Antioxidative and Antimycotoxigenic Efficacies of Thunbergia laurifolia Lindl. for Addressing Aflatoxicosis in Cherry Valley Ducks
Abstract
:1. Introduction
2. Results
2.1. Phytochemical and Antioxidant Activity of T. laurifolia Extracts
2.2. Growth Performance
2.3. Blood Biochemistry
2.4. Intestine Morphology
2.5. Carcass Trait, Relative Organ Weight, and Meat Quality
2.6. Expression of Immune Response and Metabolizing Cytochrome P450 Enzyme-Related Genes
3. Discussion
3.1. Antioxidative Capacity of T. laurifolia Extract
3.2. Aflatoxin B1 Toxicity on Growth Performance
3.3. Aflatoxin B1 Toxicity on Serum Biochemical Parameters
3.4. Aflatoxin B1 Toxicity on Intestine Morphology
3.5. Aflatoxin B1 Toxicity on Carcass Traits and Meat Quality
3.6. Aflatoxin B1 Toxicity on Immunity and Cytochrome P450 Enzyme-Related Genes
3.7. Antimycotoxigenic Efficacies of Thunbergia laurifolia Lindl.
4. Conclusions
5. Materials and Methods
5.1. Animal and Ethical Approval
5.2. Plant Materials
5.3. Extraction Method and Phenolic Content Measurement
5.4. Antioxidative Assays
5.5. Treatment Diet Preparation
5.6. Growth Performance
5.7. Blood Characteristics
5.8. Relative Organ Weight
5.9. Carcass and Meat Quality
5.10. Immune Response and Metabolizing Cytochrome P450 Enzyme-Related Genes Expression in the Liver
5.11. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Pathak, H.; Bhadauria, S.; Sudan, J. Aflatoxin contamination in food crops: Causes, detection, and management: A review. Food Prod. Process. Nutr. 2021, 3, 17. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Ondari, E.N.; Ogbonna, C.U.; Upadhyay, A.K.; Baran, K.; Okpala, C.O.R.; Korzeniowska, M.; Guine, R.P.F. Mycotoxins Affecting Animals, Foods, Humans, and Plants: Types, Occurrence, Toxicities, Action Mechanisms, Prevention, and Detoxification Strategies—A Revisit. Foods 2021, 10, 1279. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, H.; Hamid, S.S.; Ali, S.S.; Anwar, J.; Siddiqui, A.A.; Khan, N.A. Cytotoxic effects of aflatoxin B1 on human brain microvascular endothelial cells of the blood-brain barrier. Med. Mycol. 2015, 53, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Pleadin, J.; Kovacevic, D.; Perkovic, I. Impact of casing damaging on aflatoxin B1 concentration during the ripening of dry-fermented meat sausages. J. Immunoass. Immunochem. 2015, 36, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Liu, S.B.; Zhang, Q.; Tan, H.Z. Effects of Aflatoxin B(1) on growth performance, carcass traits, organ index, blood biochemistry and oxidative status in Chinese yellow chickens. J. Vet. Med. Sci. 2023, 85, 1015–1022. [Google Scholar] [CrossRef]
- Kananub, S.; Jala, P.; Laopiem, S.; Boonsoongnern, A.; Sanguankiat, A. Mycotoxin profiles of animal feeds in the central part of Thailand: 2015-2020. Vet. World 2021, 14, 739–743. [Google Scholar] [CrossRef]
- Waenlor, W.; Wiwanitkit, V. Aflatoxin contamination of food and food products in Thailand: An overview. Southeast. Asian J. Trop. Med. Public. Health 2003, 34 (Suppl. S2), 184–190. [Google Scholar]
- Pickova, D.; Ostry, V.; Toman, J.; Malir, F. Aflatoxins: History, Significant Milestones, Recent Data on Their Toxicity and Ways to Mitigation. Toxins 2021, 13, 399. [Google Scholar] [CrossRef]
- Alameri, M.M.; Kong, A.S.; Aljaafari, M.N.; Ali, H.A.; Eid, K.; Sallagi, M.A.; Cheng, W.H.; Abushelaibi, A.; Lim, S.E.; Loh, J.Y.; et al. Aflatoxin Contamination: An Overview on Health Issues, Detection and Management Strategies. Toxins 2023, 15, 246. [Google Scholar] [CrossRef]
- Mesgar, A.; Aghdam Shahryar, H.; Bailey, C.A.; Ebrahimnezhad, Y.; Mohan, A. Effect of Dietary L-Threonine and Toxin Binder on Performance, Blood Parameters, and Immune Response of Broilers Exposed to Aflatoxin B(1). Toxins 2022, 14, 192. [Google Scholar] [CrossRef]
- Tansakul, N.; Rattanasrisomporn, J.; Roytrakul, S. Proteomics analysis of serum protein patterns in duck during aflatoxin B1 exposure. Vet. World 2019, 12, 1499–1505. [Google Scholar] [CrossRef] [PubMed]
- Barraud, L.; Guerret, S.; Chevallier, M.; Borel, C.; Jamard, C.; Trepo, C.; Wild, C.P.; Cova, L. Enhanced duck hepatitis B virus gene expression following aflatoxin B1 exposure. Hepatology 1999, 29, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Maldjian, A.; Cristofori, C.; Noble, R.C.; Speake, B.K. The fatty acid composition of brain phospholipids from chicken and duck embryos. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1996, 115, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Eraslan, G.; Essiz, D.; Akdogan, M.; Sahindokuyucu, F.; Altintas, L.; Hismiogullari, S. Effects of dietary aflatoxin and sodium bentonite on some hormones in broiler chickens. Bull. Vet. Inst. Pulawy 2005, 49, 93–96. [Google Scholar]
- Tso, K.H.; Lumsangkul, C.; Cheng, M.C.; Ju, J.C.; Fan, Y.K.; Chiang, H.I. Differential Effects of Green Tea Powders on the Protection of Brown Tsaiya and Kaiya Ducklings against Trichothecene T-2 Toxin Toxicity. Animals 2021, 11, 2541. [Google Scholar] [CrossRef] [PubMed]
- Peles, F.; Sipos, P.; Kovacs, S.; Gyori, Z.; Pocsi, I.; Pusztahelyi, T. Biological Control and Mitigation of Aflatoxin Contamination in Commodities. Toxins 2021, 13, 104. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Chen, L.; Zhu, Y.; Huang, Y.; Hu, X.; Wu, Q.; Nüssler, A.K.; Liu, L.; Yang, W. Current major degradation methods for aflatoxins: A review. Trends Food Sci. Technol. 2018, 80, 155–166. [Google Scholar] [CrossRef]
- Lai, Y.; Sun, M.; He, Y.; Lei, J.; Han, Y.; Wu, Y.; Bai, D.; Guo, Y.; Zhang, B. Mycotoxins binder supplementation alleviates aflatoxin B(1) toxic effects on the immune response and intestinal barrier function in broilers. Poult. Sci. 2022, 101, 101683. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.K.; Erdman, J.W., Jr.; Baker, D.H. Hydrated sodium calcium aluminosilicate: Effects on zinc, manganese, vitamin A, and riboflavin utilization. Poult. Sci. 1990, 69, 1364–1370. [Google Scholar] [CrossRef]
- Nielsen, F.H. History of zinc in agriculture. Adv. Nutr. 2012, 3, 783–789. [Google Scholar] [CrossRef]
- Yesuf, Y.K.; Tamir, B.; Tesfaye, E.; Beyero, N. The synergetic effects of some phytobiotics mix on growth, hematology and microbial loads of broiler chickens. Anim. Biotechnol. 2023, 34, 3507–3515. [Google Scholar] [CrossRef] [PubMed]
- Kikusato, M. Phytobiotics to improve health and production of broiler chickens: Functions beyond the antioxidant activity. Anim. Biosci. 2021, 34, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Khunkitti, W.; Taweechaisupapong, S.; Aromdee, A.; Pese, M. Antimicrobial activity of Thunbergia laurifolia crude extract. In Proceedings of the 3rd World Congress on Medicinal Plant and Aromatic Plants for Human Welfare, Chiangmai, Thailand, 3–7 February 2003. [Google Scholar]
- Srida, C.; Hankete, J.; Aromdee, C.; Pese, M. Antioxidant activity of Thunbergia laurifolia ethanolic extract. Thai J. Pharm. Sci. 2002, 26, 29–35. [Google Scholar]
- Ussanawarong, S.; Thesiri, T. Effect of Thunbergia laurifolia Linn. on detoxication of parathion in rat. Khon Kaen Univ. Res. J. 2001, 6, 3–13. [Google Scholar]
- Tejasen, P.; Thongthapp, C. The study of the insecticide antitoxicity of Thunbergia laurifolia Linn. Chiang Mai Med. Bull. 1980, 19, 105–114. [Google Scholar]
- Palipoch, S.; Jiraungkoorskul, W.; Tansatit, T.; Preyavichyapugdee, N.; Jaikua, W.; Kosai, P. Protective efficiency of Thunbergia laurifolia leaf extract against lead (II) nitrate-induced toxicity in Oreochromis niloticus. J. Med. Plant Res. 2011, 5, 719–728. [Google Scholar]
- Wonkchalee, O.; Boonmars, T.; Aromdee, C.; Laummaunwai, P.; Khunkitti, W.; Vaeteewoottacharn, K.; Sriraj, P.; Aukkanimart, R.; Loilome, W.; Chamgramol, Y. Anti-inflammatory, antioxidant and hepatoprotective effects of Thunbergia laurifolia Linn. on experimental opisthorchiasis. Parasitol. Res. 2012, 111, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Oonsivilai, R.; Cheng, C.; Bomser, J.; Ferruzzi, M.G.; Ningsanond, S. Phytochemical profiling and phase II enzyme-inducing properties of Thunbergia laurifolia Lindl. (RC) extracts. J. Ethnopharmacol. 2007, 114, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.; Lim, Y.Y. Antioxidant activity of Thunbergia laurifolia tea. J. Trop. For. Sci. 2006, 18, 130–136. [Google Scholar]
- Ruela-de-Sousa, R.R.; Fuhler, G.M.; Blom, N.; Ferreira, C.V.; Aoyama, H.; Peppelenbosch, M.P. Cytotoxicity of apigenin on leukemia cell lines: Implications for prevention and therapy. Cell Death Dis. 2010, 1, e19. [Google Scholar] [CrossRef]
- Marin, D.E.; Taranu, I. Overview on aflatoxins and oxidative stress. Toxin Rev. 2012, 31, 32–43. [Google Scholar] [CrossRef]
- Junsi, M.; Siripongvutikorn, S. Thunbergia laurifolia, a traditional herbal tea of Thailand: Botanical, chemical composition, biological properties and processing influence. Int. Food Res. J. 2016, 23, 923–927. [Google Scholar]
- Forester, S.C.; Lambert, J.D. The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention. Mol. Nutr. Food Res. 2011, 55, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Essiedu, J.A.; Gonu, H.; Adadi, P.; Usansa, U. Polyphenols and Antioxidant Activity of Thunbergia laurifolia Infused Tea under Drying Conditions. J. Food Qual. 2023, 2023, 5046880. [Google Scholar] [CrossRef]
- Jayasundara, N.; Arampath, P. Effect of variety, location & maturity stage at harvesting, on essential oil chemical composition, and weight yield of Zingiber officinale roscoe grown in Sri Lanka. Heliyon 2021, 7, e06560. [Google Scholar] [CrossRef]
- No, E. Commission regulation (EC) No. 1881/2006 of 19 December 2006. Setting maximum levels for certain contaminants in foodstuffs (Text with EEA relevance). Off. J. Eur. Comm. 1881, 364, 2006. [Google Scholar]
- Ksenija, N. Mycotoxins–climate impact and steps to prevention based on prediction. Acta Vet. 2018, 68, 1–15. [Google Scholar] [CrossRef]
- Selvaraj, J.N.; Wang, Y.; Zhou, L.; Zhao, Y.; Xing, F.; Dai, X.; Liu, Y. Recent mycotoxin survey data and advanced mycotoxin detection techniques reported from China: A review. Food Addit. Contam. Part. A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 440–452. [Google Scholar] [CrossRef]
- Monson, M.; Coulombe, R.; Reed, K. Aflatoxicosis: Lessons from Toxicity and Responses to Aflatoxin B1 in Poultry. Agriculture 2015, 5, 742–777. [Google Scholar] [CrossRef]
- Muller, R.D.; Carlson, C.W.; Semeniuk, G.; Harshfield, G.S. The response of chicks, ducklings, goslings, pheasants and poults to graded levels of aflatoxins. Poult. Sci. 1970, 49, 1346–1350. [Google Scholar] [CrossRef]
- Xie, Q.; Sun, M.; Chang, W.; Liu, Z.; Ma, J.; Liu, G.; Cai, H.; Wang, J.; Lyu, C. Effects of aflatoxins and absorbents on growth performance and immune indices of meat ducks. Chin. J. Anim. Nutr. 2015, 27, 204–211. [Google Scholar]
- Chen, X.; Grenier, B. Aflatoxins in Poultry; Purdue University Department of Animal Sciences: New York, NY, USA, 2013. [Google Scholar]
- Randall, G.M.; Bird, F.H. The effect of exercise on the toxicity of aflatoxin B1 in chickens. Poult. Sci. 1979, 58, 1284–1288. [Google Scholar] [CrossRef] [PubMed]
- Malekinezhad, P.; Ellestad, L.E.; Afzali, N.; Farhangfar, S.H.; Omidi, A.; Mohammadi, A. Evaluation of berberine efficacy in reducing the effects of aflatoxin B1 and ochratoxin A added to male broiler rations. Poult. Sci. 2021, 100, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Yunus, A.W.; Razzazi-Fazeli, E.; Bohm, J. Aflatoxin B(1) in affecting broiler’s performance, immunity, and gastrointestinal tract: A review of history and contemporary issues. Toxins 2011, 3, 566–590. [Google Scholar] [CrossRef] [PubMed]
- Rotimi, O.A.; Rotimi, S.O.; Duru, C.U.; Ebebeinwe, O.J.; Abiodun, A.O.; Oyeniyi, B.O.; Faduyile, F.A. Acute aflatoxin B1—Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol. Rep. 2017, 4, 408–414. [Google Scholar] [CrossRef] [PubMed]
- El-Nekeety, A.A.; Abdel-Azeim, S.H.; Hassan, A.M.; Hassan, N.S.; Aly, S.E.; Abdel-Wahhab, M.A. Quercetin inhibits the cytotoxicity and oxidative stress in liver of rats fed aflatoxin-contaminated diet. Toxicol. Rep. 2014, 1, 319–329. [Google Scholar] [CrossRef]
- Alves-Bezerra, M.; Cohen, D.E. Triglyceride metabolism in the liver. Compr. Physiol. 2017, 8, 1. [Google Scholar]
- Han, X.-Y.; Huang, Q.-C.; Li, W.-F.; Jiang, J.-F.; Xu, Z.-R. Changes in growth performance, digestive enzyme activities and nutrient digestibility of cherry valley ducks in response to aflatoxin B1 levels. Livest. Sci. 2008, 119, 216–220. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Q.; Wang, J.; Sun, J.; Xiang, Y.; Jin, X. Aflatoxin B1 disrupts the intestinal barrier integrity by reducing junction protein and promoting apoptosis in pigs and mice. Ecotoxicol. Environ. Saf. 2022, 247, 114250. [Google Scholar] [CrossRef]
- Poloni, V.; Magnoli, A.; Fochesato, A.; Cristofolini, A.; Caverzan, M.; Merkis, C.; Montenegro, M.; Cavaglieri, L. A Saccharomyces cerevisiae RC016-based feed additive reduces liver toxicity, residual aflatoxin B1 levels and positively influences intestinal morphology in broiler chickens fed chronic aflatoxin B1-contaminated diets. Anim. Nutr. 2020, 6, 31–38. [Google Scholar] [CrossRef]
- Applegate, T.J.; Schatzmayr, G.; Prickel, K.; Troche, C.; Jiang, Z. Effect of aflatoxin culture on intestinal function and nutrient loss in laying hens. Poult. Sci. 2009, 88, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.Q.; Lin, L.X.; Xu, T.T.; Lu, Y.; Zhang, C.D.; Yue, K.; Huang, S.C.; Dong, H.J.; Jian, F.C. Aflatoxin B1 alters meat quality associated with oxidative stress, inflammation, and gut-microbiota in sheep. Ecotoxicol. Environ. Saf. 2021, 225, 112754. [Google Scholar] [CrossRef] [PubMed]
- Seideman, S.C.; Cross, H.R.; Smith, G.C.; Durland, P.R. Factors associated with fresh meat color: A review. J. Food Qual. 1984, 6, 211–237. [Google Scholar] [CrossRef]
- Diaz, G.J.; Murcia, H.W.; Cepeda, S.M. Cytochrome P450 enzymes involved in the metabolism of aflatoxin B1 in chickens and quail. Poult. Sci. 2010, 89, 2461–2469. [Google Scholar] [CrossRef] [PubMed]
- Do, J.H.; Choi, D.-K. Aflatoxins: Detection, toxicity, and biosynthesis. Biotechnol. Bioprocess. Eng. 2007, 12, 585–593. [Google Scholar] [CrossRef]
- Stern, A.; Furlan, V.; Novak, M.; Stampar, M.; Kolenc, Z.; Kores, K.; Filipic, M.; Bren, U.; Zegura, B. Chemoprotective Effects of Xanthohumol against the Carcinogenic Mycotoxin Aflatoxin B1. Foods 2021, 10, 1331. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.R.; Philpott, M. Nutrition and mutagenesis. Annu. Rev. Nutr. 2008, 28, 313–329. [Google Scholar] [CrossRef]
- Diaz, G.J.; Murcia, H.W.; Cepeda, S.M.; Boermans, H.J. The role of selected cytochrome P450 enzymes on the bioactivation of aflatoxin B1 by duck liver microsomes. Avian Pathol. 2010, 39, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.C.; Yang, Y.Y.; Pushparaj, K.; Balasubramanian, B. Evaluation of Hepatic Detoxification Effects of Enteromorpha prolifera Polysaccharides against Aflatoxin B(1) in Broiler Chickens. Antioxidants 2022, 11, 1757. [Google Scholar] [CrossRef]
- Hou, L.; Qiu, H.; Li, A.; Dong, J.; Zhu, L.; Liu, G.; Chen, F. Effects of aflatoxin B(1) on growth performance, antioxidant status, immune response, and pro-inflammatory cytokine mRNA expression in ISA chicks. Front. Vet. Sci. 2022, 9, 993039. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Q.G.; Zhao, L.H.; Wei, H.; Duan, G.X.; Zhang, J.Y.; Ji, C. Effects of lipoic acid on immune function, the antioxidant defense system, and inflammation-related genes expression of broiler chickens fed aflatoxin contaminated diets. Int. J. Mol. Sci. 2014, 15, 5649–5662. [Google Scholar] [CrossRef] [PubMed]
- Benkerroum, N. Chronic and Acute Toxicities of Aflatoxins: Mechanisms of Action. Int. J. Environ. Res. Public Health 2020, 17, 423. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Allameh, A.; Niayesh-Mehr, R.; Aliarab, A.; Sebastiani, G.; Pantopoulos, K. Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants 2023, 12, 1653. [Google Scholar] [CrossRef] [PubMed]
- Junsi, M.; Takahashi Yupanqui, C.; Usawakesmanee, W.; Slusarenko, A.; Siripongvutikorn, S. Thunbergia laurifolia Leaf Extract Increased Levels of Antioxidant Enzymes and Protected Human Cell-Lines In Vitro Against Cadmium. Antioxidants 2020, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Palipoch, S.; Punsawad, C.; Suwannalert, P. Thunbergia laurifolia, a new choice of natural antioxidant to prevent oxidative stress-related pathology: A review. J. Med. Plants Res. 2013, 7, 698–701. [Google Scholar] [CrossRef]
- Junsi, M.; Siripongvutikorn, S.; Yupanqui, C.; Usawakesmanee, W. Phenolic and flavonoid compounds in aqueous extracts of Thunbergia laurifolia leaves and their effect on the toxicity of the carbamate insecticide methomyl to murine macrophage cells. Funct. Foods Health Dis. 2017, 7, 529. [Google Scholar] [CrossRef]
- Donkotjan, C.; Benjanirut, C.; Angkanaporn, K. Effect of Thunbergia laurifolia leaves on the growth performance, nutrient digestibility and liver antioxidant enzymes of broilers fed mycotoxin-contaminated feed. Anim. Prod. Sci. 2020, 60, 1885–1893. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 2019, 95, 183–195. [Google Scholar] [CrossRef]
- Lamuela-Raventós, R.M. Folin–Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. Meas. Antioxid. Act. Capacit. Recent. Trends Appl. 2018, 107–115. [Google Scholar]
- Sunanta, P.; Chung, H.H.; Kunasakdakul, K.; Ruksiriwanich, W.; Jantrawut, P.; Hongsibsong, S.; Sommano, S.R. Genomic relationship and physiochemical properties among raw materials used for Thai black garlic processing. Food Sci. Nutr. 2020, 8, 4534–4545. [Google Scholar] [CrossRef]
- Kek, S.P.; Chin, N.L.; Yusof, Y.A.; Tan, S.W.; Chua, L.S. Classification of entomological origin of honey based on its physicochemical and antioxidant properties. Int. J. Food Prop. 2017, 20, S2723–S2738. [Google Scholar] [CrossRef]
- Li, S.; Han, M.; Zhang, Y.; Ishfaq, M.; Liu, R.; Wei, G.; Zhang, X.; Zhang, X. Effect of Curcumin as feed supplement on immune response and pathological changes of broilers exposed to Aflatoxin B1. Biomolecules 2022, 12, 1188. [Google Scholar] [CrossRef]
- Lin, M.-J.; Chang, S.-C.; Tso, K.-H.; Lin, W.-C.; Chang, C.-L.; Lee, T.-T. Effect of T-2 toxin and antioxidants on angel wing incidence and severity in White Roman geese. J. Appl. Anim. Res. 2018, 46, 340–348. [Google Scholar] [CrossRef]
- Kauffman, S.A. Autocatalytic sets of proteins. J. Theor. Biol. 1986, 119, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef] [PubMed]
- O’sullivan, M.; Byrne, D.; Jensen, M.; Andersen, H.J.; Vestergaard, J. A comparison of warmed-over flavour in pork by sensory analysis, GC/MS and the electronic nose. Meat Sci. 2003, 65, 1125–1138. [Google Scholar] [CrossRef]
- Witte, V.C.; Krause, G.F.; Bailey, M.E. A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage. J. Food Sci. 1970, 35, 582–585. [Google Scholar] [CrossRef]
- Larionov, A.; Krause, A.; Miller, W. A standard curve based method for relative real time PCR data processing. BMC Bioinform. 2005, 6, 62. [Google Scholar] [CrossRef]
Total Phenol Compound (mg GAE/g) | DPPH (μmol TE/g) | 1ABTS (IC50) | FRAP (mM Fe2+/g) | |
---|---|---|---|---|
T. laurifolia extract | 0.56 ± 0.05 | 7.26 ± 0.98 | 3.70 ± 0.52 | 51.26 ± 1.5 |
Item | 1T1 | T2 | T3 | T4 | T5 | SEM | p-Value |
---|---|---|---|---|---|---|---|
Initial BW, g | 88.3 | 82.8 | 84.7 | 82.7 | 86.0 | 1.61 | 0.1290 |
Final BW, g | 2303.0 a | 1831.4 b | 2244.9 a | 2307.3 a | 2236.6 a | 44.06 | <0.0001 |
ADG, g | 63.3 a | 50.0 b | 61.7 a | 63.6 a | 61.4 a | 1.82 | <0.0001 |
ADFI, g | 145.8 | 144.9 | 144.1 | 139.9 | 139.7 | 1.27 | 0.0880 |
FCR | 2.3 b | 2.9 a | 2.3 b | 2.2 b | 2.3 b | 0.08 | 0.0001 |
Item | 1T1 | T2 | T3 | T4 | T5 | SEM | p-Value |
---|---|---|---|---|---|---|---|
Total cholesterol, mg/dL | 110.0 c | 151.0 ab | 161.3 a | 157.7 ab | 129.3 bc | 9.28 | 0.0135 |
Triglyceride, mg/dL | 122.0 c | 183.3 ab | 177.0 ab | 158.0 bc | 218.3 a | 16.51 | 0.0232 |
AST, U/L | 27.0 d | 43.3 a | 33.0 c | 29.7 cd | 37.7 b | 1.41 | <0.0001 |
ALT, U/L | 32.7 ab | 62.3 a | 47.3 a | 32.3 b | 44.0 a | 3.17 | 0.0001 |
ALP, U/L | 846.3 a | 834.0 a | 749.7 b | 662.0 c | 833.67 a | 18.05 | 0.1922 |
Total protein, mg/dL | 2.73 c | 2.87 bc | 3.03 abc | 3.30 a | 3.23 ab | 0.12 | 0.0431 |
Albumin, mg/dL | 1.37 | 1.37 | 1.27 | 1.43 | 1.43 | 0.06 | 0.2742 |
Globulin, mg/dL | 1.37 b | 1.67 a | 1.60 ab | 1.86 a | 1.80 a | 0.08 | 0.0118 |
Item | 1T1 | T2 | T3 | T4 | T5 | SEM | p-Value |
---|---|---|---|---|---|---|---|
Duodenum | |||||||
VH | 904.36 e | 974.41 d | 989.81 c | 1069.15 b | 1098.01 a | 1.32 | <0.0001 |
VW | 115.85 d | 133.42 ab | 136.02 a | 126.65 c | 128.02 bc | 1.08 | 0.0015 |
CD | 214.37 b | 222.21 a | 226.21 a | 178.33 c | 166.74 d | 0.96 | <0.0001 |
VH:CD | 4.52 c | 4.62 c | 4.75 c | 6.58 b | 7.31 a | 0.10 | <0.0001 |
Jejunum | |||||||
VH | 775.95 e | 782.95 d | 799.55 c | 857.01 b | 961.79 a | 1.15 | <0.0001 |
VW | 113.55 ab | 103.52 c | 109.12 b | 117.88 a | 117.59 a | 0.96 | 0.0028 |
CD | 174.95 b | 181.74 a | 180.64 a | 167.56 c | 150.76 d | 0.97 | <0.0001 |
VH:CD | 4.56 c | 4.53 c | 4.37 c | 5.78 b | 6.57 a | 0.05 | <0.0001 |
Ileum | |||||||
VH | 539.73 e | 616.03 d | 627.63 c | 700.65 a | 650.57 b | 1.76 | <0.0001 |
VW | 98.39 | 93.37 | 98.77 | 94.85 | 91.33 | 1.67 | 0.2557 |
CD | 101.35 a | 86.01 b | 90.03 b | 102.74 a | 84.81 b | 1.11 | 0.0011 |
VH:CD | 6.00 d | 7.33 c | 7.93 ab | 7.56 bc | 8.18 a | 0.11 | 0.0013 |
Item | 1T1 | T2 | T3 | T4 | T5 | SEM | p-Value |
---|---|---|---|---|---|---|---|
Carcass traits | |||||||
Dressing, % | 87.73 | 86.23 | 87.30 | 87.65 | 85.90 | 0.57 | 0.0822 |
Breast, g | 10.81 | 9.75 | 10.02 | 10.48 | 11.20 | 0.52 | 0.2814 |
Thigh, g | 7.49 | 7.71 | 7.90 | 8.22 | 7.82 | 0.29 | 0.4990 |
Wing, g | 12.07 | 12.07 | 12.19 | 12.40 | 12.56 | 0.22 | 0.4555 |
Relative organ weight, g | |||||||
Liver, g | 2.24 | 2.34 | 2.28 | 2.04 | 2.17 | 0.08 | 0.0696 |
Spleen | 0.11 | 0.09 | 0.09 | 0.09 | 0.09 | 0.01 | 0.5229 |
Kidney | 0.70 | 0.74 | 0.75 | 0.76 | 0.72 | 0.02 | 0.4222 |
Bursa of fabricius | 0.17 | 0.18 | 0.16 | 0.18 | 0.17 | 0.01 | 0.7154 |
Heart | 0.61 | 0.65 | 0.63 | 0.66 | 0.65 | 0.02 | 0.6874 |
Gizzard | 4.71 | 4.75 | 4.79 | 4.49 | 5.07 | 0.14 | 0.0918 |
Item | 1T1 | T2 | T3 | T4 | T5 | SEM | p-Value |
---|---|---|---|---|---|---|---|
pH value45 min | 5.91 | 6.16 | 6.21 | 5.95 | 5.90 | 0.12 | 0.2494 |
pH value24 h | 5.60 | 5.58 | 5.66 | 5.57 | 5.55 | 0.06 | 0.6975 |
Cook loss, % | 30.60 | 31.81 | 32.52 | 33.91 | 33.95 | 1.30 | 0.3258 |
Drip loss, % | 2.83 | 2.20 | 2.56 | 2.42 | 2.48 | 0.66 | 0.9743 |
Shear force, N | 32.20 b | 34.20 b | 29.48 b | 32.37 b | 45.44 a | 3.35 | 0.0374 |
TBARS, mg MDA/kg | 1.59 | 1.45 | 1.50 | 1.55 | 1.54 | 0.06 | 0.5031 |
Meat color | |||||||
L* | 40.50 | 42.20 | 43.00 | 38.80 | 42.15 | 1.74 | 0.4822 |
a* | 15.90 | 16.79 | 16.28 | 14.83 | 16.71 | 0.64 | 0.2671 |
b* | 4.03 c | 7.23 a | 7.04 a | 4.36 bc | 6.46 ab | 0.72 | 0.0258 |
Items | 1–3 Weeks | 4–5 Weeks |
---|---|---|
Ingredient (g/kg feed) | ||
Corn meal | 700.00 | 575.00 |
Rice bran | 0.00 | 75.00 |
Full-fat soybean meal | 0.00 | 25.00 |
Soybean meal, 44% | 205.00 | 192.50 |
Meat meal, 50% | 25.00 | 25.00 |
Limestone | 10.00 | 25.00 |
Calcium carbonate | 0.00 | 47.40 |
Monopotassium phosphate, 22% | 10.50 | 17.50 |
1 Premix | 2.50 | 2.50 |
Methionine | 0.90 | 1.50 |
Toxin binder | 1.00 | 0.50 |
Salt | 0.00 | 2.00 |
Multi protein plus, 68% | 45.00 | 11.00 |
Phytase | 0.10 | 0.10 |
Total | 1000.00 | 1000.00 |
Nutrient composition (% dry matter basis) | ||
Moisture | 12.23 | 9.78 |
Ash | 6.79 | 11.91 |
Crude protein | 22.22 | 18.0 |
Crude fiber | 4.56 | 3.82 |
Crude fat | 5.15 | 4.59 |
Gross energy (Cal/g) | 2964.92 | 3581.65 |
Target Gene | Primer Sequences | Product Size (bp) | |
---|---|---|---|
Housekeeping gene | |||
GAPDH | Forward | CTGGCATTGCACTGAACGAC | 165 |
Reverse | CTCCAACAAAGGGTCCTGCT | ||
Immune-related genes | |||
IL-6 | Forward | GCGGAACCAAGAGCAGAGATGAG | 130 |
Reverse | CCACGGCAGGACTGGATAATAACC | ||
IL-8 | Forward | GCTGTCCTGGCTCTTCTCCT | 120 |
Reverse | GCACACCTCTCTGTTGTCCTTC | ||
TNF-α | Forward | CCGTGGTCAGTTTCCATCAGG | 117 |
Reverse | ACTTTGCAGTTAGGTGACGCT | ||
P450 (Metabolism of AFB1) genes | |||
CYP1A1 | Forward | AGGACGGAGGCTGACAAGGTG | 104 |
Reverse | AGGATGGTGGTGAGGAAGAGGAAG | ||
CYP1A2 | Forward | CCACGCAGATCCCAAACGAG | 120 |
Reverse | TGTGAGGGTACGTCACGAGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lumsangkul, C.; Kaewtui, P.; Huanhong, K.; Tso, K.-H. Antioxidative and Antimycotoxigenic Efficacies of Thunbergia laurifolia Lindl. for Addressing Aflatoxicosis in Cherry Valley Ducks. Toxins 2024, 16, 334. https://doi.org/10.3390/toxins16080334
Lumsangkul C, Kaewtui P, Huanhong K, Tso K-H. Antioxidative and Antimycotoxigenic Efficacies of Thunbergia laurifolia Lindl. for Addressing Aflatoxicosis in Cherry Valley Ducks. Toxins. 2024; 16(8):334. https://doi.org/10.3390/toxins16080334
Chicago/Turabian StyleLumsangkul, Chompunut, Phruedrada Kaewtui, Kiattisak Huanhong, and Ko-Hua Tso. 2024. "Antioxidative and Antimycotoxigenic Efficacies of Thunbergia laurifolia Lindl. for Addressing Aflatoxicosis in Cherry Valley Ducks" Toxins 16, no. 8: 334. https://doi.org/10.3390/toxins16080334
APA StyleLumsangkul, C., Kaewtui, P., Huanhong, K., & Tso, K. -H. (2024). Antioxidative and Antimycotoxigenic Efficacies of Thunbergia laurifolia Lindl. for Addressing Aflatoxicosis in Cherry Valley Ducks. Toxins, 16(8), 334. https://doi.org/10.3390/toxins16080334