Realized Heritability, Risk Assessment, and Inheritance Pattern in Earias vittella (Lepidoptera: Noctuidae) Resistant to Dipel (Bacillus thuringiensis Kurstaki)
Abstract
:1. Introduction
2. Results
2.1. Dipel Resistance Selection
2.2. Realized Heritability (h2) Estimation
2.3. Dipel Resistance Projected Rate
2.4. Sex Linkage and Degree of Dominance of Dipel Resistance
2.5. Effective Dominance (DML) of Dipel Resistance in E. vittella
2.6. Number of Genes Involved in Dipel Resistance
3. Discussion
4. Materials and Methods
4.1. E. vittella Collection and Rearing Protocol
4.2. Insecticides
4.3. Selection with Dipel
4.4. Genetic Crosses
4.5. Bioassays
4.6. Degree of Dominance (DLC) and Effective Dominance (DML)
4.7. Number of Resistant Genes Involved in Dipel Resistance
4.8. Realized Heritability (h2)
4.9. Data Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahman, M.M.; Uddin, M.M.; Shahjahan, M. Management of okra shoot and fruit borer, Earias vittella (Fabricius) using chemical and botanical insecticides for different okra varieties. Int. Res. J. Appl. Life Sci. 2013, 2, 1–8. [Google Scholar]
- Jan, M.T.; Abbas, N.; Shad, S.A.; Saleem, M.A. Resistance to organophosphate, pyrethroid and biorational insecticides in populations of spotted bollworm, Earias vittella (Fabricius) (Lepidoptera: Noctuidae), in Pakistan. Crop Prot. 2015, 78, 247–252. [Google Scholar] [CrossRef]
- Syed, T.S.; Abro, G.H.; Khanum, A.; Sattar, M. Effect of Host Plants on the Biology of Earias vittella (Fab) (Noctuidae: Lepidoptera) Under Laboratory Conditions. Pak. J. Zool. 2011, 43, 127–132. [Google Scholar]
- Hasan, W. Evaluation of some insecticides against spotted bollworm, Earias vittella (Fab.) on different okra cultivars. Trends Biosci. 2010, 3, 41–44. [Google Scholar]
- Jan, M.T.; Abbas, N.; Shad, S.A.; Rafiq, M.; Saleem, M.A. Baseline susceptibility and resistance stability of Earias vittella Fabricius (Lepidoptera: Noctuidae) to cypermethrin, deltamethrin and Spinosad. Phytoparasitica 2015, 43, 577–582. [Google Scholar] [CrossRef]
- Umrao, R.S.; Singh, S.; Kumar, J.; Singh, D.; Singh, D. Efficacy of novel insecticides against shoot and fruit borer (Earias vittella Fabr.) in okra crop. HortFlora Res. Spectr. 2013, 2, 251–254. [Google Scholar]
- Ahmad, M.; Arif, M.I. Resistance of Pakistani field populations of spotted bollworm Earias vittella (Lepidoptera: Noctuidae) to pyrethroid, organophosphorus and new chemical insecticides. Pest Manag. Sci. 2009, 65, 433–439. [Google Scholar] [CrossRef]
- Kranthi, K.; Jadhav, D.; Kranthi, S.; Wanjari, R.; Ali, S.; Russell, D. Insecticide resistance in five major insect pests of cotton in India. Crop Prot. 2002, 21, 449–460. [Google Scholar] [CrossRef]
- Gassmann, A.J.; Carrière, Y.; Tabashnik, B.E. Fitness costs of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 2009, 54, 147–163. [Google Scholar] [CrossRef]
- Alvi, A.H.K.; Sayyed, A.H.; Naeem, M.; Ali, M. Field evolved resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) to Bacillus thuringiensis toxin Cry1Ac in Pakistan. PLoS ONE 2012, 7, e47309. [Google Scholar] [CrossRef]
- Nazli, H.; Sarker, R.; Meilke, K.D.; Orden, D. Economic Performance of Bt Cotton Varieties in Pakistan; Agricultural & Applied Economics Association: Milwaukee, WI, USA, 2010. [Google Scholar]
- Shuli, F.; Jarwar, A.H.; Wang, X.; Wang, L.; Ma, Q. Overview of the cotton in Pakistan and its future prospects. Pak. J. Agric. Res. 2018, 31, 396. [Google Scholar] [CrossRef]
- Ferré, J.; Van Rie, J. Biochemistry and Genetics of Insect Resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 2002, 47, 501–533. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Hu, R.; Rozelle, S.; Pray, C. Insect-resistant GM rice in farmers’ fields: Assessing productivity and health effects in China. Science 2005, 308, 688–690. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, K.F.; Spencer, T.A.; Crespo, A.L.B.; Siegfried, B.D. Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) field populations to the Cry1F Bacillus thuringiensis insecticidal protein. Fla. Entomol. 2016, 99, 629–633. [Google Scholar] [CrossRef]
- Kranthi, K.R.; Kranthi, S.; Ali, S.; Banerjee, S.K. Resistance to’CrylAc δ-endotoxin of Bacillus thuringiensis’ in a laboratory selected strain of Helicoverpa armigera (Hubner). Curr. Sci. 2000, 78, 1001–1004. [Google Scholar]
- Zhang, H.; Yin, W.; Zhao, J.; Jin, L.; Yang, Y.; Wu, S.; Tabashnik, B.E.; Wu, Y. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China. PLoS ONE 2011, 6, e22874. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Liu, Y.-B.; Dennehy, T.J.; Sims, M.A.; Sisterson, M.S.; Biggs, R.W.; Carrière, Y. Inheritance of resistance to Bt toxin Cry1Ac in a field-derived strain of pink bollworm (Lepidoptera: Gelechiidae). J. Econ. Entomol. 2002, 95, 1018–1026. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Van Rensburg, J.B.J.; Carrière, Y. Field-evolved insect resistance to Bt crops: Definition, theory, and data. J. Econ. Entomol. 2009, 102, 2011–2025. [Google Scholar] [CrossRef]
- Sayyed, A.H.; Gatsi, R.; Ibiza-Palacios, M.S.; Escriche, B.; Wright, D.J.; Crickmore, N. Common, but complex, mode of resistance of Plutella xylostella to Bacillus thuringiensis toxins Cry1Ab and Cry1Ac. Appl. Environ. Microbiol. 2005, 71, 6863–6869. [Google Scholar] [CrossRef]
- Janmaat, A.F.; Wang, P.; Kain, W.; Zhao, J.-Z.; Myers, J. Inheritance of resistance to Bacillus thuringiensis subsp. kurstaki in Trichoplusia ni. Appl. Environ. Microbiol. 2004, 70, 5859–5867. [Google Scholar] [CrossRef]
- Falconer, D.S. Introduction to Quantitative Genetics; Longman: London, UK, 1989. [Google Scholar]
- Brookfield, J.F.Y. Heritability. Curr. Biol. 2012, 22, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Jallow, M.F.A.; Hoy, C.W. Quantitative genetics of adult behavioral response and larval physiological tolerance to permethrin in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 2006, 99, 1388–1395. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, M.M.; Abbas, N.; Shad, S.A.; Pathan, A.K.; Razaq, M. Increased fitness and realized heritability in emamectin benzoate-resistant Chrysoperla carnea (Neuroptera: Chrysopidae). Ecotoxicology 2013, 22, 1232–1240. [Google Scholar] [CrossRef]
- Lima, J.E.; Siqueira, H.Á.A.D. Selection of Plutella xylostella (L.) (Lepidoptera: Plutellidae) to chlorfenapyr resistance: Heritability and the number of genes involved. Rev. Caatinga 2017, 30, 1067–1072. [Google Scholar] [CrossRef]
- Saeed, R.; Abbas, N. Realized heritability, inheritance and cross-resistance patterns in imidacloprid-resistant strain of Dysdercus koenigii (Fabricius) (Hemiptera: Pyrrhocoridae). Pest Manag. Sci. 2020, 76, 2645–2652. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E. Resistance risk assessment: Realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 1992, 85, 1551–1559. [Google Scholar] [CrossRef]
- Abbas, N.; Ijaz, M.; Shad, S.A.; Binyameen, M. Assessment of resistance risk to fipronil and cross resistance to other insecticides in the Musca domestica L. (Diptera: Muscidae). Vet. Parasitol. 2016, 223, 71–76. [Google Scholar] [CrossRef]
- Firkoi, M.J.; Hayes, J.L. Quantitative genetic tools for insecticide resistance risk assessment: Estimating the heritability of resistance. J. Econ. Entomol. 1990, 83, 647–654. [Google Scholar] [CrossRef]
- Abbas, N.; Abubakar, M.; Hassan, M.W.; Shad, S.A.; Hafez, A.M. Risk assessment of flonicamid resistance in Musca domestica (Diptera: Muscidae): Resistance monitoring, inheritance, and cross-resistance potential. J. Med. Entomol. 2021, 58, 1779–1787. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Brévault, T.; Carrière, Y. Insect resistance to Bt crops: Lessons from the first billion acres. Nat. Biotechnol. 2013, 31, 510. [Google Scholar] [CrossRef]
- Ijaz, M.; Shad, S.A. Realized heritability, cross-resistance and high risk of resistance development to spirotetramat in dusky cotton bug, Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae), an emerging threat to BT cotton in Pakistan. Phytoparasitica 2021, 50, 453–463. [Google Scholar] [CrossRef]
- Sayyed, A.H.; Ferre, J.; Wright, D.J. Mode of inheritance and stability of resistance to Bacillus thuringiensis var kurstaki in a diamondback moth (Plutella xylostella) population from Malaysia. Pest Manag. Sci. 2000, 56, 743–748. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, Y.; Wu, Q.; Wang, S.; Xie, W.; Guo, Z.; Kang, S.; Xia, J.; Zhang, Y. Lack of fitness costs and inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in a near-isogenic strain of Plutella xylostella (Lepidoptera: Plutellidae). Pest Manag. Sci. 2016, 72, 289–297. [Google Scholar] [CrossRef]
- Liu, L.; Gao, M.; Yang, S.; Liu, S.; Wu, Y.; Carrière, Y.; Yang, Y. Resistance to Bacillus thuringiensis toxin Cry2Ab and survival on single-toxin and pyramided cotton in cotton bollworm from China. Evol. Appl. 2017, 10, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Wei, Y.; Zhang, L.; Yang, Y.; Tabashnik, B.E.; Wu, Y. Dominant resistance to Bt cotton and minor cross-resistance to Bt toxin Cry2Ab in cotton bollworm from China. Evol. Appl. 2013, 6, 1222–1235. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ma, Y.; Wan, P.; Liu, K.; Xiao, Y.; Wang, J.; Cong, S.; Xu, D.; Wu, K.; Fabrick, J.A. Resistance to Bacillus thuringiensis linked with a cadherin transmembrane mutation affecting cellular trafficking in pink bollworm from China. Insect Biochem. Mol. Biol. 2018, 94, 28–35. [Google Scholar] [CrossRef]
- Fabrick, J.A.; Tabashnik, B.E. Similar genetic basis of resistance to Bt toxin Cry1Ac in boll-selected and diet-selected strains of pink bollworm. PLoS ONE 2012, 7, e35658. [Google Scholar] [CrossRef]
- Shabbir, M.Z.; Quan, Y.; Wang, Z.; Bravo, A.; Soberón, M.; He, K. Characterization of the Cry1Ah resistance in Asian corn Borer and its cross-resistance to other Bacillus thuringiensis toxins. Sci. Rep. 2018, 8, 234. [Google Scholar] [CrossRef]
- Yang, F.; González, J.C.S.; Head, G.P.; Price, P.A.; Kerns, D.L. Multiple and non-recessive resistance to Bt proteins in a Cry2Ab2-resistant population of Helicoverpa zea. Crop Prot. 2021, 145, 105650. [Google Scholar] [CrossRef]
- Fiuza, L.M. Receptores de Bacillus thuringiensis em insetos. Biotecnol. Ciência Desenvolv. 2004, 32, 84–89. [Google Scholar]
- Ahmad, S.F.; Gulzar, A.; Tariq, M.; Asad, M.J. Field evolved resistance in Earias vittella (Lepidoptera: Noctuidae) from Punjab, Pakistan against commercial formulations of Bacillus thuringiensis kurstaki. J. Econ. Entomol. 2021, 114, 2204–2213. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Xue, Y.; Xiao, G.; Xie, M.; Huang, S.; You, S.; Wyckhuys, K.A.G.; You, M. Inheritance and fitness costs of resistance to Bacillus thuringiensis toxin Cry2Ad in laboratory strains of the diamondback moth. Plutella xylostella (L.). Sci. Rep. 2019, 9, 6113. [Google Scholar] [CrossRef] [PubMed]
- Chandrasena, D.I.; Signorini, A.M.; Abratti, G.; Storer, N.P.; Olaciregui, M.L.; Alves, A.P.; Pilcher, C.D. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F δ-endotoxin in Spodoptera frugiperda populations from Argentina. Pest Manag. Sci. 2018, 74, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Gassmann, A.J.; Petzold-Maxwell, J.L.; Keweshan, R.S.; Dunbar, M.W. Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE 2011, 6, e22629. [Google Scholar] [CrossRef] [PubMed]
- Dhurua, S.; Gujar, G.T. Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag. Sci. 2011, 67, 898–903. [Google Scholar] [CrossRef]
- Li, H.; Oppert, B.; Higgins, R.A.; Huang, F.; Buschman, L.L.; Zhu, K.y. Susceptibility of Dipel-resistant and-susceptible Ostrinia nubilalis (Lepidoptera: Crambidae) to individual Bacillus thuringiensis protoxins. J. Econ. Entomol. 2005, 98, 1333–1340. [Google Scholar] [CrossRef]
- Oswald, K.J.; Wade French, B.; Nielson, C.; Bagley, M. Selection for Cry3Bb1 resistance in a genetically diverse population of nondiapausing western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 2011, 104, 1038–1044. [Google Scholar] [CrossRef]
- Lu, M.-G.; Rui, C.-H.; Zhao, J.-Z.; Jian, G.-L.; Fan, X.-L.; Gao, X.-W. Selection and heritability of resistance to Bacillus thuringiensis subsp kurstaki and transgenic cotton in Helicoverpa armigera (Lepidoptera: Noctuidae). Pest Manag. Sci. 2004, 60, 887–893. [Google Scholar] [CrossRef]
- Sayyed, A.H.; Wright, D.J. Cross-resistance and inheritance of resistance to Bacillus thuringiensis toxin Cry1Ac in diamondback moth (Plutella xylostella L) from lowland Malaysia. Pest Manag. Sci. 2001, 57, 413–421. [Google Scholar] [CrossRef]
- Alinia, F.; Cohen, M.B.; Gould, F. Heritability of tolerance to the Cry1Ab toxin of Bacillus thuringiensis in Chilo suppressalis (Lepidoptera: Crambidae). J. Econ. Entomol. 2000, 93, 14–17. [Google Scholar] [CrossRef]
- Rodrigues-Silva, N.; Canuto, A.F.; Oliveira, D.F.; Teixeira, A.F.; Santos-Amaya, O.F.; Picanço, M.C.; Pereira, E.J.G. Negative cross-resistance between structurally different Bacillus thuringiensis toxins may favor resistance management of soybean looper in transgenic Bt cultivars. Sci. Rep. 2019, 9, 199. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E.; McGaughey, W.H. Resistance risk assessment for single and multiple insecticides: Responses of Indianmeal moth (Lepidoptera: Pyralidae) to Bacillus thuringiensis. J. Econ. Entomol. 1994, 87, 834–841. [Google Scholar] [CrossRef]
- Zhang, X.; Mao, K.; Liao, X.; Jiang, T.; Li, J. Inheritance mode and realized heritability of resistance to nitenpyram in the brown planthoper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). Crop Prot. 2021, 146, 105660. [Google Scholar] [CrossRef]
- Saeed, R.; Abbas, N.; Mehmood, Z. Emamectin benzoate resistance risk assessment in Dysdercus koenigii: Cross-resistance and inheritance patterns. Crop Prot. 2020, 130, 105069. [Google Scholar] [CrossRef]
- Huang, F.; Chen, M.; Gowda, A.; Clark, T.L.; McNulty, B.C.; Yang, F.; Niu, Y. Identification, inheritance, and fitness costs of Cry2Ab2 resistance in a field-derived population of sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae). J. Invertebr. Pathol. 2015, 130, 116–123. [Google Scholar] [CrossRef]
- Roush, R.T.; McKenzie, J.A. Ecological genetics of insecticide and acaricide resistance. Annu. Rev. Entomol. 1987, 32, 361–380. [Google Scholar] [CrossRef]
- Liang, G.-M.; Wu, K.-M.; Yu, H.-K.; Li, K.-K.; Feng, X.; Guo, Y.-Y. Changes of inheritance mode and fitness in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) along with its resistance evolution to Cry1Ac toxin. J. Invertebr. Pathol. 2008, 97, 142–149. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Yang, Y.-J.; Gao, W.-Y.; Guo, J.-J.; Wu, Y.-H.; Wu, Y.-D. Introgression of a disrupted cadherin gene enables susceptible Helicoverpa armigera to obtain resistance to Bacillus thuringiensis toxin Cry1Ac. Bull. Entomol. Res. 2009, 99, 175–181. [Google Scholar] [CrossRef]
- Alves, A.P.; Spencer, T.A.; Tabashnik, B.E.; Siegfried, B.D. Inheritance of resistance to the Cry1Ab Bacillus thuringiensis toxin in Ostrinia nubilalis (Lepidoptera: Crambidae). J. Econ. Entomol. 2006, 99, 494–501. [Google Scholar] [CrossRef]
- Pereira, E.J.G.; Storer, N.P.; Siegfried, B.D. Inheritance of Cry1F resistance in laboratory-selected European corn borer and its survival on transgenic corn expressing the Cry1F toxin. Bull. Entomol. Res. 2008, 98, 621–629. [Google Scholar] [CrossRef]
- Vélez, A.M.; Spencer, T.A.; Alves, A.P.; Moellenbeck, D.; Meagher, R.L.; Chirakkal, H.; Siegfried, B.D. Inheritance of Cry1F resistance, cross-resistance and frequency of resistant alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae). Bull. Entomol. Res. 2013, 103, 700–713. [Google Scholar] [CrossRef] [PubMed]
- Acharya, B.; Head, G.P.; Price, P.A.; Huang, F. Fitness costs and inheritance of Cry2Ab2 resistance in Spodoptera frugiperda (J.E. Smith). J. Invertebr. Pathol. 2017, 149, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Head, G.P.; Price, P.A.; Huang, F. Inheritance and fitness costs of Cry1A. 105 resistance in two strains of Spodoptera frugiperda (J.E. Smith). Crop Prot. 2018, 110, 229–235. [Google Scholar] [CrossRef]
- García, M.; Ortego, F.; Hernández-Crespo, P.; Farinós, G.P.; Castañera, P. Inheritance, fitness costs, incomplete resistance and feeding preferences in a laboratory-selected MON810-resistant strain of the true armyworm Mythimna unipuncta. Pest Manag. Sci. 2015, 71, 1631–1639. [Google Scholar] [CrossRef]
- Campagne, P.; Kruger, M.; Pasquet, R.; Le Ru, B.; Van den Berg, J. Dominant inheritance of field-evolved resistance to Bt corn in Busseola fusca. PLoS ONE 2013, 8, e69675. [Google Scholar] [CrossRef]
- Abbas, N.; Khan, H.A.A.; Shad, S.A. Cross-resistance, genetics, and realized heritability of resistance to fipronil in the house fly, Musca domestica (Diptera: Muscidae): A potential vector for disease transmission. Parasitol. Res. 2014, 113, 1343–1352. [Google Scholar] [CrossRef]
- Banazeer, A.; Afzal, M.B.S.; Shad, S.A. Characterization of dimethoate resistance in Oxycarenus hyalinipennis (Costa): Resistance selection, cross-resistance to three insecticides and mode of inheritance. Phytoparasitica 2020, 48, 841–849. [Google Scholar] [CrossRef]
- Abbas, N.; Khan, H.A.A.; Shad, S.A. Resistance of the house fly Musca domestica (Diptera: Muscidae) to lambda-cyhalothrin: Mode of inheritance, realized heritability, and cross-resistance to other insecticides. Ecotoxicology 2014, 23, 791–801. [Google Scholar] [CrossRef]
- McKenzie, J.A.; Parker, A.; Yen, J. Polygenic and single gene responses to selection for resistance to diazinon in Lucilia cuprina. Genetics 1992, 130, 613–620. [Google Scholar] [CrossRef]
- Hoy, M.; Knop, N.; Joos, J. Pyrethroid resistance persists in spider mite predator. Calif. Agric. 1980, 34, 11–12. [Google Scholar] [CrossRef]
- Wazir, S.; Shad, S.A. Inheritance mode and metabolic mechanism of sulfoximine insecticide, sulfoxaflor in Oxycarenus hyalinipennis (Costa). Pest Manag. Sci. 2021, 77, 2547–2556. [Google Scholar] [CrossRef]
- Zhang, T.; He, M.; Gatehouse, A.M.R.; Wang, Z.; Edwards, M.G.; Li, Q.; He, K. Inheritance patterns, dominance and cross-resistance of Cry1Ab-and Cry1Ac-selected Ostrinia furnacalis (Guenée). Toxins 2014, 6, 2694–2707. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Wang, Z.; Bravo, A.; Soberón, M.; He, K. Genetic basis of Cry1F-resistance in a laboratory selected Asian corn borer strain and its cross-resistance to other Bacillus thuringiensis toxins. PLoS ONE 2016, 11, e0161189. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B. Differentiation of sex in pupae of spotted bollworm, Earias fabia (Stoll) (Lepidoptera: Noctuidae-Erastriinae). Curr. Sci. 1978, 47, 642. [Google Scholar]
- Bourguet, D.; Genissel, A.; Raymond, M. Insecticide resistance and dominance levels. J. Econ. Entomol. 2000, 93, 1588–1595. [Google Scholar] [CrossRef]
- Tabashnik, B.E. Determining the mode of inheritance of pesticide resistance with backcross experiments. J. Econ. Entomol. 1991, 84, 703–712. [Google Scholar] [CrossRef]
- Team, R.D.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: http://www.R-project.org/ (accessed on 1 January 2021).
- Abbott, W. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Hanson, A.A.; Menger-Anderson, J.; Silverstein, C.; Potter, B.D.; MacRae, I.V.; Hodgson, E.W.; Koch, R.L. Evidence for soybean aphid (Hemiptera: Aphididae) resistance to pyrethroid insecticides in the upper midwestern United States. J. Econ. Entomol. 2017, 110, 2235–2246. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Litchfield, J.T.; Wilcoxon, F. A simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Ther. 1949, 96, 99–113. [Google Scholar]
Population | LC50 (95% FL) (µg/mL) | Slope ± SE | N | RR |
---|---|---|---|---|
LAB-PK (G25) * | 1.32 (1.10–1.59) | 1.71 ± 0.18 | 300 | 1.00 |
Field-POP (G1) * | 41.70 (34.11–50.98) | 1.45 ± 0.14 | 400 | 31.59 |
DIPEL-SEL (G9) | 168.38 (139.77–202.85) | 1.67 ± 0.17 | 400 | 127.56 |
Generation | Insecticide | * Initial LC50 | * Final LC50 | Selection Response (R) | Percent Survival (p) | Selection Intensity (i) | Initial Slope | Final Slope | Mean Slope | Phenotypic Deviation (σp) | Selection Differential (S) | h2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
9 (G1–G9) | Dipel | 1.62 | 2.23 | 0.07 | 65.29 | 0.56 | 1.45 | 1.67 | 1.56 | 0.64 | 0.36 | 0.19 |
Population | Insecticide | LC50 (95% FL) (µg/mL) | Slope ± SE | N | RR | DLC |
---|---|---|---|---|---|---|
F1 (DIPEL-SEL♂ × LAB-PK♀) | Dipel | 85.75 (69.99–105.07) | 1.40 ± 0.14 | 400 | 64.96 | 0.86 |
F1ǂ (DIPEL-SEL♀ × LAB-PK♂) | Dipel | 127.76 (101.85–160.25) | 1.20 ± 0.12 | 400 | 96.78 | 0.94 |
BC1 (F1♀ × DIPEL-SEL♂) | Dipel | 57.34 (46.25–71.10) | 1.30 ± 0.13 | 400 | 43.43 | 0.78 |
BC2 (F1♀ × LAB-PK♂) | Dipel | 35.87 (29.67–43.36) | 1.58 ± 0.15 | 400 | 27.17 | 0.68 |
Concentration (µg/mL) | Strain | Mortality (%) | DML |
---|---|---|---|
1024 | LAB-PK | 100 | 0.00 Completely recessive |
DIPEL-SEL | 96 | ||
F1 (R♂ × S♀) | 100 | ||
512 | LAB-PK | 100 | 0.22 Incompletely recessive |
DIPEL-SEL | 82 | ||
F1 (R♂ × S♀) | 96 | ||
256 | LAB-PK | 100 | 0.65 Incompletely dominant |
DIPEL-SEL | 66 | ||
F1 (R♂ × S♀) | 78 | ||
128 | LAB-PK | 100 | 0.75 Incompletely dominant |
DIPEL-SEL | 41 | ||
F1 (R♂ × S♀) | 56 | ||
64 | LAB-PK | 100 | 0.77 Incompletely dominant |
DIPEL-SEL | 22 | ||
F1 (R♂ × S♀) | 40 | ||
32 | LAB-PK | 100 | 0.81 Incompletely dominant |
DIPEL-SEL | 6 | ||
F1 (R♂ × S♀) | 24 |
Concentration (μg/mL) | Number of Larvae | Observed Mortality (Proportion) | * Expected Mortality (Proportion) | χ2 [df = 1] | p |
---|---|---|---|---|---|
16 | 50 | 11 (0.22) | 2.50 (0.05) | 0.19 | 0.139 |
32 | 50 | 20 (0.40) | 7.50 (0.15) | 7.91 | 0.005 |
64 | 50 | 28 (0.56) | 15.50 (0.31) | 20.87 | <0.001 |
128 | 50 | 36 (0.72) | 26.00 (0.52) | 51.21 | <0.001 |
256 | 50 | 43 (0.86) | 36.00 (0.72 | 122.50 | <0.001 |
512 | 50 | 48 (0.96) | 44.50 (0.89) | 387.28 | <0.001 |
∑591.96 (df = 5) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, S.F.; Gulzar, A.; Abbas, N.; Tariq, M.; Ali, I.; Hafez, A.M. Realized Heritability, Risk Assessment, and Inheritance Pattern in Earias vittella (Lepidoptera: Noctuidae) Resistant to Dipel (Bacillus thuringiensis Kurstaki). Toxins 2022, 14, 686. https://doi.org/10.3390/toxins14100686
Ahmad SF, Gulzar A, Abbas N, Tariq M, Ali I, Hafez AM. Realized Heritability, Risk Assessment, and Inheritance Pattern in Earias vittella (Lepidoptera: Noctuidae) Resistant to Dipel (Bacillus thuringiensis Kurstaki). Toxins. 2022; 14(10):686. https://doi.org/10.3390/toxins14100686
Chicago/Turabian StyleAhmad, Syed Faisal, Asim Gulzar, Naeem Abbas, Muhammad Tariq, Intazar Ali, and Abdulwahab M. Hafez. 2022. "Realized Heritability, Risk Assessment, and Inheritance Pattern in Earias vittella (Lepidoptera: Noctuidae) Resistant to Dipel (Bacillus thuringiensis Kurstaki)" Toxins 14, no. 10: 686. https://doi.org/10.3390/toxins14100686
APA StyleAhmad, S. F., Gulzar, A., Abbas, N., Tariq, M., Ali, I., & Hafez, A. M. (2022). Realized Heritability, Risk Assessment, and Inheritance Pattern in Earias vittella (Lepidoptera: Noctuidae) Resistant to Dipel (Bacillus thuringiensis Kurstaki). Toxins, 14(10), 686. https://doi.org/10.3390/toxins14100686