||
Reduction, destruction | Thermal treatment, high moisture thermal treatment (roasting, extrusion, cooking, high-pressure cooking, instant catapult steam explosion) | Losses in nutritional value (e.g., proteins, bioactive compounds) [91] Inactivation of microorganisms [145] | |
High hydrostatic pressure | Inactivation of microorganisms and enzymes [142] Retention of organoleptic and nutritional properties [49,142] | ||
UV light, near-infrared radiation | Reduction in allergenicity of food proteins [154] | ||
Gamma irradiation | Reduce the allergenicity of food proteins, denature and agglomerate the proteins [155] Lipid and vitamin oxidization [151] | ||
Pulsed electric field | Inactivation of enzymes and microorganisms, safe for humans, because no dangerous chemical reactions have been detected [141] Low effect on nutritional and organoleptic properties [49] Structure of macromolecules (e.g., starch, protein) changes [156] | ||
Ultrasound | Reduce the allergenicity of food proteins [154] High-frequency low-power ultrasound has minimal physical and/or chemical effects on food constituents [157,158] | ||
Cold or nonthermal plasma treatment | Inactivation of microorganisms [159,160] No effect on nutritional properties [161] Improve technological properties [162] | ||
Electrolyzed water | Reduce the natural microbiota, no effect on nutritional properties [163] | ||
Chemical | Liquid chemical agents (acids) | Changes in nutrient status and sensory properties, food safety concerns [10,164] | |
Enzymes | Enzyme specific effects on quality, reduction in safety risks [165] | ||
Gaseous chemicals (ammonia, ozone) | Reduction in organic micropollutants [153] No hazard on treated materials [163] Oxidization of lipids and phenolic compounds [151] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sipos, P.; Peles, F.; Brassó, D.L.; Béri, B.; Pusztahelyi, T.; Pócsi, I.; Győri, Z. Physical and Chemical Methods for Reduction in Aflatoxin Content of Feed and Food. Toxins 2021, 13, 204. https://doi.org/10.3390/toxins13030204
Sipos P, Peles F, Brassó DL, Béri B, Pusztahelyi T, Pócsi I, Győri Z. Physical and Chemical Methods for Reduction in Aflatoxin Content of Feed and Food. Toxins. 2021; 13(3):204. https://doi.org/10.3390/toxins13030204
Chicago/Turabian StyleSipos, Péter, Ferenc Peles, Dóra Lili Brassó, Béla Béri, Tünde Pusztahelyi, István Pócsi, and Zoltán Győri. 2021. "Physical and Chemical Methods for Reduction in Aflatoxin Content of Feed and Food" Toxins 13, no. 3: 204. https://doi.org/10.3390/toxins13030204
APA StyleSipos, P., Peles, F., Brassó, D. L., Béri, B., Pusztahelyi, T., Pócsi, I., & Győri, Z. (2021). Physical and Chemical Methods for Reduction in Aflatoxin Content of Feed and Food. Toxins, 13(3), 204. https://doi.org/10.3390/toxins13030204