Unveiling Tst3, a Multi-Target Gating Modifier Scorpion α Toxin from Tityus stigmurus Venom of Northeast Brazil: Evaluation and Comparison with Well-Studied Ts3 Toxin of Tityus serrulatus
Abstract
:1. Introduction
2. Results
2.1. Venom Fractioning and Toxins Purification
2.2. Tst3 and Ts3 Effects on Nav1.4
2.3. Electrophysiological Characterization of Tst3 Toxin on Sodium Channel Isoforms
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Venom Source, Fractionation and Toxins Purification
5.2. Mass Spectrometry
5.3. Peptide Quantification
5.4. Cell Culture
5.5. Electrophysiological Experiments
5.6. Data Analysis Patch Clamp
5.7. Structural Models and Molecular Dynamics
5.8. Reconstruction of the Steady-State Inactivation Probability of Nav1.4 and Nav1.7 in Presence of Tst3 and Ts3
5.9. Estimation of the Binding Free Energy of Tst3 and Ts3
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahern, C.A.; Payandeh, J.; Bosmans, F.; Chanda, B. The Hitchhiker’s Guide to the Voltage-Gated Sodium Channel Galaxy. J. Gen. Physiol. 2016, 147, 1–24. [Google Scholar] [CrossRef]
- Catterall, W.A. Voltage Gated Sodium and Calcium Channels: Discovery, Structure, Function, and Pharmacology. Channels 2023, 17, 2281714. [Google Scholar] [CrossRef]
- Goldin, A.L. Mechanisms of Sodium Channel Inactivation. Curr. Opin. Neurobiol. 2003, 13, 284–290. [Google Scholar] [CrossRef]
- Jiang, D.; Zhang, J.; Xia, Z. Structural Advances in Voltage-Gated Sodium Channels. Front. Pharmacol. 2022, 13, 908867. [Google Scholar] [CrossRef]
- Catterall, W.A. Forty Years of Sodium Channels: Structure, Function, Pharmacology, and Epilepsy. Neurochem. Res. 2017, 42, 2495–2504. [Google Scholar] [CrossRef]
- Jiang, D.; Shi, H.; Tonggu, L.; Gamal El-Din, T.M.; Lenaeus, M.J.; Zhao, Y.; Yoshioka, C.; Zheng, N.; Catterall, W.A. Structure of the Cardiac Sodium Channel. Cell 2020, 180, 122–134.e10. [Google Scholar] [CrossRef]
- Payandeh, J.; Scheuer, T.; Zheng, N.; Catterall, W.A. The Crystal Structure of a Voltage-Gated Sodium Channel. Nature 2011, 475, 353–359. [Google Scholar] [CrossRef]
- Kontis, K.J.; Rounaghi, A.; Goldin, A.L. Sodium Channel Activation Gating Is Affected by Substitutions of Voltage Sensor Positive Charges in All Four Domains. J. Gen. Physiol. 1997, 110, 391–401. [Google Scholar] [CrossRef]
- Yang, N.; George, A.L.; Horn, R. Molecular Basis of Charge Movement in Voltage-Gated Sodium Channels. Neuron 1996, 16, 113–122. [Google Scholar] [CrossRef]
- Stock, L.; Souza, C.; Treptow, W. Structural Basis for Activation of Voltage-Gated Cation Channels. Biochemistry 2013, 52, 1501–1513. [Google Scholar] [CrossRef]
- Bezanilla, F. Ion Channels: From Conductance to Structure. Neuron 2008, 60, 456–468. [Google Scholar] [CrossRef]
- Capes, D.L.; Goldschen-Ohm, M.P.; Arcisio-Miranda, M.; Bezanilla, F.; Chanda, B. Domain IV Voltage-Sensor Movement Is Both Sufficient and Rate Limiting for Fast Inactivation in Sodium Channels. J. Gen. Physiol. 2013, 142, 101–112. [Google Scholar] [CrossRef]
- Clairfeuille, T.; Cloake, A.; Infield, D.T.; Llongueras, J.P.; Arthur, C.P.; Li, Z.R.; Jian, Y.; Martin-Eauclaire, M.F.; Bougis, P.E.; Ciferri, C.; et al. Structural Basis of A-Scorpion Toxin Action on Nav Channels. Science 2019, 363, eaav8573. [Google Scholar] [CrossRef]
- Goldschen-Ohm, M.P.; Capes, D.L.; Oelstrom, K.M.; Chanda, B. Multiple Pore Conformations Driven by Asynchronous Movements of Voltage Sensors in a Eukaryotic Sodium Channel. Nat. Commun. 2013, 4, 1350. [Google Scholar] [CrossRef]
- West, J.W.; Patton, D.E.; Scheuer, T.; Wang, Y.; Goldin, A.L.; Catterall, W.A. A Cluster of Hydrophobic Amino Acid Residues Required for Fast Na(+)-Channel Inactivation. Proc. Natl. Acad. Sci. USA 1992, 89, 10910–10914. [Google Scholar] [CrossRef]
- Catterall, W.A.; Cestèle, S.; Yarov-Yarovoy, V.; Yu, F.H.; Konoki, K.; Scheuer, T. Voltage-Gated Ion Channels and Gating Modifier Toxins. Toxicon 2007, 49, 124–141. [Google Scholar] [CrossRef]
- Wisedchaisri, G.; Gamal El-Din, T.M. Druggability of Voltage-Gated Sodium Channels—Exploring Old and New Drug Receptor Sites. Front. Pharmacol. 2022, 13, 858348. [Google Scholar] [CrossRef]
- Jiang, D.; Tonggu, L.; Gamal El-Din, T.M.; Banh, R.; Pomès, R.; Zheng, N.; Catterall, W.A. Structural Basis for Voltage-Sensor Trapping of the Cardiac Sodium Channel by a Deathstalker Scorpion Toxin. Nat. Commun. 2021, 12, 128. [Google Scholar] [CrossRef]
- Cestèle, S.; Qu, Y.; Rogers, J.C.; Rochat, H.; Scheuer, T.; Catterall, W.A. Voltage Sensor-Trapping: Enhanced Activation of Sodium Channels by β- Scorpion Toxin Bound to the S3-S4 Loop in Domain II. Neuron 1998, 21, 919–931. [Google Scholar] [CrossRef]
- Mantegazza, M.; Cestèle, S. β-Scorpion Toxin Effects Suggest Electrostatic Interactions in Domain II of Voltage-Dependent Sodium Channels. J. Physiol. 2005, 568, 13–30. [Google Scholar] [CrossRef]
- Albuquerque, C.M.R.D.; Santana Neto, P.D.L.; Amorim, M.L.P.; Pires, S.C.V. Pediatric Epidemiological Aspects of Scorpionism and Report on Fatal Cases from Tityus Stigmurus Stings (Scorpiones: Buthidae) in State of Pernambuco, Brazil. Rev. Soc. Bras. Med. Trop. 2013, 46, 484–489. [Google Scholar] [CrossRef]
- Amado, T.F.; Moura, T.A.; Riul, P.; Lira, A.F.D.A.; Badillo-Montaño, R.; Martinez, P.A. Vulnerable Areas to Accidents with Scorpions in Brazil. Trop. Med. Int. Health 2021, 26, 591–601. [Google Scholar] [CrossRef]
- Guerra-Duarte, C.; Saavedra-Langer, R.; Matavel, A.; Oliveira-Mendes, B.B.R.; Chavez-Olortegui, C.; Paiva, A.L.B. Scorpion Envenomation in Brazil: Current Scenario and Perspectives for Containing an Increasing Health Problem. PLoS Neglected Trop. Dis. 2023, 17, e0011069. [Google Scholar] [CrossRef]
- Almeida, D.D.; Scortecci, K.C.; Kobashi, L.S.; Agnez-Lima, L.F.; Medeiros, S.R.B.; Silva-Junior, A.A.; Junqueira-de-Azevedo, I.D.L.M.; Fernandes-Pedrosa, M.D.F. Profiling the Resting Venom Gland of the Scorpion Tityus Stigmurus through a Transcriptomic Survey. BMC Genom. 2012, 13, 362. [Google Scholar] [CrossRef]
- Furtado, A.A.; Daniele-Silva, A.; Silva-Júnior, A.A.D.; Fernandes-Pedrosa, M.D.F. Biology, Venom Composition, and Scorpionism Induced by Brazilian Scorpion Tityus Stigmurus (Thorell, 1876) (Scorpiones: Buthidae): A Mini-Review. Toxicon 2020, 185, 36–45. [Google Scholar] [CrossRef]
- Oliveira da Mata, D.; Tibery, D.V.; Fernandes-Pedrosa, M.F.; Schwartz, E.F. Modulation of hNav by Tst1, a β-Toxin Purified from the Scorpion Tityus stigmurus. Biochimie 2023, 204, 118–126. [Google Scholar] [CrossRef]
- Batista, C.V.F.; Román-González, S.A.; Salas-Castillo, S.P.; Zamudio, F.Z.; Gómez-Lagunas, F.; Possani, L.D. Proteomic Analysis of the Venom from the Scorpion Tityus Stigmurus: Biochemical and Physiological Comparison with Other Tityus Species. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2007, 146, 147–157. [Google Scholar] [CrossRef]
- Martin-Eauclaire, M.F.; Céard, B.; Ribeiro, A.M.; Diniz, C.R.; Rochat, H.; Bougis, P.E. Biochemical, Pharmacological and Genomic Characterisation of Ts IV, an A-toxin from the Venom of the South American Scorpion Tityus serrulatus. FEBS Lett. 1994, 342, 181–184. [Google Scholar] [CrossRef]
- Becerril, B.; Corona, M.; Coronas, F.I.V.; Zamudio, F.; Calderonaranda, E.S.; Fletcher, P.L.; Martin, B.M.; Possani, L.D. Toxic Peptides and Genes Encoding Toxin γ of the Brazilian Scorpions Tityus Bahiensis and Tityus stigmurus. Biochem. J. 1996, 313, 753–760. [Google Scholar] [CrossRef]
- Campos, F.V.; Chanda, B.; Beirão, P.S.L.; Bezanilla, F. α-Scorpion Toxin Impairs a Conformational Change That Leads to Fast Inactivation of Muscle Sodium Channels. J. Gen. Physiol. 2008, 132, 251–263. [Google Scholar] [CrossRef]
- Mendes, L.C.; Viana, G.M.M.; Nencioni, A.L.A.; Pimenta, D.C.; Beraldo-Neto, E. Scorpion Peptides and Ion Channels: An Insightful Review of Mechanisms and Drug Development. Toxins 2023, 15, 238. [Google Scholar] [CrossRef]
- Diego-García, E.; Abdel-Mottaleb, Y.; Schwartz, E.F.; De La Vega, R.C.R.; Tytgat, J.; Possani, L.D. Cytolytic and K+ Channel Blocking Activities of β-KTx and Scorpine-like Peptides Purified from Scorpion Venoms. Cell. Mol. Life Sci. 2008, 65, 187–200. [Google Scholar] [CrossRef]
- Papp, F.; Batista, C.V.F.; Varga, Z.; Herceg, M.; Román-González, S.A.; Gaspar, R.; Possani, L.D.; Panyi, G. Tst26, a Novel Peptide Blocker of Kv1.2 and Kv1.3 Channels from the Venom of Tityus stigmurus. Toxicon 2009, 54, 379–389. [Google Scholar] [CrossRef]
- Arantes, E.C.; Riccioppo Neto, F.; Sampaio, S.V.; Vieira, C.A.; Giglio, J. Isolation and Characterization of TsTX-V, a New Neurotoxin from Tityus Serrulatus Scorpion Venom Which Delays the Inactivation of NA+ Channels. Biochim. Biophys. Acta Gen. Subj. 1994, 1199, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.A.; Toyama, M.H.; Carneiro, E.M.; Marangoni, S.; Arantes, E.C.; Giglio, J.R.; Boschero, A.C. Participation of Na+ Channels in the Potentiation by Tityus Serrulatus α-Toxin TsTx-V of Glucose-Induced Electrical Activity and Insulin Secretion in Rodent Islet β-Cells. Toxicon 2003, 41, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Menezes, L.F.S.; Maranhão, M.M.; Tibery, D.V.; de Souza, A.C.B.; da Mata, D.O.; Campos, L.A.; Souza, A.A.; de Freitas, S.M.; Schwartz, E.F. Ts17, a Tityus Serrulatus β-Toxin Structurally Related to α-Scorpion Toxins. Biochim. Biophys. Acta Gen. Subj. 2023, 1865, 184057. [Google Scholar] [CrossRef]
- Kirch, G.E.; Skattebøl, A.; Possani, L.D.; Brown, A.M. Modification of Na Channel Gating by an α Scorpion Toxin from Tityus Serrulatus. J. Gen. Physiol. 1989, 93, 67–83. [Google Scholar] [CrossRef]
- Campos, F.V.; Coronas, F.I.V.; Beirão, P.S.L. Voltage-Dependent Displacement of the Scorpion Toxin Ts3 from Sodium Channels and Its Implication on the Control of Inactivation. Br. J. Pharmacol. 2004, 142, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Campos, F.V.; Beirão, P.S.L. Effects of Bound Ts3 on Voltage Dependence of Sodium Channel Transitions to and From Inactivation and Energetics of Its Unbinding. Cell Biochem. Biophys. 2006, 44, 424–430. [Google Scholar] [CrossRef]
- Wang, C.-G.; Gilles, N.; Hamon, A.; Le Gall, F.; Stankiewicz, M.; Pelhate, M.; Xiong, Y.-M.; Wang, D.-C.; Chi, C.-W. Exploration of the Functional Site of a Scorpion α-like Toxin by Site-Directed Mutagenesis. Biochemistry 2003, 42, 4699–4708. [Google Scholar] [CrossRef]
- Abbas, N.; Gaudioso-Tyzra, C.; Bonnet, C.; Gabriac, M.; Amsalem, M.; Lonigro, A.; Padilla, F.; Crest, M.; Martin-Eauclaire, M.-F.; Delmas, P. The Scorpion Toxin Amm VIII Induces Pain Hypersensitivity through Gain-of-Function of TTX-Sensitive Na+ Channels. Pain 2013, 154, 1204–1215. [Google Scholar] [CrossRef] [PubMed]
- Alami, M.; Vacher, H.; Bosmans, F.; Devaux, C.; Rosso, J.-P.; Bougis, P.E.; Tytgat, J.; Darbon, H.; Martin-Eauclaire, M.-F. Characterization of Amm VIII from Androctonus Mauretanicus Mauretanicus: A New Scorpion Toxin That Discriminates between Neuronal and Skeletal Sodium Channels. Biochem. J. 2003, 375, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Tibery, D.V.; Campos, L.A.; Mourão, C.B.F.; Peigneur, S.; e Carvalho, A.C.; Tytgat, J.; Schwartz, E.F. Electrophysiological Characterization of Tityus Obscurus β Toxin 1 (To1) on Na+-Channel Isoforms. Biochim. Biophys. Acta Biomembr. 2019, 1861, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Peigneur, S.; Cologna, C.T.; Cremonez, C.M.; Mille, B.G.; Pucca, M.B.; Cuypers, E.; Arantes, E.C.; Tytgat, J. A Gamut of Undiscovered Electrophysiological Effects Produced by Tityus Serrulatus Toxin 1 on NaV-Type Isoforms. Neuropharmacology 2015, 95, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.; Pontes, C.; Treptow, W. Coevolutive, Evolutive and Stochastic Information in Protein-Protein Interactions. Comput. Struct. Biotechnol. J. 2019, 17, 1429–1435. [Google Scholar] [CrossRef]
- Priest, M.F.; Lacroix, J.J.; Villalba-Galea, C.A.; Bezanilla, F. S3-S4 Linker Length Modulates the Relaxed State of a Voltage-Gated Potassium Channel. Biophys. J. 2013, 105, 2312–2322. [Google Scholar] [CrossRef]
- Webb, B.; Sali, A. Protein Structure Modeling with MODELLER. Methods Mol. Biol. 2014, 1137, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dang, B.; Kubota, T.; Mandal, K.; Correa, A.M.; Bezanilla, F.; Kent, S.B.H. Elucidation of the Covalent and Tertiary Structures of Biologically Active Ts3 Toxin. Angew. Chem. Int. Ed. 2016, 55, 8639–8642. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef]
- Huang, J.; MacKerell, A.D. CHARMM36 All-Atom Additive Protein Force Field: Validation Based on Comparison to NMR Data. J. Comput. Chem. 2013, 34, 2135–2145. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An Nlog(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Izaguirre, J.A.; Reich, S.; Skeel, R.D. Longer Time Steps for Molecular Dynamics. J. Chem. Phys. 1999, 110, 9853–9864. [Google Scholar] [CrossRef]
- Treptow, W. Allosteric Modulation of Membrane Proteins by Small Low-Affinity Ligands. J. Chem. Inf. Model. 2023, 63, 2047–2057. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.S.; Amaral, C.; Treptow, W. Electric Fingerprint of Voltage Sensor Domains. Proc. Natl. Acad. Sci. USA 2014, 111, 17510–17515. [Google Scholar] [CrossRef]
- Sanner, M.F.; Olson, A.J.; Spehner, J.-C. Reduced Surface: An Efficient Way to Compute Molecular Surfaces. Biopolymers 1996, 38, 305–320. [Google Scholar] [CrossRef]
- Nandigrami, P.; Szczepaniak, F.; Boughter, C.T.; Dehez, F.; Chipot, C.; Roux, B. Computational Assessment of Protein–Protein Binding Specificity within a Family of Synaptic Surface Receptors. J. Phys. Chem. B 2022, 126, 7510–7527. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.A.; Sept, D.; Joseph, S.; Holst, M.J.; McCammon, J.A. Electrostatics of Nanosystems: Application to Microtubules and the Ribosome. Proc. Natl. Acad. Sci. USA 2001, 98, 10037–10041. [Google Scholar] [CrossRef]
- Callenberg, K.M.; Choudhary, O.P.; de Forest, G.L.; Gohara, D.W.; Baker, N.A.; Grabe, M. APBSmem: A Graphical Interface for Electrostatic Calculations at the Membrane. PLoS ONE 2010, 5, e12722. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Gilson, M.K.; Given, J.A.; Bush, B.L.; McCammon, J.A. The Statistical-Thermodynamic Basis for Computation of Binding Affinities: A Critical Review. Biophys. J. 1997, 72, 1047–1069. [Google Scholar] [CrossRef] [PubMed]
V1/2 (mV) | K | n | V1/2h (mV) | Kh | IPers (%) | τ (ms) | n | |
---|---|---|---|---|---|---|---|---|
Nav1.4 | −26.44 ± 1.81 | 5.28 ± 0.36 | 6 | −68.72 ± 1.39 | 5.46 ± 0.14 | 0.5 ± 0.08 | 0.50 ± 0.1 | 7 |
Nav1.4 + Ts3 | −30.60 ± 2.08 | 5.28 ± 0.52 | 6 | −66.69 ± 1.19 | 7.96 ± 0.12 | 3.6 ± 0.37 | 5.33 ± 0.7 | 7 |
Δ | −4.15 ± 0.38 * | 0.018 ± 0.18 | 6 | 2.03 ± 0.56 * | 2.53 ± 0.10 | 3.1 ± 0.41 * | 4.82 ± 0.7 * | 7 |
Nav1.4 | −26.63 ± 2.01 | 5.67 ± 0.41 | 7 | −66.58 ± 1.22 | 6.04 ± 0.19 | 1.3 ± 0.3 | 0.62 ± 0.07 | 7 |
Nav1.4 + Tst3 | −31.82 ± 1.89 | 5.02 ± 0.32 | 7 | −65.35 ± 1.56 | 7.45 ± 0.22 | 5.7 ± 0.3 | 6.72 ± 0.4 | 7 |
Δ | −5.19 ± 0.49 * | −0.56 ± 0.13 | 7 | 1.22 ± 0.72 | 1.13 ± 0.18 | 4.4 ± 0.6 * | 6.09 ± 0.4 * | 7 |
V1/2 (mV) | k | τ (ms) | n | |
---|---|---|---|---|
Nav1.1 | −27.11 ± 1.21 | 3.74 ± 1.86 | 1.14 ± 0.13 | 3 |
Nav1.1 + Tst3 | −34.26 ± 1.86 | 2.84 ± 0.80 | 6.86 ± 0.43 | 3 |
Δ | −7.15 ± 1.01 * | −0.90 ± 0.28 * | 5.71 ± 0.36 * | 3 |
Nav1.2 | −25.66 ± 2.11 | 5.21 ± 1.52 | 1.50 ± 0.21 | 4 |
Nav1.2 + Tst3 | −34.69 ± 1.52 | 4.13 ± 1.14 | 10.68 ± 1.44 | 4 |
Δ | −9.02 ± 0.92 * | −1.07 ± 0.71 | 9.17 ± 1.41 * | 4 |
Nav1.3 | −20.88 ± 1.99 | 6.41 ± 3.59 | 1.45 ± 0.17 | 4 |
Nav1.3 + Ts3 | −29.56 ± 3.59 | 5.33 ± 1.32 | 8.32 ± 0.95 | 4 |
Δ | −8.68 ± 2.31 * | −1.08 ± 1.11 | 6.87 ± 0.94 * | 4 |
Nav1.4 | −26.63 ± 2.01 | 5.67 ± 0.41 | 1.22 ± 0.42 | 4 |
Nav1.4 + Tst3 | −31.82 ± 1.89 | 5.02 ± 0.32 | 6.83 ± 0.81 | 4 |
Δ | −5.19 ± 0.49 * | −0.56 ± 0.13 | 5.61 ± 0.80 * | 4 |
Nav1.5 | −27.32 ± 2.43 | 3.58 ± 2.39 | 1.59 ± 0.16 | 4 |
Nav1.5 + Tst3 | −35.98 ± 4.78 | 2.94 ± 0.51 | 14.76 ± 2.20 | 4 |
Δ | −8.66 ± 1.17 * | −1.53 ± 0.44 * | 13.17 ± 1.96 * | 4 |
Nav1.6 | −24.66 ± 0.47 | 5.92 ± 0.62 | 1.96 ± 0.27 | 3 |
Nav1.6 + Tst3 | −28.49 ± 0.62 | 6.13 ± 0.29 | 8.34 ± 0.29 | 3 |
Δ | −3.82 ± 0.75 * | 0.21 ± 0.21 | 6.37 ± 0.14 * | 3 |
Nav1.7 | −14.97 ± 1.83 | 6.52 ± 2.11 | 1.92 ± 0.19 | 4 |
Nav1.7 + Tst3 | −23.52 ± 2.11 | 5.27 ± 0.52 | 20.74 ± 3.62 | 4 |
Δ | −8.55 ± 0.76 * | −1.24 ± 0.19 | 18.82 ± 3.32 * | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tibery, D.V.; Nunes, J.A.A.; da Mata, D.O.; Menezes, L.F.S.; de Souza, A.C.B.; Fernandes-Pedrosa, M.d.F.; Treptow, W.; Schwartz, E.F. Unveiling Tst3, a Multi-Target Gating Modifier Scorpion α Toxin from Tityus stigmurus Venom of Northeast Brazil: Evaluation and Comparison with Well-Studied Ts3 Toxin of Tityus serrulatus. Toxins 2024, 16, 257. https://doi.org/10.3390/toxins16060257
Tibery DV, Nunes JAA, da Mata DO, Menezes LFS, de Souza ACB, Fernandes-Pedrosa MdF, Treptow W, Schwartz EF. Unveiling Tst3, a Multi-Target Gating Modifier Scorpion α Toxin from Tityus stigmurus Venom of Northeast Brazil: Evaluation and Comparison with Well-Studied Ts3 Toxin of Tityus serrulatus. Toxins. 2024; 16(6):257. https://doi.org/10.3390/toxins16060257
Chicago/Turabian StyleTibery, Diogo Vieira, João Antonio Alves Nunes, Daniel Oliveira da Mata, Luis Felipe Santos Menezes, Adolfo Carlos Barros de Souza, Matheus de Freitas Fernandes-Pedrosa, Werner Treptow, and Elisabeth Ferroni Schwartz. 2024. "Unveiling Tst3, a Multi-Target Gating Modifier Scorpion α Toxin from Tityus stigmurus Venom of Northeast Brazil: Evaluation and Comparison with Well-Studied Ts3 Toxin of Tityus serrulatus" Toxins 16, no. 6: 257. https://doi.org/10.3390/toxins16060257
APA StyleTibery, D. V., Nunes, J. A. A., da Mata, D. O., Menezes, L. F. S., de Souza, A. C. B., Fernandes-Pedrosa, M. d. F., Treptow, W., & Schwartz, E. F. (2024). Unveiling Tst3, a Multi-Target Gating Modifier Scorpion α Toxin from Tityus stigmurus Venom of Northeast Brazil: Evaluation and Comparison with Well-Studied Ts3 Toxin of Tityus serrulatus. Toxins, 16(6), 257. https://doi.org/10.3390/toxins16060257