Food-Derived Uremic Toxins in Chronic Kidney Disease
Abstract
:1. Introduction
2. Protein-Bound Uremic Toxins
3. Carbohydrates
3.1. Maillard Reaction Products
3.1.1. Intermediate Glycation Products
Fructoselysine
3-deoxyglucosone
Glyoxal and Methylglyoxal
3.1.2. Advanced Glycation End-Products: Pentosidine, Nε-carboxymethyllysine, and Nε-carboxyethyllysine
4. Proteins
4.1. Hippurates
4.2. Indoles
4.2.1. Uremic Toxins Generated via the Kynurenine Pathway
4.2.2. Uremic Toxins Generated via The Serotonin Pathway
4.2.3. Uremic Toxins Generated via Gut Microbial Fermentation of Tryptophan
Indoxyl Sulfate
Indole-3-acetic Acid
4.3. Phenols
4.3.1. 2-methoxyresorcinol
4.3.2. Phenol and Hydroquinone
4.3.3. P-Cresyl Sulfate and P-Cresyl Glucuronide
4.3.4. Phenylacetic Acid
4.4. Polyamines
4.5. Homocysteine
5. Fatty Acids
3-Carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF)
6. Micronutrients
Polyphenols
7. Future Recommendations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, J.; Floege, J.; Fliser, D.; Bohm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef] [PubMed]
- Falconi, C.A.; Junho, C.; Fogaca-Ruiz, F.; Vernier, I.C.S.; da Cunha, R.S.; Stinghen, A.E.M.; Carneiro-Ramos, M.S. Uremic Toxins: An Alarming Danger Concerning the Cardiovascular System. Front Physiol. 2021, 12, 686249. [Google Scholar] [CrossRef]
- Chmielewski, M.; Heimbürger, O.; Stenvinkel, P.; Lindholm, B. Uremic toxicity. In Nutritional Management of Renal Disease; Elsevier Inc.: New York, NY, USA, 2013; pp. 49–77. [Google Scholar]
- Jourde-Chiche, N.; Dou, L.; Cerini, C.; Dignat-George, F.; Vanholder, R.; Brunet, P. Progress in uremic toxin research: Protein-bound toxins—Update 2009. Proc. Semin. Dial. 2009, 22, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Mas, S.; Egido, J.; Gonzalez-Parra, E.; en representacion del Grupo de Analisis del Papel del Bisfenol, AeePeH. The importance of bisphenol A, an uraemic toxin from exogenous sources, in haemodialysis patients. Nefrologia 2017, 37, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Bosch-Panadero, E.; Mas, S.; Civantos, E.; Abaigar, P.; Camarero, V.; Ruiz-Priego, A.; Ortiz, A.; Egido, J.; González-Parra, E. Bisphenol A is an exogenous toxin that promotes mitochondrial injury and death in tubular cells. Environ. Toxicol. 2018, 33, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Vanholder, R.; Glorieux, G.; De Smet, R.; Lameire, N. New insights in uremic toxins. Kidney Int. 2003, 63, S6–S10. [Google Scholar] [CrossRef]
- Krukowski, H.; Valkenburg, S.; Madella, A.-M.; Garssen, J.; van Bergenhenegouwen, J.; Overbeek, S.A.; Huys, G.R.; Raes, J.; Glorieux, G. Gut microbiome studies in CKD: Opportunities, pitfalls and therapeutic potential. Nat. Rev. Nephrol. 2022, 19, 87–101. [Google Scholar] [CrossRef]
- Castillo-Rodriguez, E.; Fernandez-Prado, R.; Esteras, R.; Perez-Gomez, M.V.; Gracia-Iguacel, C.; Fernandez-Fernandez, B.; Kanbay, M.; Tejedor, A.; Lazaro, A.; Ruiz-Ortega, M. Impact of altered intestinal microbiota on chronic kidney disease progression. Toxins 2018, 10, 300. [Google Scholar] [CrossRef]
- Graboski, A.L.; Redinbo, M.R. Gut-Derived Protein-Bound Uremic Toxins. Toxins 2020, 12, 590. [Google Scholar] [CrossRef]
- Andrianova, N.V.; Plotnikov, E.Y.; Zorov, D.B.; Zharikova, A.A.; Demchenko, E.A.; Popkov, V.A. Gut Microbiota as a Source of Uremic Toxins. Int. J. Mol. Sci. 2022, 23, 483. [Google Scholar]
- Wolf, A.R.; Wesener, D.A.; Cheng, J.; Houston-Ludlam, A.N.; Beller, Z.W.; Hibberd, M.C.; Giannone, R.J.; Peters, S.L.; Hettich, R.L.; Leyn, S.A. Bioremediation of a common product of food processing by a human gut bacterium. Cell Host Microbe 2019, 26, 463–477.e468. [Google Scholar] [CrossRef] [PubMed]
- Bent, G.-A.; Maragh, P.; Dasgupta, T. Acrylamide in Caribbean foods–residual levels and their relation to reducing sugar and asparagine content. Food Chem. 2012, 133, 451–457. [Google Scholar] [CrossRef]
- Poe, C.F.; Edson, F.G. Determination of reducing sugars in food products--Proposed colorimetric method. Ind. Eng. Chem. Anal. Ed. 1932, 4, 300–302. [Google Scholar] [CrossRef]
- Ruiz-Matute, A.I.; Castro Vazquez, L.; Hernández-Hernández, O.; Sanz, M.L.; Martínez-Castro, I. Identification and determination of 3-deoxyglucosone and glucosone in carbohydrate-rich foods. J. Sci. Food Agric. 2015, 95, 2424–2430. [Google Scholar] [CrossRef] [PubMed]
- Nemet, I.; Varga-Defterdarović, L.; Turk, Z. Methylglyoxal in food and living organisms. Mol. Nutr. Food Res. 2006, 50, 1105–1117. [Google Scholar] [CrossRef] [PubMed]
- Humans, I. Methylglyoxal. In Coffee, Tea, Mate, Methylxanthines and Methylglyoxal; International Agency for Research on Cancer: Lyon, France, 1991. [Google Scholar]
- Hull, G.L.; Woodside, J.V.; Ames, J.M.; Cuskelly, G.J. Nε-(carboxymethyl) lysine content of foods commonly consumed in a Western style diet. Food Chem. 2012, 131, 170–174. [Google Scholar] [CrossRef]
- Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W.; Chen, X.; Pyzik, R.; Yong, A.; Striker, G.E.; Vlassara, H. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J. Am. Diet. Assoc. 2010, 110, 911–916.e912. [Google Scholar] [CrossRef]
- Li, H.; Yu, S.J. Review of pentosidine and pyrraline in food and chemical models: Formation, potential risks and determination. J. Sci. Food Agric. 2018, 98, 3225–3233. [Google Scholar] [CrossRef]
- Lees, H.J.; Swann, J.R.; Wilson, I.D.; Nicholson, J.K.; Holmes, E. Hippurate: The natural history of a mammalian–microbial cometabolite. J. Proteome Res. 2013, 12, 1527–1546. [Google Scholar] [CrossRef]
- Walsh, M.C.; Brennan, L.; Pujos-Guillot, E.; Sébédio, J.-L.; Scalbert, A.; Fagan, A.; Higgins, D.G.; Gibney, M.J. Influence of acute phytochemical intake on human urinary metabolomic profiles. Am. J. Clin. Nutr. 2007, 86, 1687–1693. [Google Scholar] [CrossRef] [PubMed]
- Bruna, G.L.; Thais, A.C.; Lgia, A.C. Food additives and their health effects: A review on preservative sodium benzoate. Afr. J. Biotechnol. 2018, 17, 306–310. [Google Scholar] [CrossRef]
- Parks, O.; Schwartz, D.; Nelson, K.; Allen, C. Evidence for kynurenine in milk. J. Dairy Sci. 1967, 50, 10–11. [Google Scholar] [CrossRef]
- Marszalek-Grabska, M.; Stachniuk, A.; Iwaniak, P.; Gawel, K.; Sumara, A.; Kocki, T.; Fornal, E.; Milart, P.; Paluszkiewicz, P.; Turski, W. Unexpected content of kynurenine in mother’s milk and infant formulas. Sci. Rep. 2022, 12, 420–427. [Google Scholar] [CrossRef]
- Yılmaz, C.; Gökmen, V. Determination of tryptophan derivatives in kynurenine pathway in fermented foods using liquid chromatography tandem mass spectrometry. Food Chem. 2018, 243, 420–427. [Google Scholar] [CrossRef]
- Food, U. Nutrient Database for Dietary Studies, 4.1. Beltsville, MD: Agricultural Research Service; Food Surveys Research Group: Beltsville, MD, USA, 2010. [Google Scholar]
- Turski, M.P.; Turska, M.; Zgrajka, W.; Kuc, D.; Turski, W.A. Presence of kynurenic acid in food and honeybee products. Amino Acids 2009, 36, 75–80. [Google Scholar] [CrossRef]
- Turski, M.P.; Kamiński, P.; Zgrajka, W.; Turska, M.; Turski, W.A. Potato-an important source of nutritional kynurenic acid. Plant Foods Hum. Nutr. 2012, 67, 17–23. [Google Scholar] [CrossRef]
- Meng, X.; Li, Y.; Li, S.; Zhou, Y.; Gan, R.-Y.; Xu, D.-P.; Li, H.-B. Dietary sources and bioactivities of melatonin. Nutrients 2017, 9, 367. [Google Scholar] [CrossRef]
- Bandurski, R.S.; Schulze, A. Concentration of indole-3-acetic acid and its derivatives in plants. Plant Physiol. 1977, 60, 211–213. [Google Scholar] [CrossRef]
- Wang, Y.; Hodge, R.A.; Stevens, V.L.; Hartman, T.J.; McCullough, M.L. Identification and reproducibility of urinary metabolomic biomarkers of habitual food intake in a cross-sectional analysis of the Cancer Prevention Study-3 Diet Assessment Sub-Study. Metabolites 2021, 11, 248. [Google Scholar] [CrossRef]
- McDonald, T.; Holland, N.; Skibola, C.; Duramad, P.; Smith, M. Hypothesis: Phenol and hydroquinone derived mainly from diet and gastrointestinal flora activity are causal factors in leukemia. Leukemia 2001, 15, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Górska-Warsewicz, H.; Laskowski, W.; Kulykovets, O.; Kudlińska-Chylak, A.; Czeczotko, M.; Rejman, K. Food products as sources of protein and amino acids—The case of Poland. Nutrients 2018, 10, 1977. [Google Scholar] [CrossRef]
- Kim, Y.; Cho, J.-Y.; Kuk, J.-H.; Moon, J.-H.; Cho, J.-I.; Kim, Y.-C.; Park, K.-H. Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, Chungkook-Jang. Curr. Microbiol. 2004, 48, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Olthof, M.R.; Hollman, P.C.; Buijsman, M.N.; Van Amelsvoort, J.M.; Katan, M.B. Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. J. Nutr. 2003, 133, 1806–1814. [Google Scholar] [CrossRef] [PubMed]
- Mansoorian, B.; Combet, E.; Alkhaldy, A.; Garcia, A.L.; Edwards, C.A. Impact of fermentable fibres on the colonic microbiota metabolism of dietary polyphenols rutin and quercetin. Int. J. Environ. Res. Public Health 2019, 16, 292. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Esparza, N.C.; Latorre-Moratalla, M.L.; Comas-Basté, O.; Toro-Funes, N.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Polyamines in food. Front. Nutr. 2019, 6, 108. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Davis, T.A.; Kim, S.W.; Li, P.; Marc Rhoads, J.; Carey Satterfield, M.; Smith, S.B.; Spencer, T.E.; Yin, Y. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2009, 37, 153–168. [Google Scholar] [CrossRef]
- Hou, Y.; He, W.; Hu, S.; Wu, G. Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 2019, 51, 1153–1165. [Google Scholar] [CrossRef]
- Li, K.; Sinclair, A.J.; Zhao, F.; Li, D. Uncommon fatty acids and cardiometabolic health. Nutrients 2018, 10, 1559. [Google Scholar] [CrossRef]
- Nimni, M.E.; Han, B.; Cordoba, F. Are we getting enough sulfur in our diet? Nutr. Metab. 2007, 4, 24. [Google Scholar] [CrossRef]
- Brouns, F. Saccharide characteristics and their potential health effects in perspective. Front. Nutr. 2020, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.B.; Ames, J.M.; Smith, R.D.; Baynes, J.W.; Metz, T.O. A Perspective on the Maillard Reaction and the Analysis of Protein Glycation by Mass Spectrometry: Probing the Pathogenesis of Chronic Disease. J. Proteome Res. 2009, 8, 754–769. [Google Scholar] [CrossRef] [PubMed]
- Uribarri, J.; Peppa, M.; Cai, W.; Goldberg, T.; Lu, M.; Baliga, S.; Vassalotti, J.A.; Vlassara, H. Dietary glycotoxins correlate with circulating advanced glycation end product levels in renal failure patients. Am. J. Kidney Dis. 2003, 42, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Odani, H.; Shinzato, T.; Matsumoto, Y.; Takai, I.; Nakai, S.; Miwa, M.; Iwayama, N.; Amano, I.; Maeda, K. First evidence for accumulation of protein-bound and protein-free pyrraline in human uremic plasma by mass spectrometry. Biochem. Biophys. Res. Commun. 1996, 224, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Miyata, T.; Ueda, Y.; Shinzato, T.; Iida, Y.; Tanaka, S.; Kurokawa, K.; De Strihou, C.V.Y.; Maeda, K. Accumulation of albumin-linked and free-form pentosidine in the circulation of uremic patients with end-stage renal failure: Renal implications in the pathophysiology of pentosidine. J. Am. Soc. Nephrol. 1996, 7, 1198–1206. [Google Scholar] [CrossRef]
- Šebeková, K.; Hofmann, T.; Boor, P.; ŠEBEKOVÁ JR, K.; Ulicná, O.g.; Erbersdobler, H.F.; Baynes, J.W.; Thorpe, S.R.; Heidland, A.; Somoza, V. Renal effects of oral Maillard reaction product load in the form of bread crusts in healthy and subtotally nephrectomized rats. Ann. New York Acad. Sci. 2005, 1043, 482–491. [Google Scholar] [CrossRef]
- Uribarri, J.; Peppa, M.; Cai, W.; Goldberg, T.; Lu, M.; He, C.; Vlassara, H. Restriction of dietary glycotoxins reduces excessive advanced glycation end products in renal failure patients. J. Am. Soc. Nephrol. 2003, 14, 728–731. [Google Scholar] [CrossRef]
- Shangari, N.; Depeint, F.; Furrer, R.; Bruce, W.R.; Popovic, M.; Zheng, F.; O’Brien, P.J. A thermolyzed diet increases oxidative stress, plasma α-aldehydes and colonic inflammation in the rat. Chem.-Biol. Interact. 2007, 169, 100–109. [Google Scholar] [CrossRef]
- Thornalley, P.J. Glycation free adduct accumulation in renal disease: The new AGE. Pediatr. Nephrol. 2005, 20, 1515–1522. [Google Scholar] [CrossRef]
- Finot, P.; Magnenat, E. Metabolic transit of early and advanced Maillard products. Prog. Food Nutr. Sci. 1981, 5, 193–207. [Google Scholar]
- Erbersdobler, H.; Purwing, U.; Bossen, M.; Trautwein, E. Urinary excretion of fructoselysine in human volunteers and diabetic patients. Amino-Carbonyl React. Food Biol. Systems. Dev. Food Sci. 1986, 13, 503–508. [Google Scholar]
- Erbersdobler, H.; Gross, A.; Klusman, U.; Schlecht, K. Absorption and Metabolism of Heated Proteincarbohydrate Mixtures in Humans. In Absorption and Utilization of Amino Acids; CRC Press: Boca Raton, FL, USA, 2018; pp. 91–102. [Google Scholar]
- Lee, K.; Erbersdobler, H. Balance experiments on human volunteers with ε-fructoselysine (FL) and lysinoalanine (LAL). In Maillard Reactions in Chemistry, Food and Health; Elsevier: Amsterdam, The Netherlands, 2005; pp. 358–363. [Google Scholar]
- Erbersdobler, H.; Gunsser, I.; Weber, G. Abbau von Fruktoselysin durch die Darmflora. Zent. Für Veterinärmed. Reihe A 1970, 17, 573–575. [Google Scholar] [CrossRef]
- Niwa, T. 3-Deoxyglucosone: Metabolism, analysis, biological activity, and clinical implication. J. Chromatogr. B Biomed. Sci. Appl. 1999, 731, 23–36. [Google Scholar] [CrossRef]
- Rückriemen, J.; Hellwig, A.; Schultes, S.; Hellwig, M.; Hahne, F.; Henle, T. Studies on the influence of dietary 3-deoxyglucosone on the urinary excretion of 2-keto-3-deoxygluconic acid. Eur. Food Res. Technol. 2018, 244, 1389–1396. [Google Scholar] [CrossRef]
- Nakayama, K.; Nakayama, M.; Terawaki, H.; Murata, Y.; Sato, T.; Kohno, M.; Ito, S. Carbonated soft drinks and carbonyl stress burden. J. Toxicol. Sci. 2009, 34, 699–702. [Google Scholar] [CrossRef]
- Beisswenger, P.J.; Howell, S.K.; O’Dell, R.M.; Wood, M.E.; Touchette, A.D.; Szwergold, B.S. α-Dicarbonyls increase in the postprandial period and reflect the degree of hyperglycemia. Diabetes Care 2001, 24, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Degen, J.; Vogel, M.; Richter, D.; Hellwig, M.; Henle, T. Metabolic transit of dietary methylglyoxal. J. Agric. Food Chem. 2013, 61, 10253–10260. [Google Scholar] [CrossRef] [PubMed]
- Förster, A.; Kühne, Y.; Henle, T.O. Studies on absorption and elimination of dietary maillard reaction products. Ann. New York Acad. Sci. 2005, 1043, 474–481. [Google Scholar] [CrossRef]
- Bergmann, R.; Helling, R.; Heichert, C.; Scheunemann, M.; Mäding, P.; Wittrisch, H.; Johannsen, B.; Henle, T. Radio fluorination and positron emission tomography (PET) as a new approach to study the in vivo distribution and elimination of the advanced glycation endproducts Nϵ-carboxymethyllysine (CML) and Nϵ-carboxyethyllysine (CEL). Food/Nahrung 2001, 45, 182–188. [Google Scholar] [CrossRef]
- Tessier, F.J.; Niquet-Léridon, C.; Jacolot, P.; Jouquand, C.; Genin, M.; Schmidt, A.M.; Grossin, N.; Boulanger, E. Quantitative assessment of organ distribution of dietary protein-bound 13C-labeled Nɛ-carboxymethyllysine after a chronic oral exposure in mice. Mol. Nutr. Food Res. 2016, 60, 2446–2456. [Google Scholar] [CrossRef]
- Somoza, V.; Wenzel, E.; Weiß, C.; Clawin-Rädecker, I.; Grübel, N.; Erbersdobler, H.F. Dose-dependent utilisation of casein-linked lysinoalanine, N (epsilon)-fructoselysine and N (epsilon)-carboxymethyllysine in rats. Mol. Nutr. Food Res. 2006, 50, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Roncero-Ramos, I.; Delgado-Andrade, C.; Tessier, F.J.; Niquet-Léridon, C.; Strauch, C.; Monnier, V.M.; Navarro, M.P. Metabolic transit of Nε-carboxymethyl-lysine after consumption of AGEs from bread crust. Food Funct. 2013, 4, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Alamir, I.; Niquet-Leridon, C.; Jacolot, P.; Rodriguez, C.; Orosco, M.; Anton, P.M.; Tessier, F.J. Digestibility of extruded proteins and metabolic transit of N ε-carboxymethyllysine in rats. Amino Acids 2013, 44, 1441–1449. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, Z.; Wang, Y.; Hu, S.; Liu, N. Biodistribution and elimination study of fluorine-18 labeled Nε-carboxymethyl-lysine following intragastric and intravenous administration. PLoS ONE 2013, 8, e57897. [Google Scholar] [CrossRef] [PubMed]
- Šebeková, K.; Saavedra, G.; Zumpe, C.; Somoza, V.; Klenovicsová, K.; Birlouez-Aragon, I. Plasma Concentration and Urinary Excretion of Nɛ-(Carboxymethyl) lysine in Breast Milk–and Formula-fed Infants. Ann. New York Acad. Sci. 2008, 1126, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Ajandouz, E.H.; Puigserver, A. Nonenzymatic browning reaction of essential amino acids: Effect of pH on caramelization and Maillard reaction kinetics. J. Agric. Food Chem. 1999, 47, 1786–1793. [Google Scholar] [CrossRef]
- Rowe, V.; Fales, H.; Pisano, J.; Andersen, A.; Guroff, G. Urinary metabolites of phenylalanine in the preweanling rat treated with p-chlorophenylalanine and phenylalanine. Biochem. Med. 1975, 12, 123–136. [Google Scholar] [CrossRef]
- Ogawa, M.; Suzuki, Y.; Endo, Y.; Kawamoto, T.; Kayama, F. Influence of coffee intake on urinary hippuric acid concentration. Ind. Health 2010, 49, 195–202. [Google Scholar] [CrossRef]
- Pero, R.W.; Lund, H.; Leanderson, T. Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2009, 23, 335–346. [Google Scholar] [CrossRef]
- Brewster, D.; Jones, R.S.; Parke, D.V. The metabolism of shikimate in the rat. Biochem. J. 1978, 170, 257–264. [Google Scholar] [CrossRef]
- Rechner, A.R.; Spencer, J.P.; Kuhnle, G.; Hahn, U.; Rice-Evans, C.A. Novel biomarkers of the metabolism of caffeic acid derivatives in vivo. Free. Radic. Biol. Med. 2001, 30, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.; Copeland, E.; Bloxsidge, J.; Mitchell, L. Hippuric acid as a major excretion product associated with black tea consumption. Xenobiotica 2000, 30, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Akira, K.; Farrant, R.D.; Lindon, J.; Caddick, S.; Nicholls, A.; Nicholson, J. High-field deuterium nuclear magnetic resonance spectroscopic monitoring of the pharmacokinetics of selectively deuterated benzoic acid in man. Anal. Biochem. 1994, 221, 297–302. [Google Scholar] [CrossRef]
- Pallister, T.; Jackson, M.A.; Martin, T.C.; Zierer, J.; Jennings, A.; Mohney, R.P.; MacGregor, A.; Steves, C.J.; Cassidy, A.; Spector, T.D. Hippurate as a metabolomic marker of gut microbiome diversity: Modulation by diet and relationship to metabolic syndrome. Sci. Rep. 2017, 7, 13670. [Google Scholar] [CrossRef]
- Yuan, L.; Muli, S.; Huybrechts, I.; Nöthlings, U.; Ahrens, W.; Scalbert, A.; Floegel, A. Assessment of Fruit and Vegetables Intake with Biomarkers in Children and Adolescents and Their Level of Validation: A Systematic Review. Metabolites 2022, 12, 126. [Google Scholar] [CrossRef]
- Tariq, A.; Chen, J.; Yu, B.; Boerwinkle, E.; Coresh, J.; Grams, M.E.; Rebholz, C.M. Metabolomics of dietary acid load and incident chronic kidney disease. J. Ren. Nutr. 2022, 32, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Gatley, S.J.; Sherratt, H. The synthesis of hippurate from benzoate and glycine by rat liver mitochondria. Submitochondrial localization and kinetics. Biochem. J. 1977, 166, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Beliveau, G.P.; Brusilow, S.W. Glycine availability limits maximum hippurate synthesis in growing rats. J. Nutr. 1987, 117, 36–41. [Google Scholar] [CrossRef]
- Gregus, Z.; Fekete, T.; Varga, F.; Klaassen, C.D. Availability of glycine and coenzyme A limits glycine conjugation in vivo. Drug Metab. Dispos. 1992, 20, 234–240. [Google Scholar]
- De Vries, A.; Alexander, B.; Quamo, Y. Studies on amino acid metabolism. III. Plasma glycine concentration and hippuric acid formation following the ingestion of benzoate. J. Clin. Investig. 1948, 27, 665–668. [Google Scholar] [CrossRef]
- Wikoff, W.R.; Anfora, A.T.; Liu, J.; Schultz, P.G.; Lesley, S.A.; Peters, E.C.; Siuzdak, G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 2009, 106, 3698–3703. [Google Scholar] [CrossRef]
- Rocchetti, G.; Bhumireddy, S.R.; Giuberti, G.; Mandal, R.; Lucini, L.; Wishart, D.S. Edible nuts deliver polyphenols and their transformation products to the large intestine: An in vitro fermentation model combining targeted/untargeted metabolomics. Food Res. Int. 2019, 116, 786–794. [Google Scholar] [CrossRef]
- Aronov, P.A.; Luo, F.J.-G.; Plummer, N.S.; Quan, Z.; Holmes, S.; Hostetter, T.H.; Meyer, T.W. Colonic contribution to uremic solutes. J. Am. Soc. Nephrol. 2011, 22, 1769–1776. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Sirich, T.L.; Plummer, N.S.; Weaver, D.S.; Meyer, T.W. An enlarged profile of uremic solutes. PLoS ONE 2015, 10, e0135657. [Google Scholar] [CrossRef] [PubMed]
- Kahle, K.; Kraus, M.; Scheppach, W.; Richling, E. Colonic availability of apple polyphenols–a study in ileostomy subjects. Mol. Nutr. Food Res. 2005, 49, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- Gooder, H.; Happold, F. The tryptophanase-tryptophan reaction. The nature of the enzyme-coenzyme-substrate complex. Biochem. J. 1954, 57, 369. [Google Scholar] [CrossRef]
- Wood, W.; Gunsalus, I.; Umbeeit, W. Function of pyridoxal phosphate: Resolution and purification of the tryptophanase enzyme of Escherichia coli. J. Biol. Chem. 1947, 170, 313–321. [Google Scholar] [CrossRef]
- Moroni, F. Tryptophan metabolism and brain function: Focus on kynurenine and other indole metabolites. Eur. J. Pharmacol. 1999, 375, 87–100. [Google Scholar] [CrossRef]
- Botting, N.P. Chemistry and neurochemistry of the kynurenine pathway of tryptophan metabolism. Chem. Soc. Rev. 1995, 24, 401–412. [Google Scholar] [CrossRef]
- Sorgdrager, F.J.; Naudé, P.J.; Kema, I.P.; Nollen, E.A.; Deyn, P.P.D. Tryptophan metabolism in inflammaging: From biomarker to therapeutic target. Front. Immunol. 2019, 10, 2565. [Google Scholar] [CrossRef]
- Saito, K.; Fujigaki, S.; Heyes, M.P.; Shibata, K.; Takemura, M.; Fujii, H.; Wada, H.; Noma, A.; Seishima, M. Mechanism of increases in L-kynurenine and quinolinic acid in renal insufficiency. Am. J. Physiol.-Ren. Physiol. 2000, 279, F565–F572. [Google Scholar] [CrossRef]
- Yuwiler, A.; Brammer, G.L.; Morley, J.E.; Raleigh, M.J.; Flannery, J.W.; Geller, E. Short-term and repetitive administration of oral tryptophan in normal men: Effects on blood tryptophan, serotonin, and kynurenine concentrations. Arch. Gen. Psychiatry 1981, 38, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Huether, G.; Hajak, G.; Reimer, A.; Poeggeler, B.; Blömer, M.; Rodenbeck, A.; Rüther, E. The metabolic fate of infusedl-tryptophan in men: Possible clinical implications of the accumulation of circulating tryptophan and tryptophan metabolites. Psychopharmacology 1992, 109, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Egashira; Sato; Saito; Sanada. Dietary protein level and dietary interaction affect quinolinic acid concentration in rats. Int. J. Vitam. Nutr. Res. 2007, 77, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Satyanarayana, U.; Rao, B.N. Effect of dietary protein level on some key enzymes of the tryptophan-NAD pathway. Br. J. Nutr. 1977, 38, 39–45. [Google Scholar] [CrossRef]
- FUKUwATARI, T.; MoRIKAwA, Y.; HAYAkAwA, F.; Sugimoto, E.; Shibata, K. Influence of adenine-induced renal failure on tryptophan-niacin metabolism in rats. Biosci. Biotechnol. Biochem. 2001, 65, 2154–2161. [Google Scholar] [CrossRef]
- Fukuwatari, T.; Ohta, M.; Sugimoto, E.; Sasaki, R.; Shibata, K. Effects of dietary di (2-ethylhexyl) phthalate, a putative endocrine disrupter, on enzyme activities involved in the metabolism of tryptophan to niacin in rats. Biochim. Et Biophys. Acta (BBA)-Gen. Subj. 2004, 1672, 67–75. [Google Scholar] [CrossRef]
- Tordjman, S.; Chokron, S.; Delorme, R.; Charrier, A.; Bellissant, E.; Jaafari, N.; Fougerou, C. Melatonin: Pharmacology, functions and therapeutic benefits. Curr. Neuropharmacol. 2017, 15, 434–443. [Google Scholar] [CrossRef]
- Leklem, J.E. Quantitative aspects of tryptophan metabolism in humans and other species: A review. Am. J. Clin. Nutr. 1971, 24, 659–672. [Google Scholar] [CrossRef]
- Navarro, S.L.; Tarkhan, A.; Shojaie, A.; Randolph, T.W.; Gu, H.; Djukovic, D.; Osterbauer, K.J.; Hullar, M.A.; Kratz, M.; Neuhouser, M.L. Plasma metabolomics profiles suggest beneficial effects of a low–glycemic load dietary pattern on inflammation and energy metabolism. Am. J. Clin. Nutr. 2019, 110, 984–992. [Google Scholar] [CrossRef]
- Rodriguez-Naranjo, M.I.; Gil-Izquierdo, A.; Troncoso, A.M.; Cantos, E.; Garcia-Parrilla, M.C. Melatonin: A new bioactive compound in wine. J. Food Compos. Anal. 2011, 24, 603–608. [Google Scholar] [CrossRef]
- Maldonado, M.D.; Moreno, H.; Calvo, J.R. Melatonin present in beer contributes to increase the levels of melatonin and antioxidant capacity of the human serum. Clin. Nutr. 2009, 28, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Johns, N.P.; Johns, J.; Porasuphatana, S.; Plaimee, P.; Sae-Teaw, M. Dietary intake of melatonin from tropical fruit altered urinary excretion of 6-sulfatoxymelatonin in healthy volunteers. J. Agric. Food Chem. 2013, 61, 913–919. [Google Scholar] [CrossRef]
- Reiter, R.J.; Manchester, L.; Tan, D.-x. Melatonin in walnuts: Influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 2005, 21, 920–924. [Google Scholar] [CrossRef]
- Banoglu, E.; Jha, G.G.; King, R.S. Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate. Eur. J. Drug Metab. Pharmacokinet. 2001, 26, 235–240. [Google Scholar] [CrossRef]
- BRYAN, G.T. Quantitative studies on the urinary excretion of indoxyl sulfate (indican) in man following administration of L-tryptophan and acetyl-L-tryptophan. Am. J. Clin. Nutr. 1966, 19, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Barba, C.; Benoit, B.; Bres, E.; Chanon, S.; Vieille-Marchiset, A.; Pinteur, C.; Pesenti, S.; Glorieux, G.; Picard, C.; Fouque, D. A low aromatic amino-acid diet improves renal function and prevent kidney fibrosis in mice with chronic kidney disease. Sci. Rep. 2021, 11, 19184. [Google Scholar] [CrossRef] [PubMed]
- Lobel, L.; Cao, Y.G.; Fenn, K.; Glickman, J.N.; Garrett, W.S. Diet posttranslationally modifies the mouse gut microbial proteome to modulate renal function. Science 2020, 369, 1518–1524. [Google Scholar] [CrossRef]
- Oikawa, D.; Yamashita, S.; Takahashi, S.; Waki, T.; Kikuchi, K.; Abe, T.; Katayama, T.; Nakayama, T. (+)-Sesamin, a sesame lignan, is a potent inhibitor of gut bacterial tryptophan indole-lyase that is a key enzyme in chronic kidney disease pathogenesis. Biochem. Biophys. Res. Commun. 2022, 590, 158–162. [Google Scholar] [CrossRef]
- Poesen, R.; Mutsaers, H.A.; Windey, K.; Van Den Broek, P.H.; Verweij, V.; Augustijns, P.; Kuypers, D.; Jansen, J.; Evenepoel, P.; Verbeke, K. The influence of dietary protein intake on mammalian tryptophan and phenolic metabolites. PLoS ONE 2015, 10, e0140820. [Google Scholar] [CrossRef]
- Black, A.P.; Anjos, J.S.; Cardozo, L.; Carmo, F.L.; Dolenga, C.J.; Nakao, L.S.; de Carvalho Ferreira, D.; Rosado, A.; Eduardo, J.C.C.; Mafra, D. Does low-protein diet influence the uremic toxin serum levels from the gut microbiota in nondialysis chronic kidney disease patients? J. Ren. Nutr. 2018, 28, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Marzocco, S.; Dal Piaz, F.; Di Micco, L.; Torraca, S.; Sirico, M.L.; Tartaglia, D.; Autore, G.; Di Iorio, B. Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purif. 2013, 35, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Johnson, D.; Xu, H.; Carrero, J.; Pascoe, E.; French, C.; Campbell, K. Dietary protein-fiber ratio associates with circulating levels of indoxyl sulfate and p-cresyl sulfate in chronic kidney disease patients. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Sirich, T.L.; Plummer, N.S.; Gardner, C.D.; Hostetter, T.H.; Meyer, T.W. Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2014, 9, 1603–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, N.A.; Carmo, F.L.; Stockler-Pinto, M.B.; de Brito, J.S.; Dolenga, C.J.; Ferreira, D.C.; Nakao, L.S.; Rosado, A.; Fouque, D.; Mafra, D. Probiotic supplementation in chronic kidney disease: A double-blind, randomized, placebo-controlled trial. J. Ren. Nutr. 2018, 28, 28–36. [Google Scholar] [CrossRef]
- Lopes, R.; Theodoro, J.M.V.; da Silva, B.P.; Queiroz, V.A.V.; de Castro Moreira, M.E.; Mantovani, H.C.; Hermsdorff, H.H.; Martino, H.S.D. Synbiotic meal decreases uremic toxins in hemodialysis individuals: A placebo-controlled trial. Food Res. Int. 2019, 116, 241–248. [Google Scholar] [CrossRef]
- Hassan, M.S.; Ahmed, Y.S.; Sarhaan, E.I.; Mehanna, N.S.; Madbouli, N.N.; Abdelgawad, M.A. Effect of dietary synbiotic supplementation on serum indoxyl sulfate in prevalent hemodialysis patients. Egypt. J. Intern. Med. 2022, 34, 1. [Google Scholar] [CrossRef]
- Lydia, A.; Indra, T.A.; Rizka, A.; Abdullah, M. The effects of synbiotics on indoxyl sulphate level, constipation, and quality of life associated with constipation in chronic haemodialysis patients: A randomized controlled trial. BMC Nephrol. 2022, 23, 259. [Google Scholar] [CrossRef]
- Rossi, M.; Johnson, D.W.; Morrison, M.; Pascoe, E.M.; Coombes, J.S.; Forbes, J.M.; Szeto, C.-C.; McWhinney, B.C.; Ungerer, J.P.; Campbell, K.L. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): A randomized trial. Clin. J. Am. Soc. Nephrol. 2016, 11, 223–231. [Google Scholar] [CrossRef]
- Mirzaeian, S.; Saraf-Bank, S.; Entezari, M.H.; Hekmatdoost, A.; Feizi, A.; Atapour, A. Effects of synbiotic supplementation on microbiota-derived protein-bound uremic toxins, systemic inflammation, and biochemical parameters in patients on hemodialysis: A double-blind, placebo-controlled, randomized clinical trial. Nutrition 2020, 73, 110713. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, Y.; Wang, G.; Zheng, X.; Hao, H. Gut microbial metabolites of aromatic amino acids as signals in host–microbe interplay. Trends Endocrinol. Metab. 2020, 31, 818–834. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.; Anderson, G.; Fulk, G. Formation of indoleacetic acid by intestinal anaerobes. J. Bacteriol. 1975, 124, 573–575. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, B.; Hu, Y.; Zhao, Y. New insights into gut-bacteria-derived indole and its derivatives in intestinal and liver diseases. Front. Pharmacol. 2021, 12, 573–575. [Google Scholar] [CrossRef] [PubMed]
- Behr, C.; Kamp, H.; Fabian, E.; Krennrich, G.; Mellert, W.; Peter, E.; Strauss, V.; Walk, T.; Rietjens, I.; Van Ravenzwaay, B. Gut microbiome-related metabolic changes in plasma of antibiotic-treated rats. Arch. Toxicol. 2017, 91, 3439–3454. [Google Scholar] [CrossRef] [PubMed]
- Weissbach, H.; King, W.; Sjoerdsma, A.; Udenfriend, S. Formation of indole-3-acetic acid and trytamine in animals. A method for estimation of indole-3-acetic acid in tissues. J. Biol. Chem. 1959, 234, 81–86. [Google Scholar] [CrossRef]
- Sprince, H.; Parker, C.M.; Jameson, D.; Josephs Jr, J.A. Effect of methionine on nicotinic acid and indoleacetic acid pathways of tryptophan metabolism in vivo. Proc. Soc. Exp. Biol. Med. 1965, 119, 942–946. [Google Scholar] [CrossRef]
- El Amouri, A.; Snauwaert, E.; Foulon, A.; Vande Moortel, C.; Van Dyck, M.; Van Hoeck, K.; Godefroid, N.; Glorieux, G.; Van Biesen, W.; Vande Walle, J. Dietary fibre intake is associated with serum levels of uraemic toxins in children with chronic kidney disease. Toxins 2021, 13, 225. [Google Scholar] [CrossRef]
- Azevedo, R.; Esgalhado, M.; Kemp, J.A.; Regis, B.; Cardozo, L.F.; Nakao, L.S.; Brito, J.S.d.; Mafra, D. Resistant starch supplementation effects on plasma indole 3-acetic acid and aryl hydrocarbon receptor mRNA expression in hemodialysis patients: Randomized, double blind and controlled clinical trial. Braz. J. Nephrol. 2020, 42, 273–279. [Google Scholar] [CrossRef]
- Zhang, X.; Gan, M.; Li, J.; Li, H.; Su, M.; Tan, D.; Wang, S.; Jia, M.; Zhang, L.; Chen, G. Endogenous indole pyruvate pathway for tryptophan metabolism mediated by IL4I1. J. Agric. Food Chem. 2020, 68, 10678–10684. [Google Scholar] [CrossRef]
- Ananthi, J.; Giri, R. Screening of bioactive compounds of green tea (Camellia sinensis). World J. Pharm. Med. Res. 2018, 4, 222–226. [Google Scholar]
- Deisinger, P.J. Human exposure to naturally occurring hydroquinone. J. Toxicol. Environ. Health Part A 1996, 47, 31–46. [Google Scholar] [CrossRef]
- Smith, E.A.; Macfarlane, G.T. Enumeration of human colonic bacteria producing phenolic and indolic compounds: Effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J. Appl. Bacteriol. 1996, 81, 288–302. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Kiang, T.K. Characterization of human sulfotransferases catalyzing the formation of p-cresol sulfate and identification of mefenamic acid as a potent metabolism inhibitor and potential therapeutic agent for detoxification. Toxicol. Appl. Pharmacol. 2021, 425, 115553. [Google Scholar] [CrossRef]
- Rong, Y.; Kiang, T.K. Characterizations of human UDP-glucuronosyltransferase enzymes in the conjugation of p-cresol. Toxicol. Sci. 2020, 176, 285–296. [Google Scholar] [CrossRef]
- Fernandes, A.L.F.; Borges, N.A.; Black, A.P.; Anjos, J.d.; Silva, G.S.d.; Nakao, L.S.; Mafra, D. Dietary intake of tyrosine and phenylalanine, and p-cresyl sulfate plasma levels in non-dialyzed patients with chronic kidney disease. Braz. J. Nephrol. 2020, 42, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Salarolli, R.T.; Alvarenga, L.; Cardozo, L.F.; Teixeira, K.T.; de SG Moreira, L.; Lima, J.D.; Rodrigues, S.D.; Nakao, L.S.; Fouque, D.; Mafra, D. Can curcumin supplementation reduce plasma levels of gut-derived uremic toxins in hemodialysis patients? A pilot randomized, double-blind, controlled study. Int. Urol. Nephrol. 2021, 53, 1231–1238. [Google Scholar] [CrossRef]
- Salmean, Y.A.; Segal, M.S.; Palii, S.P.; Dahl, W.J. Fiber supplementation lowers plasma p-cresol in chronic kidney disease patients. J. Ren. Nutr. 2015, 25, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Meijers, B.K.; De Preter, V.; Verbeke, K.; Vanrenterghem, Y.; Evenepoel, P. p-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol. Dial. Transplant. 2010, 25, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Hryhorczuk, L.M.; Novak, E.A.; Gershon, S. Gut flora and urinary phenylacetic acid. Science 1984, 226, 996. [Google Scholar] [CrossRef] [PubMed]
- Seakins, J. The determination of urinary phenylacetylglutamine as phenylacetic acid.: Studies on its origin in normal subjects and children with cystic fibrosis. Clin. Chim. Acta 1971, 35, 121–131. [Google Scholar] [CrossRef]
- Jones, M.R.; Kopple, J.D.; Swendseid, M.E. Phenylalanine metabolism in uremic and normal man. Kidney Int. 1978, 14, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.A.; O’reilly, R.L.; Placatka, C.L.; Paterson, I.A.; Peter, H.Y.; Durden, D.A. Effect of dietary phenylalanine on the plasma concentrations of phenylalanine, phenylethylamine and phenylacetic acid in healthy volunteers. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 1991, 15, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, F.J.; Zamora, R. Formation of phenylacetic acid and benzaldehyde by degradation of phenylalanine in the presence of lipid hydroperoxides: New routes in the amino acid degradation pathways initiated by lipid oxidation products. Food Chem. X 2019, 2, 100037. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Molina, B.; Queipo-Ortuño, M.I.; Lambertos, A.; Tinahones, F.J.; Peñafiel, R. Dietary and gut microbiota polyamines in obesity-and age-related diseases. Front. Nutr. 2019, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Kibe, R.; Ooga, T.; Aiba, Y.; Kurihara, S.; Sawaki, E.; Koga, Y.; Benno, Y. Impact of intestinal microbiota on intestinal luminal metabolome. Sci. Rep. 2012, 2, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.-L.; Cao, G.; Chen, D.-Q.; Vaziri, N.D.; Chen, L.; Zhang, J.; Wang, M.; Guo, Y.; Zhao, Y.-Y. Microbiome–metabolomics reveals gut microbiota associated with glycine-conjugated metabolites and polyamine metabolism in chronic kidney disease. Cell. Mol. Life Sci. 2019, 76, 4961–4978. [Google Scholar] [CrossRef]
- Kalac, P.; Krausová, P. A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods. Food Chem. 2005, 90, 219–230. [Google Scholar] [CrossRef]
- Benamouzig, R.; Mahe, S.; Luengo, C.; Rautureau, J.; Tome, D. Fasting and postprandial polyamine concentrations in the human digestive lumen. Am. J. Clin. Nutr. 1997, 65, 766–770. [Google Scholar] [CrossRef] [PubMed]
- Soda, K.; Kano, Y.; Sakuragi, M.; Takao, K.; Lefor, A.; Konishi, F. Long-term oral polyamine intake increases blood polyamine concentrations. J. Nutr. Sci. Vitaminol. 2009, 55, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, C.; Stekovic, S.; Wirth, M.; Benson, G.; Royer, P.; Sigrist, S.J.; Pieber, T.; Dammbrueck, C.; Magnes, C.; Eisenberg, T. Safety and tolerability of spermidine supplementation in mice and older adults with subjective cognitive decline. Aging 2018, 10, 19. [Google Scholar] [CrossRef]
- Perna, A.F.; Ingrosso, D.; Lombardi, C.; Cesare, C.M.; Acantora, F.; Satta, E.; De Santo, N.G. Homocysteine in uremia. Am. J. Kidney Dis. 2003, 41, S123–S126. [Google Scholar] [CrossRef] [PubMed]
- Selhub, J. Homocysteine metabolism. Annu. Rev. Nutr. 1999, 19, 217–246. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Roh, H.; Kwon, Y. Causes of hyperhomocysteinemia and its pathological significance. Arch. Pharmacal Res. 2018, 41, 372–383. [Google Scholar] [CrossRef]
- Van Der Griend, R.; Haas, F.J.; Duran, M.; Biesma, D.H.; Meuwissen, O.J.; Banga, J.-D. Methionine loading test is necessary for detection of hyperhomocysteinemia. J. Lab. Clin. Med. 1998, 132, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Haulrik, N.; Toubro, S.; Dyerberg, J.; Stender, S.; Skov, A.R.; Astrup, A. Effect of protein and methionine intakes on plasma homocysteine concentrations: A 6-mo randomized controlled trial in overweight subjects. Am. J. Clin. Nutr. 2002, 76, 1202–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunder-Plassmann, G.; Födinger, M.; Buchmayer, H.; Papagiannopoulos, M.; Wojcik, J.; Kletzmayr, J.; Enzenberger, B.; Janata, O.; Winkelmayer, W.C.; Paul, G. Effect of high dose folic acid therapy on hyperhomocysteinemia in hemodialysis patients: Results of the Vienna multicenter study. J. Am. Soc. Nephrol. 2000, 11, 1106–1116. [Google Scholar] [CrossRef] [PubMed]
- Wrone, E.M.; Hornberger, J.M.; Zehnder, J.L.; McCann, L.M.; Coplon, N.S.; Fortmann, S.P. Randomized trial of folic acid for prevention of cardiovascular events in end-stage renal disease. J. Am. Soc. Nephrol. 2004, 15, 420–426. [Google Scholar] [CrossRef]
- Dierkes, J.; Domröse, U.; Ambrosch, A.; Schneede, J.; Guttormsen, A.B.; Neumann, K.H.; Luley, C. Supplementation with vitamin B12 decreases homocysteine and methylmalonic acid but also serum folate in patients with end-stage renal disease. Metabolism 1999, 48, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Tayebi, A.; Biniaz, V.; Savari, S.; Ebadi, A.; Shermeh, M.S.; Einollahi, B.; Rahimi, A. Effect of Vitamin B12 supplementation on serum homocysteine in patients undergoing hemodialysis: A randomized controlled trial. Saudi J. Kidney Dis. Transplant. Off. Publ. Saudi Cent. Organ Transplant. Saudi Arab. 2016, 27, 256–262. [Google Scholar]
- Zerbe, N.F.; Wagner, B. Use of vitamin B12 in the treatment and prevention of nitroprusside-induced cyanide toxicity. Crit. Care Med. 1993, 21, 465–467. [Google Scholar] [CrossRef] [PubMed]
- Lindner, A.; Bankson, D.D.; Stehman-Breen, C.; Mahuren, J.D.; Coburn, S.P. Vitamin B6 metabolism and homocysteine in end-stage renal disease and chronic renal insufficiency. Am. J. Kidney Dis. 2002, 39, 134–145. [Google Scholar] [CrossRef]
- Mann, J.F.; Sheridan, P.; McQueen, M.J.; Held, C.; Arnold, J.M.O.; Fodor, G.; Yusuf, S.; Lonn, E.M. Homocysteine lowering with folic acid and B vitamins in people with chronic kidney disease—Results of the renal Hope-2 study. Nephrol. Dial. Transplant. 2008, 23, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, A.J.; Xu, L.; Wang, Y. 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF): A metabolite identified after consumption of fish oil and fish. Nutr. Bull. 2018, 43, 153–157. [Google Scholar] [CrossRef]
- Vetter, W.; Wendlinger, C. Furan fatty acids–valuable minor fatty acids in food. Lipid Technol. 2013, 25, 7–10. [Google Scholar] [CrossRef]
- Wahl, H.G.; Tetschner, B.; Liebich, H.M. The effect of dietary fish oil supplementation on the concentration of 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid in human blood and urine. J. High Resolut. Chromatogr. 1992, 15, 815–818. [Google Scholar] [CrossRef]
- Zheng, J.-S.; Lin, M.; Imamura, F.; Cai, W.; Wang, L.; Feng, J.-P.; Ruan, Y.; Tang, J.; Wang, F.; Yang, H. Serum metabolomics profiles in response to n-3 fatty acids in Chinese patients with type 2 diabetes: A double-blind randomised controlled trial. Sci. Rep. 2016, 6, 29522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tovar, J.; de Mello, V.D.; Nilsson, A.; Johansson, M.; Paananen, J.; Lehtonen, M.; Hanhineva, K.; Björck, I. Reduction in cardiometabolic risk factors by a multifunctional diet is mediated via several branches of metabolism as evidenced by nontargeted metabolite profiling approach. Mol. Nutr. Food Res. 2017, 61, 1600552. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Sinclair, A.J.; Faiza, M.; Li, D.; Han, X.; Yin, H.; Wang, Y. Furan fatty acids–Beneficial or harmful to health? Prog. Lipid Res. 2017, 68, 119–137. [Google Scholar] [CrossRef]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef] [PubMed]
- Stanford, J.; Charlton, K.; Stefoska-Needham, A.; Zheng, H.; Bird, L.; Borst, A.; Fuller, A.; Lambert, K. Associations among plant-based diet quality, uremic toxins, and gut microbiota profile in adults undergoing hemodialysis therapy. J. Ren. Nutr. 2021, 31, 177–188. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J. KDOQI clinical practice guideline for nutrition in CKD: 2020 update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef] [PubMed]
- Otobe, Y.; Rhee, C.M.; Nguyen, M.; Kalantar-Zadeh, K.; Kopple, J.D. Current status of the assessment of sarcopenia, frailty, physical performance and functional status in chronic kidney disease patients. Curr. Opin. Nephrol. Hypertens. 2022, 31, 109–128. [Google Scholar] [CrossRef] [PubMed]
PBUT Class | Uremic Toxin | Dietary Origin | Metabolite Source | Foods Containing High Levels of PBUT | Foods Containing High Levels of Precursors |
---|---|---|---|---|---|
Maillard reaction products | Fructoselysine | Reducing sugars and amino acids | Food and host metabolism | Pasteurized milk, pasta, chocolate, cereals, and carbonated soft drinks [13] | Starchy foods, fruit, and milk [14,15] |
3-Deoxyglucosone | Carbohydrate-rich processed products, e.g., syrups and honey [16] | ||||
Glyoxal | Bread, boiled potatoes, honey, heated fats, and beverages (beer, cola, and roasted coffee) [17,18] | ||||
Methylglyoxal | |||||
Nε-carboxymethyllysine (CML) | Reducing sugars and amino acids, lipids, and ascorbate | Meat and fish cooked under dry heat, bakery products, cereals, and chocolate snacks [19,20] | |||
Nε-carboxyethyllysine (CEL) | |||||
Pentosidine | Reducing sugars and amino acids | UHT milk products and bakery products [21] | |||
Hippurates | Hippuric acid | Benzoic acid, phenylalanine, quinic acid, shikimic acid, and polyphenols | Microbial metabolism | - | Vegetables, fruit, tea, coffee, whole grains [22,23], margarine, sauce, marmalade, gelatin, liqueurs, beer, fruit juice, and soft drinks [24] |
Hydroxyhippuric acid | - | ||||
Indoles | Kynurenine | Tryptophan | Food and host metabolism | Fresh milk [25], breast milk, infant formula [26], beer, and dairy fermented products [27] | Poultry meat, red meat, pork, tofu, fish, beans, dairy products, nuts, seeds, oatmeal, and eggs [28] |
Kynurenic acid | Multiflorous honey, fresh broccoli, potatoes [29,30], beer, and red wine [27] | ||||
Melatonin | Eggs, fish, nuts, some cereals, and germinated beans [31] | ||||
Quinolinic acid | Host metabolism | - | |||
Indoxyl sulfate | Microbial and host metabolism | - | |||
Indole-3-acetic acid | Host, food, and microbial metabolism | Cereals and legumes [32] | |||
Phenols | 2-methoxyresorcinol | Polyphenol | Food | Coffee and tea [33] | - |
Phenol | Tyrosine and phenylalanine and arbutin | Food and microbial metabolism | Coffee, tea, plant-based products, alcoholic beverages, dairy products, fruits, roasted nuts, honey, molasses, beef, and spices [34] | Arbutin-rich foods, such as wheat germ, and pears, and beverages, such as coffee, tea, and red wine [34]. | |
Hydroquinone | Food and host metabolism | ||||
P-cresyl sulfate | Tyrosine | Microbial and host metabolism | - | Meat and dairy products [35] | |
P-cresyl glucuronide | |||||
Phenylacetic acid | Polyphenols and phenylalanine | Food, microbial and host metabolism | Fermented beans [36] | Fruit, vegetables, black tea [37,38] | |
Polyamines | Putrescine | Arginine and L-ornithine | Food, microbial, and host metabolism | Cereals, legumes, soy derivatives, mushrooms, peas, hazelnuts, pistachios, spinach, broccoli, cauliflower, green beans, and meat and derivatives [39] | Seafood, watermelon juice, nuts, seeds, algae, meats, rice protein concentrate, and soy protein isolate [40,41] |
Spermidine | Food, microbial, and host metabolism | ||||
Spermine | Food, microbial, and host metabolism | ||||
Others | 3-Carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF) | Furan fatty acids and omega 3 fatty acids | Host and microbial (?) metabolism | - | Fish, plants, algae, and crustaceans [42] |
Homocysteine | Methionine | Host metabolism | - | Eggs, fish, and some meats [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauriola, M.; Farré, R.; Evenepoel, P.; Overbeek, S.A.; Meijers, B. Food-Derived Uremic Toxins in Chronic Kidney Disease. Toxins 2023, 15, 116. https://doi.org/10.3390/toxins15020116
Lauriola M, Farré R, Evenepoel P, Overbeek SA, Meijers B. Food-Derived Uremic Toxins in Chronic Kidney Disease. Toxins. 2023; 15(2):116. https://doi.org/10.3390/toxins15020116
Chicago/Turabian StyleLauriola, Mara, Ricard Farré, Pieter Evenepoel, Saskia Adriana Overbeek, and Björn Meijers. 2023. "Food-Derived Uremic Toxins in Chronic Kidney Disease" Toxins 15, no. 2: 116. https://doi.org/10.3390/toxins15020116
APA StyleLauriola, M., Farré, R., Evenepoel, P., Overbeek, S. A., & Meijers, B. (2023). Food-Derived Uremic Toxins in Chronic Kidney Disease. Toxins, 15(2), 116. https://doi.org/10.3390/toxins15020116