Recent Advances of Wearable Antennas in Materials, Fabrication Methods, Designs, and Their Applications: State-of-the-Art
Abstract
:1. Introduction
2. Flexible Materials
2.1. Conductive Materials
2.2. Substrate Materials
3. Fabrication Methods
3.1. Screen Printing and Gravure
3.2. Flexography
3.3. Inkjet Printing or Direct Ink Writing
3.4. Stitching, Sewing, and Embroidery
3.5. Adhesives
3.6. Direct Cutting
3.7. Direct Handwriting (DHW)
4. Wearable Antenna Designs
4.1. Button Antennas
4.2. Miniaturized Single and Multiband Wearable Antennas
5. Applications of Wearable Antennas
6. Conclusions and Future Direction
Author Contributions
Funding
Conflicts of Interest
References
- Mumtaz, S.; Bo, A.; Al-Dulaimi, A.; Tsang, K.F. Guest Editorial 5G and Beyond Mobile Technologies and Applications for Industrial IoT (IIoT). IEEE Trans. Ind. Informatics 2018, 14, 2588–2591. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Z.; Hu, R.Q.; Qian, Y. Wearable Communications in 5G: Challenges and Enabling Technologies. IEEE Veh. Technol. Mag. 2018, 13, 100–109. [Google Scholar] [CrossRef]
- Baker, S.B.; Xiang, W.; Atkinson, I. Internet of Things for Smart Healthcare: Technologies, Challenges, and Opportunities. IEEE Access 2017, 5, 26521–26544. [Google Scholar] [CrossRef]
- Avila, L.; Bailey, M. The Wearable Revolution. IEEE Eng. Med. Biol. Mag. 2015, 35, 104. [Google Scholar] [CrossRef]
- Ericsson, A.B. Cellular networks for Massive IoT–Enabling low power wide area applications. Ericsson 2016, 1–13. [Google Scholar]
- Akpakwu, G.A.; Silva, B.J.; Hancke, G.P.; Abu-Mahfouz, A.M. A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges. IEEE Access 2018, 6, 3619–3647. [Google Scholar] [CrossRef]
- CISCO, T. Cisco Visual Networking index: Global Mobile Data Traffic Forecast Update, 2014–2019. Growth Lakel. 2011, 4, 2010–2015. [Google Scholar]
- Abbasi, Q.H.; Ur Rehman, M.; Qaraqe, K.; Alomainy, A. Advances in Body-Centric Wireless Communication: Applications and State-of-the-Art; Institution of Engineering and Technology: London, UK, 2016; pp. 1–438. [Google Scholar]
- Negra, R.; Jemili, I.; Belghith, A. Wireless Body Area Networks: Applications and Technologies. Procedia Comput. Sci. 2016, 83, 1274–1281. [Google Scholar] [CrossRef] [Green Version]
- Hadjidj, A.; Souil, M.; Bouabdallah, A.; Challal, Y.; Owen, H. Wireless sensor networks for rehabilitation applications: Challenges and opportunities. J. Netw. Comput. Appl. 2013, 36, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Caldeira, J.M.L.P.; Rodrigues, J.; Lorenz, P. Toward ubiquitous mobility solutions for body sensor networks on healthcare. IEEE Commun. Mag. 2012, 50, 108–115. [Google Scholar] [CrossRef]
- Hall, P.S.; Hao, Y. Antenna and Propagation for Body-Centric Wireless Communications; Artech House: Norwood, MA, USA, 2006. [Google Scholar]
- Seneviratne, S.; Hu, Y.; Nguyen, T.; Lan, G.; Khalifa, S.; Thilakarathna, K.; Hassan, M.; Seneviratne, A. A Survey of Wearable Devices and Challenges. IEEE Commun. Surv. Tutorials 2017, 19, 2573–2620. [Google Scholar] [CrossRef]
- Dakir, R.; Zbitou, J.; Mouhsen, A.; Tribak, A.; Sanchez, A.M.; Latrach, M. A new compact and miniaturized multiband uniplanar CPW-fed Monopole antenna with T-slot inverted for multiple wireless applications. Int. J. Microw. Wirel. Technol. 2017, 9, 1541–1545. [Google Scholar] [CrossRef]
- Rahimi, M.; Zarrabi, F.B.; Ahmadian, R.; Mansouri, Z.; Keshtkar, A. Miniaturization of Antenna for Wireless Application with Difference Metamaterial Structures. Prog. Electromagn. Res. 2014, 145, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Ashyap, A.Y.I.; Abidin, Z.Z.; Dahlan, S.H.; Majid, H.A.; Waddah, A.M.A.; Kamarudin, M.R.; Oguntala, G.A.; Abd-Alhameed, R.; Noras, J.M. Inverted E-Shaped Wearable Textile Antenna for Medical Applications. IEEE Access 2018, 6, 35214–35222. [Google Scholar] [CrossRef]
- Soh, P.J.; VandenBosch, G.A.E.; Mercuri, M.; Schreurs, D.M.-P. Wearable Wireless Health Monitoring: Current Developments, Challenges, and Future Trends. IEEE Microw. Mag. 2015, 16, 55–70. [Google Scholar] [CrossRef]
- Klemm, M.; Kovcs, I.; Pedersen, G.; Troster, G. Novel small-size directional antenna for UWB WBAN/WPAN applications. IEEE Trans. Antennas Propag. 2005, 53, 3884–3896. [Google Scholar] [CrossRef] [Green Version]
- Mandal, B.; Chatterjee, A.; Parui, S.K. A wearable button antenna with FSS superstrate for WLAN health care applications. In Proceedings of the 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio2014), London, UK, 8–10 December 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Klemm, M.; Troester, G. Textile UWB Antennas for Wireless Body Area Networks. IEEE Trans. Antennas Propag. 2006, 54, 3192–3197. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Abbott, D.; Fumeaux, C. Omnidirectional Cylindrical Dielectric Resonator Antenna With Dual Polarization. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 515–518. [Google Scholar] [CrossRef] [Green Version]
- Farooq, W.; Ur-Rehman, M.; Abbassi, Q.H.; Yang, X.; Qaraqe, K. Design of a finger ring antenna for wireless sensor networks. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; pp. 1–4. [Google Scholar]
- Chen, S.J.; Kaufmann, T.; Fumeaux, C. Wearable textile microstrip patch antenna for multiple ISM band communications. In Proceedings of the 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, FL, USA, 7–13 July 2013; pp. 1860–1861. [Google Scholar] [CrossRef]
- Chi, Y.-J.; Chen, F.-C. On-Body Adhesive-Bandage-Like Antenna for Wireless Medical Telemetry Service. IEEE Trans. Antennas Propag. 2014, 62, 2472–2480. [Google Scholar] [CrossRef]
- Santas, J.; Alomainy, A.; Hao, Y. Textile antennas for on-body communications: Techniques and properties. In Proceedings of the 2nd European Conference on Antennas and Propagation (EuCAP 2007), Edinburgh, UK, 11–16 November 2007. [Google Scholar] [CrossRef]
- Flores-Cuadras, J.R.; Medina-Monroy, J.L.; Chavez-Perez, R.A.; Lobato-Morales, H. Novel ultra-wideband flexible antenna for wearable wrist worn devices with 4G LTE communications. Microw. Opt. Technol. Lett. 2017, 59, 777–783. [Google Scholar] [CrossRef]
- Deng, C.-P.; Liu, X.-Y.; Zhang, Z.-K.; Tentzeris, M.M. A Miniascape-Like Triple-Band Monopole Antenna for WBAN Applications. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1330–1333. [Google Scholar] [CrossRef]
- Narbudowicz, A.; John, M.; Sipal, V.; Bao, X.; Ammann, M. Design Method for Wideband Circularly Polarized Slot Antennas. IEEE Trans. Antennas Propag. 2015, 63, 4271–4279. [Google Scholar] [CrossRef] [Green Version]
- Mantash, M.; Tarot, A.-C.; Collardey, S.; Mahdjoubi, K. Investigation of Flexible Textile Antennas and AMC Reflectors. Int. J. Antennas Propag. 2012, 2012, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Florencio, R.; Boix, R.R.; Carrasco, E.; Encinar, J.A.; Barba, M.; Pérez-Palomino, G. Broadband reflectarrays made of cells with three coplanar parallel dipoles. Microw. Opt. Technol. Lett. 2014, 56, 748–753. [Google Scholar] [CrossRef]
- Khaleel, H.R. Design and Fabrication of Compact Inkjet Printed Antennas for Integration Within Flexible and Wearable Electronics. IEEE Trans. Components Packag. Manuf. Technol. 2014, 4, 1722–1728. [Google Scholar] [CrossRef]
- Su, S.-W.; Hsieh, Y.-T. Integrated Metal-Frame Antenna for Smartwatch Wearable Device. IEEE Trans. Antennas Propag. 2015, 63, 3301–3305. [Google Scholar] [CrossRef]
- Rahim, H.A.; Abdulmalek, M.; Soh, P.J.; VandenBosch, G.A.E. Evaluation of a broadband textile monopole antenna performance for subject-specific on-body applications. Appl. Phys. A 2016, 123, 3–8. [Google Scholar] [CrossRef]
- Prajapati, P.R. Application of Defected Ground Structure to Suppress Out-of-Band Harmonics for WLAN Microstrip Antenna. Int. J. Microw. Sci. Technol. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; VandenBosch, G.A.E. Low-Profile Dual-Band Pattern Diversity Patch Antenna Based on Composite Right/Left-Handed Transmission Line. IEEE Trans. Antennas Propag. 2017, 65, 2808–2815. [Google Scholar] [CrossRef]
- Lin, H.; Zaeimbashi, M.; Sun, N.; Liang, X.; Chen, H.; Dong, C.; Matyushov, A.; Wang, X.; Guo, Y.; Gao, Y.; et al. Future Antenna Miniaturization Mechanism: Magnetoelectric Antennas. In Proceedings of the 2018 IEEE/MTT-S International Microwave Symposium-IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 220–223. [Google Scholar] [CrossRef]
- Chen, S.J.; Ranasinghe, D.C.; Fumeaux, C. A Robust Snap-On Button Solution for Reconfigurable Wearable Textile Antennas. IEEE Trans. Antennas Propag. 2018, 66, 4541–4551. [Google Scholar] [CrossRef]
- Chen, S.J.; Fumeaux, C.; Monnai, Y.; Withayachumnankul, W. Dual Circularly Polarized Series-Fed Microstrip Patch Array with Coplanar Proximity Coupling. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1500–1503. [Google Scholar] [CrossRef]
- Karthikeya, G.S.; Devaiah, K.K.; Sharma, R.S.G.; Patel, M.H.B.; Mandi, N.R.; Thyagaraj, T. Wearable button antenna array for V band application. In Proceedings of the 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), Kaohsiung, Taiwan, 26–29 July 2016; pp. 283–284. [Google Scholar]
- Li, S.-H.; Li, J.-S. Smart patch wearable antenna on Jeans textile for body wireless communication. In Proceedings of the 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Hangzhou, China, 3–6 December 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Haq, M.A.U.; Koziel, S. On topology modifications for wideband antenna miniaturization. AEU-Int. J. Electron. Commun. 2018, 94, 215–220. [Google Scholar] [CrossRef]
- Azeez, H.I.; Yang, H.-C.; Chen, W.-S. Wearable Triband E-Shaped Dipole Antenna with Low SAR for IoT Applications. Electronics 2019, 8, 665. [Google Scholar] [CrossRef] [Green Version]
- Chung, K.L.; Xie, S.; Li, Y.; Liu, R.; Ji, S.; Zhang, C. A Circular-Polarization Reconfigurable Meng-Shaped Patch Antenna. IEEE Access 2018, 6, 51419–51428. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, S.; Hu, X.; VandenBosch, G.A.E. Aperture-coupled wearable antenna with miniature feeding network. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; Volume 65, pp. 1031–1034. [Google Scholar] [CrossRef]
- Boukarkar, A.; Lin, X.Q.; Jiang, Y.; Yu, Y.Q. Miniaturized Single-Feed Multiband Patch Antennas. IEEE Trans. Antennas Propag. 2017, 65, 850–854. [Google Scholar] [CrossRef]
- Alomainy, A.; Sani, A.; Rahman, A.; Santas, J.G.; Hao, Y. Transient characteristics of wearable antennas and radio propagation channels for ultrawideband body-centric wireless communications. IEEE Trans. Antennas Propag. 2009, 57, 875–884. [Google Scholar] [CrossRef]
- Casula, G.A.; Montisci, G. A Design Rule to Reduce the Human Body Effect on Wearable PIFA Antennas. Electronics 2019, 8, 244. [Google Scholar] [CrossRef] [Green Version]
- Van Baelen, D.; Lemey, S.; Verhaevert, J.; Rogier, H. Improved Fabrication Methodology for Foldable All-Textile Cavity-Backed Slot Antennas. In Proceedings of the 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), New Delhi, India, 9–15 March 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Khan, T.; Rahman, M.; Akram, A.; Amin, Y.; Tenhunen, H. A Low-Cost CPW-Fed Multiband Frequency Reconfigurable Antenna for Wireless Applications. Electronics 2019, 8, 900. [Google Scholar] [CrossRef] [Green Version]
- Kadry, M.; El Atrash, M.; Abdalla, M.A. Design of an Ultra-thin Compact Flexible Dual-Band Antenna for Wearable Applications. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 1949–1950. [Google Scholar] [CrossRef]
- Bengio, E.A.; Senic, D.; Taylor, L.W.; Headrick, R.J.; King, M.; Chen, P.; Little, C.A.; Ladbury, J.; Long, C.J.; Holloway, C.L.; et al. Carbon nanotube thin film patch antennas for wireless communications. Appl. Phys. Lett. 2019, 114, 203102. [Google Scholar] [CrossRef]
- Zhu, J.; Fox, J.J.; Yi, N.; Cheng, H. Structural Design for Stretchable Microstrip Antennas. ACS Appl. Mater. Interfaces 2019, 11, 8867–8877. [Google Scholar] [CrossRef]
- Abbasi, Q.H.; Ur-Rehman, M.; Yang, X.; Alomainy, A.; Qaraqe, K.; Serpedin, E. Ultrawideband Band-Notched Flexible Antenna for Wearable Applications. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1606–1609. [Google Scholar] [CrossRef]
- Wagih, M.; Wei, Y.; Komolafe, A.; Torah, R.; Beeby, S. Reliable UHF Long-Range Textile-Integrated RFID Tag Based on a Compact Flexible Antenna Filament. Sensors 2020, 20, 3435. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Meadmore, K.L.; Freeman, C.; Grabham, N.; Hughes, A.-M.; Wei, Y.; Torah, R.; Glanc-Gostkiewicz, M.; Beeby, S.; Tudor, J. Development of User-Friendly Wearable Electronic Textiles for Healthcare Applications. Sensors 2018, 18, 2410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, S.; Soh, P.J.; VandenBosch, G.A.E. Dual-Band Textile MIMO Antenna Based on Substrate-Integrated Waveguide (SIW) Technology. IEEE Trans. Antennas Propag. 2015, 63, 4640–4647. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Brocker, D.E.; Sieber, P.E.; Werner, D.H. A Compact, Low-Profile Metasurface-Enabled Antenna for Wearable Medical Body-Area Network Devices. IEEE Trans. Antennas Propag. 2014, 62, 4021–4030. [Google Scholar] [CrossRef]
- Sankaralingam, S.; Gupta, B. Determination of Dielectric Constant of Fabric Materials and Their Use as Substrates for Design and Development of Antennas for Wearable Applications. IEEE Trans. Instrum. Meas. 2010, 59, 3122–3130. [Google Scholar] [CrossRef]
- Yan, S.; Soh, P.J.; VandenBosch, G.A.E. Low-Profile Dual-Band Textile Antenna with Artificial Magnetic Conductor Plane. IEEE Trans. Antennas Propag. 2014, 62, 6487–6490. [Google Scholar] [CrossRef]
- Yan, S.; Soh, P.J.; Vandenbosch, G.A.E. Performance on the human body of a dual-band textile antenna loaded with metamaterials. In Proceedings of the 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015. [Google Scholar]
- Sultan, K.S.; Abdullah, H.H.; Abdallah, E.A.-F. Low-SAR Miniaturized Handset Antenna Using EBG. In Trends in Research on Microstrip Antennas; Mizoram University: Aizawl, India, 2017. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. Fiber-Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications. Adv. Mater. 2014, 26, 5310–5336. [Google Scholar] [CrossRef]
- Mardonova, M.; Choi, Y. Review of Wearable Device Technology and Its Applications to the Mining Industry. Energies 2018, 11, 547. [Google Scholar] [CrossRef] [Green Version]
- Angueraw, J.; Borjaw, C.; Puente, C. Microstrip fractal-shaped antennas: A review. In Proceedings of the 2nd European Conference on Antennas and Propagation (EuCAP 2007), Edinburgh, UK, 11–16 November 2007; p. 398. [Google Scholar] [CrossRef]
- Chen, Z.N.; Qing, X.; See, S.P. Printed UWB Antennas. In Microstrip and Printed Antennas: New Trends, Techniques and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 305–343. [Google Scholar]
- Salvado, R.; Loss, C.; Gonçalves, R.; Pinho, P. Textile Materials for the Design of Wearable Antennas: A Survey. Sensors 2012, 12, 15841–15857. [Google Scholar] [CrossRef]
- Rahman, H.; Abdulaziz, N.; Abdulmalek, M.F.; Soh, P.J.; Hasliza; Rahim, A.; Giman, F.N.; Abdullah, B.M.; Islam, M.T. Review of a dual band textile antenna. In Proceedings of the 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA), Ras Al Khaimah, UAE, 6–8 December 2016; pp. 1–3. [Google Scholar] [CrossRef]
- El Abbasi, M.; Kabalan, K. Revolutionizing the development of Wearable Antennas. In Proceedings of the 2019 International Workshop on Antenna Technology (iWAT), Miami, FL, USA, 3–6 March 2019; pp. 54–57. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Volakis, J.L. Textile Antennas for Wearable Radio Frequency Applications. Textiles Light Ind. Sci. Technol. 2013, 2, 105–112. [Google Scholar]
- Sabban, A. Wearable Antennas for Medical Applications. Adv. Microstrip Antennas with Recent Appl. 2013, 13, 305–355. [Google Scholar]
- Sharizal, F.S.; Suriani, M.S. Review of the Current Design on Wearable Antenna in Medical Field and its Challenges. J. Teknol. 2016, 2, 111–117. [Google Scholar]
- Khanna, G.; Sharma, N. Fractal Antenna Geometries: A Review. Int. J. Comput. Appl. 2016, 153, 29–32. [Google Scholar] [CrossRef]
- Priya, A.; Kumar, A.; Chauhan, B. A Review of Textile and Cloth Fabric Wearable Antennas. Int. J. Comput. Appl. 2015, 116, 1–5. [Google Scholar] [CrossRef]
- Stoppa, M.; Chiolerio, A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [Green Version]
- Reig, C.; Ávila-Navarro, E. Printed Antennas for Sensor Applications: A Review. IEEE Sensors J. 2013, 14, 2406–2418. [Google Scholar] [CrossRef]
- Nepa, P.; Rogier, H. Wearable Antennas for Off-Body Radio Links at VHF and UHF Bands: Challenges, the state of the art, and future trends below 1 GHz. IEEE Antennas Propag. Mag. 2015, 57, 30–52. [Google Scholar] [CrossRef]
- Singh, J. Body Wearable Textile Antenna—A Survey. Semantic Scholar. 2016, 5, 12–17. [Google Scholar]
- Manwal, Y.; Bisht, S.; Kumari, S.; Rai, S.; Chauhan, B. Literature Review on Wearable Textile Antennas 1; IRD India: Bhubaneswar, India, 2016; pp. 35–39. [Google Scholar]
- Kaur, R.; Singh, H. Review Paper on Fractal Antenna Geometries and Its Applications. Int. Res. J. Adv. Eng. Sci. 2017, 2, 173–175. [Google Scholar]
- Badhan, K. Analysis of Different Performance Parameters of Bodywearable Antenna–A Review. Adv. Wirel. Mob. Commun. 2017, 10, 735–745. [Google Scholar]
- Bhattacharyya, K. Design and Analysis of Slotted Microstrip Patch Antenna: A review. J. Telecommun. Study 2018, 3. [Google Scholar]
- Paper, C. A review on optically transparent antenna. Adv. Res. Electr. Electron. Eng. 2017, 3, 422–425. [Google Scholar]
- Rogier, H. Handbook of Smart Textiles; Springer: Berlin, Germany, 2014; pp. 1–21. [Google Scholar]
- Goyal, A.; Gupta, A.; Agarwal, L. A Review Paper on Circularly Polarized Microstrip Patch Antenna. IEEE Trans. Antennas Propag. 2016, 2, 138–142. [Google Scholar]
- Fernández-Prades, C.; Rogier, H.; Collado, A.; Tentzeris, M.M.; Ferná Ndez-Prades, C. Flexible Substrate Antennas. Int. J. Antennas Propag. 2012, 2012, 1–2. [Google Scholar] [CrossRef]
- Chandravanshi, A.; Rai, A.; Chaitanya, G. Wearable antenna: A critical review. In Proceedings of the 2016 11th International Conference on Industrial and Information Systems (ICIIS), Roorkee, India, 3–4 December 2016; pp. 486–491. [Google Scholar]
- Kumar, A.; Raghavan, S. A Review: Substrate Integrated Waveguide Antennas and Arrays. J. Telecommun. Electron. Comput. Eng. 2016, 8, 95–104. [Google Scholar]
- Mahadzir, M.A.; Hassan, N.; Khirotdin, R.K.; Ngadiron, M.F. Overview of Printing Wearable Antenna. J. Fundam. Appl. Sci. 2018, 10, 397–411. [Google Scholar]
- Alemour, B.; Yaacob, M.H.; Lim, H.N.; Hassan, M.R. Review of electrical properties of graphene conductive composites. Int. J. Nanoelectron. Mater. 2018, 11, 371–398. [Google Scholar]
- Kazani, I.; Halili, A.; Guxho, G. Nano-based Wearable Textile Sensors: A Review on Latest Developments. J. Nat. Tech. Sci. 2017, 43, 144–161. [Google Scholar]
- Liu, C.; Guo, Y.; Xiao, S.; Tmm, R. A Review of Implantable Antennas for Wireless Biomedical Devices. Forum Electromagn. Res. Methods Appl. Technol. 2010, 14, 1–8. [Google Scholar]
- Manna, S.; Bose, T.; Bera, R.; Kalam, A.; Das, S.; Sharma, K. Wearable Antennas for Medical Application: A Review. In Lecture Notes in Electrical Engineering; Springer: Berlin, Germany, 2017; Volume 443, pp. 115–130. [Google Scholar] [CrossRef]
- Costanzo, A.; Masotti, D.; Aldrigo, M. Compact, Wearable Antennas for Battery-Less Systems Exploiting Fabrics and Magneto-Dielectric Materials. Electronics 2014, 3, 474–490. [Google Scholar] [CrossRef]
- Aun, N.F.M.; Soh, P.J.; Al-Hadi, A.A.; Jamlos, M.F.; VandenBosch, G.A.E.; Schreurs, D. Revolutionizing Wearables for 5G: 5G Technologies: Recent Developments and Future Perspectives for Wearable Devices and Antennas. IEEE Microw. Mag. 2017, 18, 108–124. [Google Scholar] [CrossRef]
- Tran, L.-G.; Cha, H.-K.; Park, W.-T. RF power harvesting: A review on designing methodologies and applications. Micro Nano Syst. Lett. 2017, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Paracha, K.N.; Rahim, S.K.A.; Soh, P.J.; Khalily, M. Wearable Antennas: A Review of Materials, Structures, and Innovative Features for Autonomous Communication and Sensing. IEEE Access 2019, 7, 56694–56712. [Google Scholar] [CrossRef]
- Wang, J.C.; Lim, E.G.; Leach, M.; Wang, Z.; Man, K.L. Review of wearable antennas for WBAN applications. IAENG Int. J. Comput. Sci. 2016, 43, 474–480. [Google Scholar]
- Roudjane, M.; Khalil, M.; Miled, A.; Messaddeq, Y. New generationwearable antenna based on multimaterial fiber forwireless communication and real-time breath detection. Photonics 2018, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Xu, B. A Short Review of Textile Applications in Antenna Design. Trends Text. Eng. Fash. Technol. 2018, 1. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yang, J.; Chen, Z.; Ren, P.; Huang, M. Design and Characterization of a Miniaturized Antenna Based on Palisade-Shaped Metasurface. Int. J. Antennas Propag. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Basu, A.; Koul, S.K. Reconfigurable Microstrip Patch Antenna with Switchable Polarization. IETE J. Res. 2018, 443, 1–10. [Google Scholar] [CrossRef]
- Fallahpour, M.; Zoughi, R. Antenna Miniaturization Techniques: A Review of Topology- and Material-Based Methods. IEEE Antennas Propag. Mag. 2018, 60, 38–50. [Google Scholar] [CrossRef]
- Saeidi, T.; Ismail, I.; Wen, W.P.; Alhawari, A.R.H.; Mohammadi, A. Ultra-Wideband Antennas for Wireless Communication Applications. Int. J. Antennas Propag. 2019, 2019, 1–25. [Google Scholar] [CrossRef]
- Mohamadzade, B.; Hashmi, R.M.; Simorangkir, R.B.V.B.; Gharaei, R.; Rehman, S.U.; Abbasi, Q.H. Recent Advances in Fabrication Methods for Flexible Antennas in Wearable Devices: State of the Art. Sensors 2019, 19, 2312. [Google Scholar] [CrossRef] [Green Version]
- Monne, M.A.; Lan, X.; Chen, M.Y. Material Selection and Fabrication Processes for Flexible Conformal Antennas. Int. J. Antennas Propag. 2018, 2018, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ray, T.; Choi, J.; Bandodkar, A.J.; Krishnan, S.; Gutruf, P.; Tian, L.; Ghaffari, R.; Rogers, J.A. Bio-Integrated Wearable Systems: A Comprehensive Review. Chem. Rev. 2019, 119, 5461–5533. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Basir, A.B.; Herbert, R.; Kim, J.; Yoo, H.; Yeo, W. Soft Materials, Stretchable Mechanics, and Optimized Designs for Body-Wearable Compliant Antennas. ACS Appl. Mater. Interfaces 2019, 12, 3059–3067. [Google Scholar] [CrossRef]
- Sang, M.; Shin, J.; Kim, K.; Yu, K.J. Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications. Nanomaterials 2019, 9, 374. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Pharr, M.; Salvatore, G.A. Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring. ACS Nano 2017, 11, 9614–9635. [Google Scholar] [CrossRef]
- Minoli, D.; Occhiogrosso, B. Practical Aspects for the Integration of 5G Networks and IoT Applications in Smart Cities Environments. Wirel. Commun. Mob. Comput. 2019, 2019, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Apsite, I.; Biswas, A.; Li, Y.; Ionov, L. Microfabrication Using Shape-Transforming Soft Materials. Adv. Funct. Mater. 2020, 30. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Isaia, B.; Brown, L.J.E.; Beeby, S. E-Textiles for Healthy Ageing. Sensors 2019, 19, 4463. [Google Scholar] [CrossRef] [Green Version]
- Moraru, A.; Ursachi, C.; Helerea, E. A New Washable UHF RFID Tag: Design, Fabrication, and Assessment. Sensors 2020, 20, 3451. [Google Scholar] [CrossRef]
- Pei, J.; Fan, J.; Zheng, R. Protecting Wearable UHF RFID Tags With Electro-Textile Antennas: The Challenge of Machine Washability. IEEE Antennas Propag. Mag. 2020. [Google Scholar] [CrossRef]
- Shi, J.; Liu, S.; Zhang, L.; Yang, B.; Shu, L.; Yang, Y.; Ren, M.; Wang, Y.; Chen, J.; Chen, W.; et al. Smart Textile-Integrated Microelectronic Systems for Wearable Applications. Adv. Mater. 2019, 32, e1901958. [Google Scholar] [CrossRef]
- Paracha, K.N.; Butt, A.D.; Murtaza, G.; Babale, S.A.; Soh, P.J. Liquid Metal Antennas: Materials, Fabrication and Applications. Sensors 2019, 20, 177. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Li, Y.; Tian, Q.; Liu, L.; Yao, W.; Chi, C.; Zeng, P.; Zhang, N.; Wu, W. Highly conductive, flexible and stretchable conductors based on fractal silver nanostructures. J. Mater. Chem. C 2018, 6, 3999–4006. [Google Scholar] [CrossRef]
- Kim, N.; Lienemann, S.; Petsagkourakis, I.; Mengistie, D.A.; Kee, S.; Ederth, T.; Gueskine, V.; Leclère, P.; Lazzaroni, R.; Crispin, X.; et al. Elastic conducting polymer composites in thermoelectric modules. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dils, C.; Werft, L.; Walter, H.; Zwanzig, M.; Von Krshiwoblozki, M.; Schneider-Ramelow, M. Investigation of the Mechanical and Electrical Properties of Elastic Textile/Polymer Composites for Stretchable Electronics at Quasi-Static or Cyclic Mechanical Loads. Materials 2019, 12, 3599. [Google Scholar] [CrossRef] [Green Version]
- Park, E.J.; Sim, J.K.; Jeong, M.-G.; Seo, H.O.; Kim, Y.D. Transparent and superhydrophobic films prepared with polydimethylsiloxane-coated silica nanoparticles. RSC Adv. 2013, 3, 12571. [Google Scholar] [CrossRef]
- Lin, C.P.; Chang, C.H.; Cheng, Y.T.; Jou, C.F. Development of a flexible SU-8/PDMS-based antenna. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1108–1111. [Google Scholar]
- Liao, X.; Dulle, M.; Silva, J.M.D.S.E.; Wehrspohn, R.B.; Agarwal, S.; Förster, S.; Hou, H.; Smith, P.; Greiner, A. High strength in combination with high toughness in robust and sustainable polymeric materials. Science 2019, 366, 1376–1379. [Google Scholar] [CrossRef]
- Declercq, F.; Couckuyt, I.; Rogier, H.; Dhaene, T. Environmental High Frequency Characterization of Fabrics Based on a Novel Surrogate Modelling Antenna Technique. IEEE Trans. Antennas Propag. 2013, 61, 5200–5213. [Google Scholar] [CrossRef] [Green Version]
- Hertleer, C.; Van Laere, A.; Van Langenhove, L.; Rogier, H. Influence of Relative Humidity on Textile Antenna Performance. Text. Res. J. 2009, 80, 177–183. [Google Scholar] [CrossRef]
- Rizzoli, V. Resonance Measurement of Single- and Coupled-Microstrip Propagation Constants. IEEE Trans. Microw. Theory Tech. 1977, 25, 113–120. [Google Scholar] [CrossRef]
- Latti, K.-P.; Kettunen, M.; Strom, J.-P.; Silventoinen, P. A Review of Microstrip T-Resonator Method in Determining the Dielectric Properties of Printed Circuit Board Materials. IEEE Trans. Instrum. Meas. 2007, 56, 1845–1850. [Google Scholar] [CrossRef]
- Razaq, A.; Khan, A.A.; Shakir, U.; Arshad, A. Next Generation Flexible Antennas for Radio Frequency Applications. Trans. Electr. Electron. Mater. 2018, 19, 311–318. [Google Scholar] [CrossRef]
- Ha, S.-J.; Jung, C.W. Reconfigurable Beam Steering Using a Microstrip Patch Antenna With a U-Slot for Wearable Fabric Applications. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1228–1231. [Google Scholar] [CrossRef]
- Chahat, N.; Zhadobov, M.; Muhammad, S.A.; Le Coq, L.; Sauleau, R. 60-GHz Textile Antenna Array for Body-Centric Communications. IEEE Trans. Antennas Propag. 2012, 61, 1816–1824. [Google Scholar] [CrossRef]
- Purohit, S.; Raval, F. A Review on Wearable–Textile Patch Antenna. Int. J. Sci. Eng. Res. 2013, 4, 696–702. [Google Scholar]
- Koski, K.; Vena, A.; Syddnheimo, L.; Ukkonen, L.; Rahmat-Samii, Y. Design and Implementation of Electro-Textile Ground Planes for Wearable UHF RFID Patch Tag Antennas. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 964–967. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Feng, Z.; Khaleel, H.R. Fabrication and Measurement Techniques of Wearable and Flexible Antennas. Cult. Tour. 2014, 1, 7–23. [Google Scholar]
- Yuehui, O.; William, C. High Frequency Properties of Electro-Textiles for Wearable Antenna Applications. IEEE Trans. Antennas Propag. 2008, 56, 381–389. [Google Scholar] [CrossRef]
- Creative Sewing. Creative Sewing Wanganui, 2014. Available online: http://www.creativesewing.co.nz/ (accessed on 15 April 2020).
- Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.; Shim, M.-B.; Jeon, S.; Chung, D.-Y.; et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 2012, 7, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Trajkovikj, J.; Zurcher, J.-F.; Skrivervik, A.K. PDMS, A Robust Casing for Flexible W-BAN Antennas. IEEE Antennas Propag. Mag. 2013, 55, 287–297. [Google Scholar] [CrossRef]
- Chen, S.J.; Fumeaux, C. Highly efficient graphite antennas for conformal applications. In 2018 Australian Microwave Symposium (AMS); IEEE: Piscataway, NJ, USA, 2018; pp. 61–62. [Google Scholar] [CrossRef]
- Chen, S.J.; Fumeaux, C.; Tung, T.T.; Losic, D. High-efficiency microwave graphene antenna. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 317–318. [Google Scholar] [CrossRef]
- Kim, Y.; Zhu, J.; Yeom, B.; Di Prima, M.; Su, X.; Kim, J.-G.; Yoo, S.-J.; Uher, C.; Kotov, N.A. Stretchable nanoparticle conductors with self-organized conductive pathways. Natural 2013, 500, 59–63. [Google Scholar] [CrossRef]
- Simorangkir, R.B.V.B.; Yang, Y.; Esselle, K.P.; Zeb, B.A. A Method to Realize Robust Flexible Electronically Tunable Antennas Using Polymer-Embedded Conductive Fabric. IEEE Trans. Antennas Propag. 2018, 66, 50–58. [Google Scholar] [CrossRef]
- Kumar, A.; Saghlatoon, H.; La, T.-G.; Honari, M.M.; Charaya, H.; Abu Damis, H.; Mirzavand, R.; Mousavi, P.; Chung, H.-J. A highly deformable conducting traces for printed antennas and interconnects: Silver/fluoropolymer composite amalgamated by triethanolamine. Flex. Print. Electron. 2017, 2, 045001. [Google Scholar] [CrossRef]
- Salleh, S.M.; Jusoh, M.; Ismail, A.H.; Kamarudin, M.R.; Nobles, P.; Osman, M.N.; Jais, M.I.; Soh, P.J.; Rahim, M.K.A.; Sabapathy, T. Textile Antenna With Simultaneous Frequency and Polarization Reconfiguration for WBAN. IEEE Access 2017, 6, 7350–7358. [Google Scholar] [CrossRef]
- So, J.-H.; Thelen, J.; Qusba, A.; Hayes, G.J.; Lazzi, G.; Dickey, M.D. Reversibly Deformable and Mechanically Tunable Fluidic Antennas. Adv. Funct. Mater. 2009, 19, 3632–3637. [Google Scholar] [CrossRef]
- Zhou, Y.; Bayram, Y.; Du, F.; Dai, L.; Volakis, J.L. Polymer-Carbon Nanotube Sheets for Conformal Load Bearing Antennas. IEEE Trans. Antennas Propag. 2010, 58, 2169–2175. [Google Scholar] [CrossRef]
- Ashayer-Soltani, R.; Hunt, C.; Thomas, O. Fabrication of highly conductive stretchable textile with silver nanoparticles. Text. Res. J. 2015, 86, 1041–1049. [Google Scholar] [CrossRef]
- Chang, C.-C.; Hwang, F.-H.; Hsieh, C.-Y.; Chen, C.-C.; Cheng, L.-P. Preparation and characterization of polymer/zirconia nanocomposite antistatic coatings on plastic substrates. J. Coatings Technol. Res. 2012, 10, 73–78. [Google Scholar] [CrossRef]
- Tanvir, A.; Sobolčiak, P.; Popelka, A.; Mrlik, M.; Špitalský, Z.; Micusik, M.; Prokes, J.; Krupa, I. Electrically Conductive, Transparent Polymeric Nanocomposites Modified by 2D Ti3C2Tx (MXene). Polymers 2019, 11, 1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmobarak, H.A.; Rahim, S.K.A.; Himdi, M.; Kasgari, M.A.; Castel, X. A Transparent and Flexible Polymer-Fabric Tissue UWB Antenna for Future Wireless Networks. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 1. [Google Scholar] [CrossRef]
- Lee, S.Y.; Choo, M.; Jung, S.; Hong, W. Optically Transparent Nano-Patterned Antennas: A Review and Future Directions. Appl. Sci. 2018, 8, 901. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yin, K.; Sun, K.; Cao, S. Two-dimensional Ti3C2Tx/poly(vinylidene fluoride) metacomposites with weakly negative permittivity. Polym. Compos. 2020, 41, 1820–1829. [Google Scholar] [CrossRef]
- Ren, Y.; Huang, Z.; Guo, L.; Li, K.; Liu, Y. An Electrical Frequency Agile Patch Antenna Based on a Poly(vinylidene fluoride-trifluoroethylene) Thin Film. Electromagnetics 2016, 36, 149–156. [Google Scholar] [CrossRef]
- Shin, D.-Y.; Baek, S.; Song, H.-J.; Lee, J.I.; Kang, G. Sliding Interconnection for Flexible Electronics with a Solution-Processed Diffusion Barrier against a Corrosive Liquid Metal. Adv. Electron. Mater. 2019, 5. [Google Scholar] [CrossRef]
- Guo, X.; Huang, Y.; Wu, C.; Mao, L.; Wang, Y.; Xie, Z.; Liu, C.; Zhang, Y. Flexible and reversibly deformable radio-frequency antenna based on stretchable SWCNTs/PANI/Lycra conductive fabric. Smart Mater. Struct. 2017, 26, 105036. [Google Scholar] [CrossRef]
- Hayes, G.J.; So, J.-H.; Qusba, A.; Dickey, M.D.; Lazzi, G. Flexible Liquid Metal Alloy (EGaIn) Microstrip Patch Antenna. IEEE Trans. Antennas Propag. 2012, 60, 2151–2156. [Google Scholar] [CrossRef]
- Kim, B.S.; Shin, K.-Y.; Pyo, J.B.; Lee, J.; Son, J.G.; Lee, S.-S.; Park, J.H. Reversibly Stretchable, Optically Transparent Radio-Frequency Antennas Based on Wavy Ag Nanowire Networks. ACS Appl. Mater. Interfaces 2016, 8, 2582–2590. [Google Scholar] [CrossRef]
- Roshni, S.B.; Jayakrishnan, M.P.; Mohanan, P.; Surendran, K.P.; Babu, R.S.; Mp, J.; Kuzhichalil, S.P. Design and fabrication of an E-shaped wearable textile antenna on PVB-coated hydrophobic polyester fabric. Smart Mater. Struct. 2017, 26, 105011. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, H.; Yoo, H.-J. Electrical Characterization of Screen-Printed Circuits on the Fabric. IEEE Trans. Adv. Packag. 2009, 33, 196–205. [Google Scholar] [CrossRef]
- Mantash, M.; Tarot, A.; Collardey, S.; Mahdjoubi, K. Wearable monopole zip antenna. Electron. Lett. 2011, 47, 1266. [Google Scholar] [CrossRef]
- Lakafosis, V.; Rida, A.; Vyas, R.; Yang, L.; Nikolaou, S.; Tentzeris, M.M. Progress Towards the First Wireless Sensor Networks Consisting of Inkjet-Printed, Paper-Based RFID-Enabled Sensor Tags. Proc. IEEE 2010, 98, 1601–1609. [Google Scholar] [CrossRef] [Green Version]
- Khaleel, H.R.; Al-Rizzo, H.M.; Rucker, D.G.; Mohan, S. A Compact Polyimide-Based UWB Antenna for Flexible Electronics. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 564–567. [Google Scholar] [CrossRef]
- Koo, T.-W.; Kim, D.; Ryu, J.-I.; Seo, H.-M.; Yook, J.G.; Kim, J.-C. Design of a Label-Typed UHF RFID Tag Antenna for Metallic Objects. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1010–1014. [Google Scholar] [CrossRef]
- Casula, G.A.; Montisci, G.; Mazzarella, G. A Wideband PET Inkjet-Printed Antenna for UHF RFID. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1400–1403. [Google Scholar] [CrossRef]
- Nikolaou, S.; Ponchak, G.; Papapolymerou, J.; Tentzeris, M. Conformal Double Exponentially Tapered Slot Antenna (DETSA) on LCP for UWB Applications. IEEE Trans. Antennas Propag. 2006, 54, 1663–1669. [Google Scholar] [CrossRef]
- DeJean, G. A new organic material for the development of multilayer dual-frequency dual-polarization flexible antenna arrays. IEEE Antennas Wirel. Propag. Lett. 2005, 4, 22–26. [Google Scholar] [CrossRef]
- Altunyurt, N.; Rieske, R.; Swaminathan, M.; Sundaram, V. Conformal Antennas on Liquid Crystalline Polymer Based Rigid-Flex Substrates Integrated With the Front-End Module. IEEE Trans. Adv. Packag. 2009, 32, 797–808. [Google Scholar] [CrossRef]
- Dey, A.; Guldiken, R.; Mumcu, G. Microfluidically Reconfigured Wideband Frequency-Tunable Liquid-Metal Monopole Antenna. IEEE Trans. Antennas Propag. 2016, 64, 2572–2576. [Google Scholar] [CrossRef]
- Rabbani, M.; Ghafouri, S.H. Liquid Crystalline Polymer Substrate-Based THz Microstrip Antenna Arays for Medical Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1533–1536. [Google Scholar] [CrossRef]
- Numakura, D.K. Flexible circuit applications and Materials-Printed Circuit Handbook, 6th ed.; McGraw-Hill: New York, NY, USA, 2007; Chapter 61. [Google Scholar]
- Virtanen, J.; Ukkonen, L.; Björninen, T.; Syddnheimo, L. Passive UHF Inkjet-Printed Narrow-Line RFID Tags. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 440–443. [Google Scholar] [CrossRef]
- Mesquita, J.M.; Pires, N.; Moreira, A.A. Influence of deformations on the matching of a flexible dual-band antenna. In Proceedings of the 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 8–12 April 2013; pp. 3283–3285. [Google Scholar]
- Park, S.; Mondal, K.; Treadway, R.M.; Kumar, V.; Ma, S.; Holbery, J.D.; Dickey, M.D. Silicones for Stretchable and Durable Soft Devices: Beyond Sylgard-184. ACS Appl. Mater. Interfaces 2018, 10, 11261–11268. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Nakagawa, S.; Tsuji, Y.; Watanabe, N.; Shibayama, M. Polymer gel with a flexible and highly ordered three-dimensional network synthesized via bond percolation. Sci. Adv. 2019, 5, eaax8647. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Myers, A.C.; Adams, J.J.; Zhu, Y. Stretchable and Reversibly Deformable Radio Frequency Antennas Based on Silver Nanowires. ACS Appl. Mater. Interfaces 2014, 6, 4248–4253. [Google Scholar] [CrossRef]
- Scidà, A.; Haque, S.; Treossi, E.; Robinson, A.; Smerzi, S.; Ravesi, S.; Borini, S.; Palermo, V. Application of graphene-based flexible antennas in consumer electronic devices. Mater. Today 2018, 21, 223–230. [Google Scholar] [CrossRef]
- Zhao, Y.; Kim, A.; Wan, G.; Tee, B.C.K. Design and applications of stretchable and self-healable conductors for soft electronics. Nano Converg. 2019, 6, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Tsolis, A.; Whittow, W.G.; Alexandridis, A.A.; Vardaxoglou, J. Embroidery and Related Manufacturing Techniques for Wearable Antennas: Challenges and Opportunities. Electronics 2014, 3, 314–338. [Google Scholar] [CrossRef] [Green Version]
- Khaleel, H.R.; Al-Rizzo, H.M.; Abbosh, A.I. Design, Fabrication, and Testing of Flexible Antennas. Adv. Microstrip Antennas Recent Appl. 2013. [Google Scholar] [CrossRef] [Green Version]
- Gamota, D.R. Printed organic and molecular electronics. Mater. Today 2004, 7, 53. [Google Scholar]
- Kirsch, N.J.; Vacirca, N.A.; Plowman, E.E.; Kurzweg, T.P.; Fontecchio, A.K.; Dandekar, K.R. Optically transparent conductive polymer RFID meandering dipole antenna. In Proceedings of the 2009 IEEE International Conference on RFID, Orlando, FL, USA, 27–28 April 2009; pp. 278–282. [Google Scholar]
- Kirsch, N.J.; Vacirca, N.A.; Kurzweg, T.P.; Fontecchio, A.K.; Dandekar, K.R. Performance of transparent conductive polymer antennas in a MIMO ad-hoc network. In Proceedings of the 2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications, Chengdu, China, 23–25 September 2010; pp. 9–14. [Google Scholar] [CrossRef]
- Leung, S.Y.Y.; Lam, D.C.C. Performance of Printed Polymer-Based RFID Antenna on Curvilinear Surface. IEEE Trans. Electron. Packag. Manuf. 2007, 30, 200–205. [Google Scholar] [CrossRef]
- Li, B.; Li, D.; Wang, J. Copper deposition on textiles via an automated dispensing process for flexible microstrip antennas. Text. Res. J. 2014, 84, 2026–2035. [Google Scholar] [CrossRef]
- Xu, D.; Tian, X.; Guo, X.; Jiang, W.; Liu, W.; Xing, S.; Decheng, X.; Xiaojian, T.; Xiaohui, G.; Wenlong, J.; et al. Design and Research of Flexible Wearable Textile Antenna Based on GNPs/PANI/PDMS Composites for 2.45 GHz. Nanosci. Nanotechnol. Lett. 2017, 9, 476–480. [Google Scholar] [CrossRef]
- Shahariar, H.; Soewardiman, H.; Muchler, C.A.; Adams, J.J.; Jur, J.S. Porous textile antenna designs for improved wearability. Smart Mater. Struct. 2018, 27, 045008. [Google Scholar] [CrossRef]
- Sreenilayam, S.P.; Ahad, I.U.; Nicolosi, V.; Garzon, V.A.; Brabazon, D. Advanced materials of printed wearables for physiological parameter monitoring. Mater. Today 2020, 32, 147–177. [Google Scholar] [CrossRef]
- NIIR Board of Consultants & Engineers. Handbook on Printing Technology (Offset, Flexo, Gravure, Screen, Digital, 3D Printing); Asia Pacific Business Press Inc.: Delhi, India, 2017. [Google Scholar]
- Halonen, E.; Kaija, K.; Mäntysalo, M.; Kemppainen, A.; Österbacka, R.; Björklund, N. Evaluation of printed electronics manufacturing line with sensor platform application. In Proceedings of the 2009 European Microelectronics and Packaging Conference, Rimini, Italy, 15–18 June 2009. [Google Scholar]
- Phan, H.P. Design of 2D and 3D Antennas on Flexible Materials. Ph.D Thesis, Grenoble Alpes University, Grenoble, France, 24 May 2019. [Google Scholar]
- Al-Naiemy, Y.; Khaleel, H.; Elwi, T.A.; Al-Rizzo, H. A Systematic Approach for the Design, Fabrication, and Testing of Microstrip Antennas Using Inkjet Printing Technology. ISRN Commun. Netw. 2012, 2012, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Rossignol, F.; Macdonald, J. Inkjet printing for biosensor fabrication: Combining chemistry and technology for advanced manufacturing. Lab Chip 2015, 15, 2538–2558. [Google Scholar] [CrossRef]
- Rizwan, M.; Kuttty, A.A.; Kgwadi, M.; Drysdale, T.D.; Syddnheimo, L.; Ukkonen, L.; Virkki, J. Possibilities of Fabricating Copper-based RFID Tags with Photonic-sintered Inkjet Printing and Thermal Transfer Printing. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1828–1831. [Google Scholar] [CrossRef] [Green Version]
- Optomec, Direct Printing of 3D Antenna and Sensors for Mobile Device Applications and the Internet of Things. Available online: http://docplayer.net/52082782 (accessed on 5 May 2020).
- Fujifilm USA Incorporated. Dimatix Materials Printer DMP-2831. Available online: file:///C:/Users/MDPI/AppData/Local/Temp/Dimatix-2831.pdf (accessed on 10 January 2020).
- Whittow, W.G.; Chauraya, A.; Vardaxoglou, J.C.; Li, Y.; Torah, R.; Yang, K.; Beeby, S.; Tudor, J. Inkjet-Printed Microstrip Patch Antennas Realized on Textile for Wearable Applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 71–74. [Google Scholar] [CrossRef] [Green Version]
- Stempien, Z.; Rybicki, E.; Patykowska, A.; Rybicki, T.; Szynkowska, M.I. Shape-programmed inkjet-printed silver electro-conductive layers on textile surfaces. J. Ind. Text. 2017, 47, 1321–1341. [Google Scholar] [CrossRef]
- Krykpayev, B.; Farooqui, M.F.; Bilal, R.M.; Vaseem, M.; Shamim, A. A wearable tracking device inkjet-printed on textile. Microelectron. J. 2017, 65, 40–48. [Google Scholar] [CrossRef]
- Grouchko, M.; Kamyshny, A.; Mihailescu, C.F.; Anghel, D.F.; Magdassi, S. Conductive Inks with a “Built-In” Mechanism That Enables Sintering at Room Temperature. ACS Nano 2011, 5, 3354–3359. [Google Scholar] [CrossRef] [PubMed]
- Black, K.; Singh, J.; Mehta, D.; Sung, S.; Sutcliffe, C.J.; Chalker, P. Silver Ink Formulations for Sinter-free Printing of Conductive Films. Sci. Rep. 2016, 6, 20814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickey, M.D. Stretchable and Soft Electronics using Liquid Metals. Adv. Mater. 2017, 29, 1606425. [Google Scholar] [CrossRef] [PubMed]
- Cosker, M.; Lizzi, L.; Ferrero, F.; Staraj, R.; Ribero, J.-M. Realization of 3D Flexible Antennas using Liquid Metal and Additive Printing Technologies. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 1. [Google Scholar] [CrossRef]
- Song, L.; Gao, W.; Chui, C.O.; Rahmat-Samii, Y. Wideband Frequency Reconfigurable Patch Antenna With Switchable Slots Based on Liquid Metal and 3-D Printed Microfluidics. IEEE Trans. Antennas Propag. 2019, 67, 2886–2895. [Google Scholar] [CrossRef]
- Bharambe, V.; Parekh, D.P.; Ladd, C.; Moussa, K.; Dickey, M.D.; Adams, J.J. Vacuum-filling of liquid metals for 3D printed RF antennas. Addit. Manuf. 2017, 18, 221–227. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, R.; Wang, X.; Liu, J.; Fang, Q. Flexible RFID Tag Inductor Printed by Liquid Metal Ink Printer and Its Characterization. J. Electron. Packag. 2016, 138, 031007. [Google Scholar] [CrossRef]
- Gao, Y.; Li, H.; Liu, J. Direct Writing of Flexible Electronics through Room Temperature Liquid Metal Ink. PLoS ONE 2012, 7, e45485. [Google Scholar] [CrossRef]
- Ruvio, G. State-of-the-art of Metamaterials: Characterization, Realization and Applications. Stud. Eng. Technol. 2014, 1, 38. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.-G.; An, H.S.; Kim, J.-Y.; Park, J.-U. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Sci. Adv. 2019, 5, eaaw2844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blayo, A.; Pineaux, B. Printing processes and their potential for RFID printing. ACM Int. Conf. Proceeding Ser. 2005, 121, 27. [Google Scholar] [CrossRef] [Green Version]
- Rosker, E.S.; Sandhu, R.; Hester, J.; Goorsky, M.; Tice, J. Printable Materials for the Realization of High Performance RF Components: Challenges and Opportunities. Int. J. Antennas Propag. 2018, 2018, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Suganuma, T.; Ogasawara, T.; Takeuchi, M.; Yasue, T.; Kawahito, M.; Ishizaki, K.; Komatsu, H.; Nakatani, T. Overview of the IBM Java Just-in-Time Compiler. IBM Syst. J. 2000, 39, 175–193. [Google Scholar] [CrossRef]
- Soh, P.J.; VandenBosch, G.A.E.; Ooi, S.L.; Rais, N.H.M. Design of a Broadband All-Textile Slotted PIFA. IEEE Trans. Antennas Propag. 2011, 60, 379–384. [Google Scholar] [CrossRef]
- Monti, G.; Corchia, L.; Tarricone, L. Fabrication techniques for wearable antennas. In Proceedings of the 2013 European Microwave Conference, Nuremberg, Germany, 6–10 October 2013; pp. 1747–1750. [Google Scholar]
- Lilja, J.; Salonen, P.; Kaija, T.; De Maagt, P. Design and Manufacturing of Robust Textile Antennas for Harsh Environments. IEEE Trans. Antennas Propag. 2012, 60, 4130–4140. [Google Scholar] [CrossRef]
- Gil Gali, I.; Fernández-García, R.; Tornero, J.A. Embroidery manufacturing techniques for textile dipole antenna applied to wireless body area network. Text. Res. J. 2018, 89, 1573–1581. [Google Scholar] [CrossRef]
- Virkki, J.; Wei, Z.; Liu, A.; Ukkonen, L.; Björninen, T. Wearable Passive E-Textile UHF RFID Tag Based on a Slotted Patch Antenna with Sewn Ground and Microchip Interconnections. Int. J. Antennas Propag. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Kiourti, A.; Sebastian, T.; Bayram, Y.; Volakis, J.L. Conformal Load-Bearing Spiral Antenna on Conductive Textile Threads. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 230–233. [Google Scholar] [CrossRef]
- Chauraya, A.; Seager, R.; Whittow, W.; Zhang, S.; Vardaxoglou, Y.; Seager, R.D.; Whittow, W.G. Embroidered Frequency Selective Surfaces on textiles for wearable applications. In Proceedings of the 2013 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 11–12 November 2013; pp. 388–391. [Google Scholar] [CrossRef]
- Salonen, P.; Sydanheimo, L.; Keskilammi, M.; Kivikoski, M. A small planar inverted-F antenna for wearable applications. In Digest of Papers. Third International Symposium on Wearable Computers; IEEE: Piscataway, NJ, USA, 2003; pp. 95–100. [Google Scholar]
- Lin, C.-H.; Li, Z.; Ito, K.; Takahashi, M.; Saito, K. Dual-mode antenna for on-/off-body communications (10 MHz/2.45 GHz). Electron. Lett. 2012, 48, 1383. [Google Scholar] [CrossRef]
- Seager, R.; Dias, T.; Zhang, S.; Acti, T.; Vardaxoglou, Y.; Whittow, W.G.; Chauraya, A.; Seager, R.D. Effect of the fabrication parameters on the performance of embroidered antennas. IET Microw. Antennas Propag. 2013, 7, 1174–1181. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Han, W.; Wang, Y.; Lu, M.; Dong, L. Tape nanolithography: A rapid and simple method for fabricating flexible, wearable nanophotonic devices. Microsyst. Nanoeng. 2018, 4, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Seager, R.; Chauraya, A.; Whittow, W.G.; Vardaxoglou, Y.; Seager, R.D. Textile manufacturing techniques in RF devices. In Proceedings of the 2014 Loughborough Antennas and Propagation Conference (LAPC), Loughborough, UK, 10–11 November 2014; pp. 182–186. [Google Scholar] [CrossRef]
- Catarinucci, L.; Colella, R.; Tarricone, L. Smart Prototyping Techniques for UHF RFID TAGS: Electromagnetic Characterization and Comparison with Traditional Approaches. Prog. Electromagn. Res. 2012, 132, 91–111. [Google Scholar] [CrossRef] [Green Version]
- Corchia, L.; Monti, G.; De Benedetto, E.; Tarricone, L. Wearable Antennas for Remote Health Care Monitoring Systems. Int. J. Antennas Propag. 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Holland, S.A.; Baiya, D.; Elkhouly, E.; Fathy, A.E. Ultra wideband textile antenna development for indoor localization. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Agneessens, S.; Lemey, S.; Vervust, T.; Rogier, H. Wearable, small, and robust: The circular Quarter-Mode Textile Antenna. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1. [Google Scholar] [CrossRef]
- Chahat, N.; Zhadobov, M.; Le Coq, L.; Sauleau, R. Wearable Endfire Textile Antenna for On-Body Communications at 60 GHz. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 799–802. [Google Scholar] [CrossRef]
- Stanford, M.G.; Zhang, C.; Fowlkes, J.D.; Hoffman, A.; Ivanov, I.N.; Rack, P.D.; Tour, J.M. High-Resolution Laser-Induced Graphene. Flexible Electronics Beyond the Visible Limit. ACS Appl. Mater. Interfaces 2020, 12, 10902–10907. [Google Scholar] [CrossRef]
- Nayak, R.; Padhye, R. The use of laser in garment manufacturing: An overview. Fash. Text. 2016, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Han, T.; Nag, A.; Afsarimanesh, N.; Mukhopadhyay, S.; Kundu, S.; Xu, Y. Laser-Assisted Printed Flexible Sensors: A Review. Sensors 2019, 19, 1462. [Google Scholar] [CrossRef] [Green Version]
- Quain, E.; Mathis, T.S.; Kurra, N.; Maleski, K.; Van Aken, K.L.; Alhabeb, M.; Alshareef, H.N.; Gogotsi, Y. Direct Writing of Additive-Free MXene-in-Water Ink for Electronics and Energy Storage. Adv. Mater. Technol. 2018, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Li, W.; Hai, T.; Yue, R.; Chen, Z.; Lao, C.; Ge, Y.; Xie, G.; Wen, Q.; Zhang, H. Inkjet-printed MXene micro-scale devices for integrated broadband ultrafast photonics. npj 2D Mater. Appl. 2019, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Montazeri, K.; Currie, M.; Verger, L.; Dianat, P.; Barsoum, M.W.; Nabet, B. Beyond Gold: Spin-Coated Ti3 C2 -Based MXene Photodetectors. Adv. Mater. 2019, 31, e1903271. [Google Scholar] [CrossRef] [PubMed]
- Vural, M.; Pena-Francesch, A.; Bars-Pomes, J.; Jung, H.; Gudapati, H.; Hatter, C.B.; Allen, B.D.; Anasori, B.; Ozbolat, I.T.; Gogotsi, Y.; et al. Inkjet Printing of Self-Assembled 2D Titanium Carbide and Protein Electrodes for Stimuli-Responsive Electromagnetic Shielding. Adv. Funct. Mater. 2018, 28, 1–10. [Google Scholar] [CrossRef]
- Kim, S.-S.; Na, S.-I.; Jo, J.; Tae, G.; Kim, D.-Y. Efficient Polymer Solar Cells Fabricated by Simple Brush Painting. Adv. Mater. 2007, 19, 4410–4415. [Google Scholar] [CrossRef]
- Gao, Y.; Li, H.; Liu, J. Directly Writing Resistor, Inductor and Capacitor to Composite Functional Circuits: A Super-Simple Way for Alternative Electronics. PLoS ONE 2013, 8, e69761. [Google Scholar] [CrossRef]
- Lin, C.-W.; Zhao, Z.; Kim, J.; Huang, J. Pencil Drawn Strain Gauges and Chemiresistors on Paper. Sci. Rep. 2014, 4, 3812. [Google Scholar] [CrossRef] [Green Version]
- Kurra, N.; Kulkarni, G.U. Pencil-on-paper: Electronic devices. Lab Chip 2013, 13, 2866. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, H. To draw an air electrode of a Li–air battery by pencil. Energy Environ. Sci. 2011, 4, 1704. [Google Scholar] [CrossRef]
- Zheng, G.; Hu, L.; Wu, H.; Xie, X.; Cui, Y. Paper supercapacitors by a solvent-free drawing method. Energy Environ. Sci. 2011, 4, 3368–3373. [Google Scholar] [CrossRef]
- Han, J.-W.; Kim, B.; Li, J.; Meyyappan, M. Carbon nanotube ink for writing on cellulose paper. Mater. Res. Bull. 2014, 50, 249–253. [Google Scholar] [CrossRef]
- Warren, H.; Gately, R.D.; Moffat, H.N.; Panhuis, M.I.H. Conducting carbon nanofibre networks: Dispersion optimisation, evaporative casting and direct writing. RSC Adv. 2013, 3, 21936. [Google Scholar] [CrossRef] [Green Version]
- Russo, A.; Ahn, B.Y.; Adams, J.J.; Duoss, E.B.; Bernhard, J.T.; Lewis, J.A. Pen-on-Paper Flexible Electronics. Adv. Mater. 2011, 23, 3426–3430. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.L.; Hu, J.; Genin, G.M.; Lu, T.J.; Xu, F. BioPen: Direct writing of functional materials at the point of care. Sci. Rep. 2014, 4, 4872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.Y.; Yang, G.Y.; Jing, H.Y.; Wei, J.; Han, Y.D. Ag–graphene hybrid conductive ink for writing electronics. Nanotechnology 2014, 25, 55201. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zheng, Y.; Liu, J. Direct writing of electronics based on alloy and metal (DREAM) ink: A newly emerging area and its impact on energy, environment and health sciences. Front. Energy 2012, 6, 311–340. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Jia, W.; Ramírez, J.; Wang, J. Biocompatible Enzymatic Roller Pens for Direct Writing of Biocatalytic Materials: “Do-it-Yourself” Electrochemical Biosensors. Adv. Heal. Mater. 2015, 4, 1215–1224. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, J.; Liu, J. Biomedical Implementation of Liquid Metal Ink as Drawable ECG Electrode and Skin Circuit. PLoS ONE 2013, 8, e58771. [Google Scholar] [CrossRef]
- Liao, X.; Liao, Q.; Yan, X.; Liang, Q.; Si, H.; Li, M.; Wu, H.; Cao, S.; Zhang, Y. Flexible and Highly Sensitive Strain Sensors Fabricated by Pencil Drawn for Wearable Monitor. Adv. Funct. Mater. 2015, 25, 2395–2401. [Google Scholar] [CrossRef]
- Qi, Z.; Zhang, F.; Di, C.-A.; Wang, J.; Zhu, D. All-brush-painted top-gate organic thin-film transistors. J. Mater. Chem. C 2013, 1, 3072. [Google Scholar] [CrossRef]
- Gui, H.; Tan, S.; Wang, Q.; Yu, Y.; Liu, F.; Lin, J. Spraying printing of liquid metal electronics on various clothes to compose wearable functional device. Sci. China Ser. E Technol. Sci. 2016, 60, 306–316. [Google Scholar] [CrossRef]
- Thielens, A.; Deckman, I.; Aminzadeh, R.; Arias, A.C.; Rabaey, J.M. Fabrication and Characterization of Flexible Spray-Coated Antennas. IEEE Access 2018, 6, 62050–62061. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.; Shi, W.; Yu, J. Spray-coated nanoscale conductive patterns based on in situ sintered silver nanoparticle inks. Nanoscale Res. Lett. 2014, 9, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, S.; Lee, H.; Park, H.; Choi, J. A Small Bandstop Microstrip Filter for UWB Applications. U.S. Patent 0092606A1, 29 August 2006. [Google Scholar]
- Lee, S.; Jeoung, G.; Choi, J. Three-dimensional-printed tapered cavity-backed flush-mountable wideband antenna for UAV. Microw. Opt. Technol. Lett. 2017, 59, 2975–2981. [Google Scholar] [CrossRef]
- Tak, J.; Kang, D.-G.; Choi, J. A lightweight waveguide horn antenna made via 3D printing and conductive spray coating. Microw. Opt. Technol. Lett. 2017, 59, 727–729. [Google Scholar] [CrossRef]
- FARS. Iran: Spray-On Antennas for Smart, Connected Technology. Available online: https://en.farsnews.ir/newstext.aspx?nn=13970701000215 (accessed on 31 August 2020).
- Sarycheva, A.; Polemi, A.; Liu, Y.; Dandekar, K.R.; Anasori, B.; Gogotsi, Y. 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 2018, 4, eaau0920. [Google Scholar] [CrossRef] [Green Version]
- Gund, G.S.; Jung, M.G.; Shin, K.-Y.; Park, H.S. Two-Dimensional Metallic Niobium Diselenide for Sub-micrometer-Thin Antennas in Wireless Communication Systems. ACS Nano 2019, 13, 14114–14121. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J. Pressured liquid metal screen printing for rapid manufacture of high resolution electronic patterns. RSC Adv. 2015, 5, 57686–57691. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Ouyang, C.; Wee, W.H.; Cui, X.; Lu, T.J.; Pingguan-Murphy, B.; Li, F.; Xu, F. Recent Advances in Pen-Based Writing Electronics and their Emerging Applications. Adv. Funct. Mater. 2016, 26, 165–180. [Google Scholar] [CrossRef]
- Abbasi, M.A.; Nikolaou, S.S.; Antoniades, M.; Stevanovic, M.N.; Vryonides, P. Compact EBG-Backed Planar Monopole for BAN Wearable Applications. IEEE Trans. Antennas Propag. 2016, 65, 453–463. [Google Scholar] [CrossRef] [Green Version]
- El Hajj, W.; Person, C.; Wiart, J. A Novel Investigation of a Broadband Integrated Inverted-F Antenna Design; Application for Wearable Antenna. IEEE Trans. Antennas Propag. 2014, 62, 3843–3846. [Google Scholar] [CrossRef]
- Yan, S.; Volski, V.; VandenBosch, G.A.E. Compact Dual-Band Textile PIFA for 433-MHz/2.4-GHz ISM Bands. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2436–2439. [Google Scholar] [CrossRef]
- Alomainy, A.; Hao, Y.; Owadally, A.; Parini, C.; Nechayev, Y.; Constantinou, C.C.; Hall, P. Statistical Analysis and Performance Evaluation for On-Body Radio Propagation With Microstrip Patch Antennas. IEEE Trans. Antennas Propag. 2007, 55, 245–248. [Google Scholar] [CrossRef]
- Yan, S.; Soh, P.J.; VandenBosch, G.A.E. Wearable Dual-Band Magneto-Electric Dipole Antenna for WBAN/WLAN Applications. IEEE Trans. Antennas Propag. 2015, 63, 1. [Google Scholar] [CrossRef]
- Moro, R.; Agneessens, S.; Rogier, H.; Dierck, A.; Bozzi, M. Textile Microwave Components in Substrate Integrated Waveguide Technology. IEEE Trans. Microw. Theory Tech. 2015, 63, 422–432. [Google Scholar] [CrossRef] [Green Version]
- Rano, D.; Hashmi, M. Extremely compact EBG-backed antenna for smartwatch applications in medical body area network. IET Microwave Antennas Propag. 2019, 13, 1031–1040. [Google Scholar] [CrossRef]
- Islam, R.; Ali, M. A 900 MHz Beam Steering Parasitic Antenna Array for Wearable Wireless Applications. IEEE Trans. Antennas Propag. 2013, 61, 4520–4527. [Google Scholar] [CrossRef]
- Biswas, B.; Ghatak, R.; Poddar, D.R. A Fern Fractal Leaf Inspired Wideband Antipodal Vivaldi Antenna for Microwave Imaging System. IEEE Trans. Antennas Propag. 2017, 65, 6126–6129. [Google Scholar] [CrossRef]
- Pinapati, S.P.; Ranasinghe, D.C.; Fumeaux, C. Textile Multilayer Cavity Slot Monopole For UHF Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2542–2545. [Google Scholar] [CrossRef]
- Mufti, S. Miniaturization and Optimization of Electrically Small Antennas, with Investigation into Emergent Fabrication Techniques for the Degree of Doctor of Philosophy. Ph.D. Thesis, University of Sheffield, Sheffield, UK, December 2017. [Google Scholar]
- Xiaomu, H.; Yan, S.; VandenBosch, G.A.E. Wearable Button Antenna for Dual-Band WLAN Applications With Combined on and off-Body Radiation Patterns. IEEE Trans. Antennas Propag. 2017, 65, 1384–1387. [Google Scholar] [CrossRef]
- Salman, L.K.H.; Talbi, L. Dual band G-shape wearable cuff button antenna for ISM bands applications. In Proceedings of the 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON, Canada, 11–17 July 2010; Volume 2, pp. 1–4. [Google Scholar]
- Sanz-Izquierdo, B.; Miller, J.; Batchelor, J.C.; Sobhy, M. Dual-band wearable metallic button antennas and transmission in body area networks. IET Microw. Antennas Propag. 2010, 4, 182. [Google Scholar] [CrossRef]
- Yan, S.; VandenBosch, G. Design of Wideband Button Antenna Based on Characteristic Mode Theory. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yan, S.; VandenBosch, G. Compact Circularly Polarized Wearable Button Antenna With Broadside Pattern for U-NII Worldwide Band Applications. IEEE Trans. Antennas Propag. 2018, 67, 1341–1345. [Google Scholar] [CrossRef]
- Sreelakshmy, R.; Vairavel, G. Novel cuff button antenna for dual-band applications. ICT Express 2019, 5, 26–30. [Google Scholar] [CrossRef]
- Chen, S.J.; Kaufmann, T.; Ranasinghe, D.C.; Fumeaux, C. A Modular Textile Antenna Design Using Snap-on Buttons for Wearable Applications. IEEE Trans. Antennas Propag. 2016, 64, 894–903. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Wong, H.; Mo, T.; Cao, Y.F. Dual-Band Dual-Mode Button Antenna for On-Body and Off-Body Communications. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 933–941. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, S.; Hu, X.; VandenBosch, G. Dual-Band Dual-Polarized Wearable Button Array With Miniaturized Radiator. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1583–1592. [Google Scholar] [CrossRef]
- Yan, S.; VandenBosch, G. Wearable antenna with tripolarisation diversity for WBAN communications. Electron. Lett. 2016, 52, 500–502. [Google Scholar] [CrossRef]
- Wang, J.J.H. Antennas for Global Navigation Satellite System (GNSS). Proc. IEEE 2012, 100, 2349–2355. [Google Scholar] [CrossRef]
- Dierck, A.; Rogier, H.; Declercq, F. An active wearable dual-band antenna for GPS and Iridium satellite phone deployed in a rescue worker garment. In Proceedings of the 2013 IEEE International Conference on RFID-Technologies and Applications (RFID-TA), Johor Bahru, Malaysia, 4–5 September 2013; pp. 1–5. [Google Scholar]
- Al-Sehemi, A.; Al-Ghamdi, A.; Dishovsky, N.; Atanasov, N.; Atanasova, G. Design and performance analysis of dual-band wearable compact low-profile antenna for body-centric wireless communications. Int. J. Microw. Wirel. Technol. 2018, 10, 1175–1185. [Google Scholar] [CrossRef]
- Joler, M.; Boljkovac, M. A Sleeve-Badge Circularly Polarized Textile Antenna. IEEE Trans. Antennas Propag. 2018, 66, 1576–1579. [Google Scholar] [CrossRef]
- Rais, N.H.M.; Soh, P.J.; Malek, M.F.A.; VandenBosch, G.A.E. Dual-Band Suspended-Plate Wearable Textile Antenna. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 583–586. [Google Scholar] [CrossRef]
- Salih, A.A.; Sharawi, M.S. Highly miniaturized dual band patch antenna. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; pp. 1–4. [Google Scholar]
- Liu, B.; Han, J.; Hu, S.; Zhang, L. Novel Multiband Metal-Rimmed Antenna for Wearable Applications. Int. J. Antennas Propag. 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Alqadami, A.S.M.; Jamlos, M.F.; Soh, P.J.; Rahim, S.K.A.; VandenBosch, G.A.E.; Narbudowicz, A. Miniaturized dual-band antenna array with double-negative (DNG) metamaterial for wireless applications. Appl. Phys. A 2016, 123. [Google Scholar] [CrossRef]
- Sabran, M.I.; Rahim, S.K.A.; Leow, C.Y.; Soh, P.J.; Chew, B.W.; VandenBosch, G.A.E. Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances. PLoS ONE 2017, 12, e0172162. [Google Scholar] [CrossRef]
- Kamardin, K.; Rahim, M.K.A.; Samsuri, N.A.; Jalil, M.E.; Ahmad, N.A.; Soh, P.J.; Sulaiman, H.A.; Othman, M.A.; Aziz, M.Z.A.A.; Malek, M.F.A. Planar Textile Antennas Performance Under Wearable and Body Centric Measurements. Lect. Notes Electr. Eng. 2016, 379, 81–95. [Google Scholar] [CrossRef]
- Rajo-Iglesias, E.; Gallego-Gallego, I.; Inclán-Sánchez, L.; Quevedo-Teruel, O. Textile Soft Surface for Back Radiation Reduction in Bent Wearable Antennas. IEEE Trans. Antennas Propag. 2014, 62, 3873–3878. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, S.; VandenBosch, G.A.E. A Miniature Feeding Network for Aperture-Coupled Wearable Antennas. IEEE Trans. Antennas Propag. 2017, 65, 2650–2654. [Google Scholar] [CrossRef]
- Alonso-Gonzalez, L.; Ver-Hoeye, S.; Fernández-García, M.; Álvarez-López, Y.; Vazquez-Antuna, C.; Las-Heras, F.; Vazquez-Antuna, M. Fully Textile-Integrated Microstrip-Fed Slot Antenna for Dedicated Short-Range Communications. IEEE Trans. Antennas Propag. 2018, 66, 2262–2270. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Lee, L.Z.; Psychoudakis, D.; Volakis, J.L. Embroidered Multiband Body-Worn Antenna for GSM/PCS/WLAN Communications. IEEE Trans. Antennas Propag. 2014, 62, 3321–3329. [Google Scholar] [CrossRef]
- Lee, H.; Tak, J.; Choi, J. Wearable Antenna Integrated into Military Berets for Indoor/Outdoor Positioning System. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1919–1922. [Google Scholar] [CrossRef]
- Mersani, A.; Osman, L.; Ribero, J.-M. Performance of dual-band AMC antenna for wireless local area network applications. IET Microw. Antennas Propag. 2018, 12, 872–878. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, B.; Wang, S.-F.; Yang, C. Wearable Circular Ring Slot Antenna With EBG Structure for Wireless Body Area Network. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 434–437. [Google Scholar] [CrossRef]
- Raad, H.R.; Abbosh, A.I.; Al-Rizzo, H.; Rucker, D.G. Flexible and Compact AMC Based Antenna for Telemedicine Applications. IEEE Trans. Antennas Propag. 2012, 61, 524–531. [Google Scholar] [CrossRef]
- Sallam, M.O.; VandenBosch, G.A.E.; De Raedt, W.; Soliman, E.A. Electrically small antennas with dimensions down to one-fifteenth and one-thirtieth of wavelength. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; pp. 1236–1237. [Google Scholar] [CrossRef]
- Hong, Y.; Tak, J.; Choi, J. An All-Textile SIW Cavity-Backed Circular Ring-Slot Antenna for WBAN Applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1995–1999. [Google Scholar] [CrossRef]
- Bozzi, M.; Georgiadis, A.; Wu, K. Review of substrate-integrated waveguide circuits and antennas. IET Microwaves, Antennas Propag. 2011, 5, 909. [Google Scholar] [CrossRef]
- Ghanem, F.; Langley, R.; Ford, L.; Ford, K.L. Propagation control using SIW technology. In Proceedings of the 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON, Canada, 11–17 July 2010; pp. 1–4. [Google Scholar]
- Mandal, B.; Parui, S. Wearable tri-band SIW based antenna on leather substrate. Electron. Lett. 2015, 51, 1563–1564. [Google Scholar] [CrossRef]
- Lajevardi, M.E.; Kamyab, M. A Low-Cost Wideband Quasi-Yagi Siw-Based Textile Antenna. Prog. Electromagn. Res. Lett. 2017, 67, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Lajevardi, M.E.; Kamyab, M. Ultraminiaturized Metamaterial-Inspired SIW Textile Antenna for Off-Body Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3155–3158. [Google Scholar] [CrossRef]
- Moro, R.; Agneessens, S.; Bozzi, M.; Rogier, H. Wearable textile antenna in substrate integrated waveguide technology. Electron. Lett. 2012, 48, 985–987. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Zhu, J.; Liao, H.; Tentzeris, M.M.; Huan, L. Wearable Antennas for Cross-Body Communication and Human Activity Recognition. IEEE Access 2020, 8, 58575–58584. [Google Scholar] [CrossRef]
- Correas-Serrano, D.; Gomez-Diaz, J.S. Graphene-based Antennas for Terahertz Systems: A Review. arXiv 2017, arXiv:1704.00371. [Google Scholar]
- Abohmra, A.; Jilani, F.; Abbas, H.; Imran, M.A.; Abbasi, Q.H. Terahertz Antenna based on Graphene for Wearable Applications. In Proceedings of the 2019 IEEE MTT-S International Wireless Symposium (IWS), Guangzhou, China, 19–22 May 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Karadimas, P.; Allen, B.; Smith, P. Human Body Shadowing Characterization for 60-GHz Indoor Short-Range Wireless Links. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1650–1653. [Google Scholar] [CrossRef] [Green Version]
- Abohmra, A.; Jilani, F.; Abbas, H.T.; Alomainy, A.; Ur-Rehman, M.; Imran, M.A.; Abbasi, Q.H. Flexible and Wearable Graphene-based Terahertz Antenna for Body-Centric Applications. In Proceedings of the 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS), Bad Neuenahr, Germany, 1–3 July 2019; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Cabedo-Fabres, M.; Antonino-Daviu, E.; Valero-Nogueira, A.; Ferrando-Bataller, M. The Theory of Characteristic Modes Revisited: A Contribution to the Design of Antennas for Modern Applications. IEEE Antennas Propag. Mag. 2007, 49, 52–68. [Google Scholar] [CrossRef]
- Rais, N.H.M.; Soh, P.J.; Malek, F.; Ahmad, S.; Hashim, N.; Hall, P. A review of wearable antenna. In Proceedings of the 2009 Loughborough Antennas & Propagation Conference, Loughborough, UK, 16–17 November 2009; pp. 225–228. [Google Scholar]
- Bonfiglio, A.; De Rossi, D. Wearable Monitoring Systems; Springer: Berlin, Germany, 2011; pp. 1–296. [Google Scholar]
- Locher, I.; Klemm, M.; Kirstein, T.; Troster, G. Design and Characterization of Purely Textile Patch Antennas. IEEE Trans. Adv. Packag. 2006, 29, 777–788. [Google Scholar] [CrossRef] [Green Version]
- Dash, S.K.K.; Khan, T.; Antar, Y.M.M. A state-of-art review on performance improvement of dielectric resonator antennas. Int. J. RF Microw. Comput. Eng. 2018, 28, e21270. [Google Scholar] [CrossRef]
- Mohanan, P.; Mridula, S. Applications of Dielectric Resonators. In Microwave Materials and Applications 2V Set, I&II, First ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 683–714. [Google Scholar]
- Liu, Q.; He, S.; Le, T.; Tentzeris, M.M. Button-shaped radio-frequency identification tag combining three-dimensional and inkjet printing technologies. IET Microwaves, Antennas Propag. 2016, 10, 737–741. [Google Scholar] [CrossRef] [Green Version]
- Tak, J.; Choi, J. An All-textile Louis Vuitton Logo Antenna. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1. [Google Scholar] [CrossRef]
- Monti, G.; Corchia, L.; Tarricone, L. Logo antenna on textile materials. In Proceedings of the 2014 44th European Microwave Conference, Rome, Italy, 6–9 October 2014; pp. 516–519. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, Y.; Lee, K.; Chung, Y.C. Various wearable embroidery RFID tag antenna using electro-thread. In Proceedings of the 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, CA, USA, 5–11 July 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Sanz-Izquierdo, B.; Batchelor, J.C. A Dual Band Belt Antenna. In Proceedings of the 2008 International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, Chiba, Japan, 4–6 March 2008; pp. 374–377. [Google Scholar] [CrossRef]
- Li, G.; Huang, Y.; Gao, G.; Wei, X.; Tian, Z.; Bian, L.-A. A Handbag Zipper Antenna for the Applications of Body-Centric Wireless Communications and Internet of Things. IEEE Trans. Antennas Propag. 2017, 65, 5137–5146. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Tian, Z.; Gao, G.; Zhang, L.; Fu, M.; Chen, Y. A Shoelace Antenna for the Application of Collision Avoidance for the Blind Person. IEEE Trans. Antennas Propag. 2017, 65, 4941–4946. [Google Scholar] [CrossRef] [Green Version]
- Palukuru, V.; Pekonen, A.; Pynttari, V. An injet- printed-F antenna for 2.4 -GHz wrist applications. Microw. Opt. Technol. Lett. 2009, 51, 2936–2938. [Google Scholar] [CrossRef]
- Li, G.; Gao, G.; Bao, J.; Yi, B.; Song, C.; Bian, L.-A. A Watch Strap Antenna for the Applications of Wearable Systems. IEEE Access 2017, 5, 10332–10338. [Google Scholar] [CrossRef]
- Wu, D.; Cheung, S.W. A Cavity-Backed Annular Slot Antenna With High Efficiency for Smartwatches With Metallic Housing. IEEE Trans. Antennas Propag. 2017, 65, 3756–3761. [Google Scholar] [CrossRef]
- Wu, C.; Sun, J.; Lu, B. Multiple-Input–Multiple-Output Antenna Design for a Smartwatch in 5.2–5.8 GHz Wireless Applications. Int. J. Antennas Propag. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- D’Errico, R.; Rosini, R.; Delaveaud, A.C. Smart Miniature Low-Power Wireless Microsystem for Body Area Networks (WiserBAN). Available online: https://cordis.europa.eu/project/id/257454 (accessed on 10 March 2020).
- Mantash, M.; Denidni, T.A. Finger-worn end-fire antenna for MM-wave applications. Microw. Opt. Technol. Lett. 2017, 59, 2591–2593. [Google Scholar] [CrossRef]
- Asada, H.H.; Shaltis, P.; Reisner, A.; Rhee, S.; Hutchinson, R.C. Mobile Monitoring with Wearable Photoplethysmographic Biosensors. IEEE Eng. Med. Biol. Mag. 2003, 22, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Gosalia, K.; Lazzi, G.; Humayun, M. Investigation of a Microwave Data Telemetry Link for a Retinal Prosthesis. IEEE Trans. Microw. Theory Tech. 2004, 52, 1925–1933. [Google Scholar] [CrossRef]
- Hong, S.; Kang, S.H.; Kim, Y.; Jung, C.W. Transparent and Flexible Antenna for Wearable Glasses Applications. IEEE Trans. Antennas Propag. 2016, 64, 2797–2804. [Google Scholar] [CrossRef]
- Cihangir, A.; Gianesello, F.; Luxey, C. Dual-Antenna Concept With Complementary Radiation Patterns for Eyewear Applications. IEEE Trans. Antennas Propag. 2018, 66, 3056–3063. [Google Scholar] [CrossRef]
- Ahmed, S.; Mehmood, A.; Sydanheimo, L.; Ukkonen, L.; Bjorninen, T. Glove-Integrated Textile Antenna with Reduced SAR for Wearable UHF RFID Reader. In Proceedings of the 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA), Pisa, Italy, 25–27 September 2019; pp. 231–235. [Google Scholar] [CrossRef]
- Nikoubin, T.; Garipally, M.; Nguyen, T.-A.; Wang, Z.; Mohammad, S.; Li, C. Fiber antenna for wireless body area networks. In Proceedings of the 2015 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), San Diego, CA, USA, 25–28 January 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Ruaro, A.; Thaysen, J.; Jakobsen, K.B. Wearable Shell Antenna for 2.4 GHz Hearing Instruments. IEEE Trans. Antennas Propag. 2016, 64, 2127–2135. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Gentili, G.B.; Salvador, C.; Toccafondi, A.; Zani, F. Design and Analysis of a Wearable Antenna System For Wireless Safety Applications. In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015; pp. 6–9. [Google Scholar]
- Li, Z.; Shaker, G.; Nezhad-Ahmadi, M.-R.; Safavi-Naeini, S. Design of a miniaturized antenna for Bluetooth-enabled hearing aid devices. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; pp. 772–773. [Google Scholar] [CrossRef]
- Ammann, M.; Mc Evoy, P.; Gaetano, D.; Keating, L.; Horgan, F. An Antenna for Footwear. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer: Berlin, Germany, 2013; Volume 61, pp. 326–331. [Google Scholar] [CrossRef]
- Linares, S.R.; Garcia, D.M.; Yan, S.; Volski, V.; VandenBosch, G.A.E. The hantenna: Experimental assessment of the human hand as an antenna. IET Microwaves, Antennas Propag. 2018, 12, 773–778. [Google Scholar] [CrossRef]
- Simorangkir, R.B.V.B.; Yang, Y.; Hashmi, R.M.; Björninen, T.; Esselle, K.P.; Ukkonen, L. Polydimethylsiloxane-Embedded Conductive Fabric: Characterization and Application for Realization of Robust Passive and Active Flexible Wearable Antennas. IEEE Access 2018, 6, 48102–48112. [Google Scholar] [CrossRef]
- Simorangkir, R.B.V.B.; Yang, Y.; Matekovits, L.; Esselle, K.P. Dual-Band Dual-Mode Textile Antenna on PDMS Substrate for Body-Centric Communications. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 677–680. [Google Scholar] [CrossRef]
- Poffelie, L.A.Y.; Soh, P.J.; Yan, S.; VandenBosch, G.A.E. A High-Fidelity All-Textile UWB Antenna With Low Back Radiation for Off-Body WBAN Applications. IEEE Trans. Antennas Propag. 2015, 64, 757–760. [Google Scholar] [CrossRef]
- Poonkuzhali, R.; Alex, Z.C.; Balakrishnan, T.N. Miniaturized Wearable Fractal Antenna for Military Applications at vhf Band. Prog. Electromagn. Res. C 2016, 62, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Inui, T.; Koga, H.; Nogi, M.; Komoda, N.; Suganuma, K. A Miniaturized Flexible Antenna Printed on a High Dielectric Constant Nanopaper Composite. Adv. Mater. 2014, 27, 1112–1116. [Google Scholar] [CrossRef]
- Tong, X.; Liu, C.; Liu, X.; Guo, H.; Yang, X. Switchable ON-/OFF-Body Antenna for 2.45 GHz WBAN Applications. IEEE Trans. Antennas Propag. 2018, 66, 967–971. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Cui, Z.; Yue, T.; Zhu, Y.; Werner, U.H. Compact, Highly Efficient, and Fully Flexible Circularly Polarized Antenna Enabled by Silver Nanowires for Wireless Body-Area Networks. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 920–932. [Google Scholar] [CrossRef]
- Svezhentsev, A.Y.; Volski, V.; Yan, S.; Soh, P.J.; VandenBosch, G.A.E. Omnidirectional Wideband E-Shaped Cylindrical Patch Antennas. IEEE Trans. Antennas Propag. 2015, 64, 796–800. [Google Scholar] [CrossRef]
- Chung, K.L.; Li, W.; Li, Y.; Liu, R.; Zhang, P. Chinese Character-Shaped Artistic Patch Antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1542–1546. [Google Scholar] [CrossRef]
- Li, X.; Honari, M.M.; Fu, Y.; Kumar, A.; Saghlatoon, H.; Mousavi, P.; Chung, H.-J. Self-reinforcing graphene coatings on 3D printed elastomers for flexible radio frequency antennas and strain sensors. Flex. Print. Electron. 2017, 2, 035001. [Google Scholar] [CrossRef] [Green Version]
- Tribe, J.; Oyeka, D.; Batchelor, J.C.; Kaur, N.; Velandia, D.M.S.; West, A.; Kay, R.; Vega, K.; Whittow, W.G. Tattoo Antenna Temporary Transfers Operating On-Skin (TATTOOS). Bioinform. Res. Appl. 2015, 9187, 685–695. [Google Scholar] [CrossRef]
- Scarpello, M.L.; Kazani, I.; Hertleer, C.; Rogier, H.; Ginste, D.V. Stability and Efficiency of Screen-Printed Wearable and Washable Antennas. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 838–841. [Google Scholar] [CrossRef]
- Bala, R.; Marwaha, A. Investigation of graphene based miniaturized terahertz antenna for novel substrate materials. Eng. Sci. Technol. Int. J. 2016, 19, 531–537. [Google Scholar] [CrossRef] [Green Version]
Fields | Applications |
---|---|
Healthcare | Bio-signals such as ECG, EEG, blood pressure, glucose level, breast cancer detection, doppler radar, smart home, telemedicine. |
Entertainment | Sports, gaming, ear instrument, smartwatches, jackets, smart shoes. |
Military | Battlefield, shoes, coat, helmet, identification, etc. |
Conductive Materials | Thickness (t: mm) | Conductivity (σ: s/m) |
---|---|---|
Egaln Liquid | 0.08 | 2.5 × 105 |
Polyleurethene Nanoparticle Composite | 0.0065 | 1.1 × 106 |
Zoflex + Copper | 0.175 | 1.93 × 105 |
Silver Flakes Fluorine Rubber | NA | 8.5 × 104 |
AgNW/PDMS | 0.5 | 8.1 × 105 |
PANI/CCo Composite | 0.075 | 7.3 × 103 |
Copper Coated Taffeta | 0.15 | 3.4 × 106 |
Graphene | 100 μm | 33 × 103 |
Materials | Dielectric Constant (εr) | Loss Tangent (tan δ) |
---|---|---|
PTFE | 2.05 | 0.0017 |
PDMS | 3.2 | 0.01 |
Ethyl Vinyl Acetate (EVA) | 2.8 | 0.002 |
PDMS Ceramic composite | 6.25 | 0.02 |
Neoprene rubber | 5.2 | 0.025 |
Kapton Polyimide | 3.4 | 0.002 |
Properties | Polymer | Textile | Paper | Fluidic |
---|---|---|---|---|
Dielectric Loss/Loss Tangent | Low Loss | Low Loss | Medium Loss | High Loss |
Tensile Strength | High (165 MPA) | Low (2.7 MPA) | Low (30 MPA) | Low (3.9 MPA) |
Flexural Strength | High (p.s.i) | Low (8900 p.s.i) | Low (7200 p.s.i) | Low (650 p.s.i) |
Deformability | Low | High | High | High |
Thermal Stability | High | Low | Low | Low |
Fabrication Complexity | Simple/Printable | Complex | Simple/Printable | Complex/Non-printable |
Robustness to Wetness | High | Medium | Low | Low |
Cost of Fabrication | Medium | Low | Low | High |
Weight | Medium | Low | Low | Medium |
Overall Size | Small | Large | Large | Small |
Stability for Integrated Circuit | High | Low | Low | High |
Features | Screen | Gravure | Flexographic |
---|---|---|---|
Printing Forms | Stencil/R2R | R2R | R2R |
Approach of Printing | Contact | Contact | Contact |
Printing Speed (m/min) | 10–15 | 100–1000 | 100–500 |
Line Width (lm) | 30–50 | 10–50 | 45–100 |
Surface Tension (mN/m) | 38–47 | 41–44 | 13.9–23 |
Resolution (µm) | 30–100 | 50–200 | 30–80 |
Speed (m/min) | 0.6–100 | 8–100 | 5–180 |
Substrate | Flexible | Flexible | Flexible |
Process Mode (step) | Multiple | Multiple | Multiple |
Mask Requirement | Yes | No | No |
Material Wastage | Yes | Yes | Yes |
Ink Composition (wt%) | - | - | - |
Pigment | 12–20 | 12–17 | 12–17 |
Binder | 45–65 | 20–35 | 40–45 |
Solvent | 20–30 | 60–65 | 25–45 |
Additive | 1–5 | 1–2 | 1–5 |
Methods | Ink Viscosity (cp) | Nozzle Diameter (μm) | Size (μm) | Thickness (μm) | Features |
---|---|---|---|---|---|
IJP | 1–30 | 20–60 | 20–100 | 0.6 | Low-cost, multiple heads |
AJP | 1–1000 | 150–300 | 10–200 | 0.1 | High throughput, thin layers, good features |
3D | 1–1,000,000 | 0.1–1 | 1–1000 | 0.5 | Most precise, best resolution |
Features | Embroidery | Weaving | Adhesive |
---|---|---|---|
Commercially Available | Yes | Yes | Yes |
Extra Processes (cutting) | Yes | Yes | Yes |
Waste Product | Yes | Yes | Yes |
Fabrication Accuracy | High | Medium | Medium |
Material Cost | Medium | Low | Low |
Easy to Attach | Yes | Yes | Yes |
Features | Laster Cutting (Trotec Speedy 300) | Robotic Cutting Plotter (Silhouette Cameo) |
---|---|---|
Commercially available | No | Customized by Requirement |
Extra Processes | No | No |
Waste Product | No | Yes |
Fabrication Accuracy | High | Medium |
Material Cost | High | Low |
Optimum applications | Small, Complex Patterns Required High Resolution | Customized and Large Size |
Writing Methods | Writing Materials | Substrates | Conductivity [S cm−1] | Width [μm] |
---|---|---|---|---|
Brush Pen | PEDOT:PSS/P3HT/PCBM, Silver Nanowire Ink, CNT Ink, V2O5 Ink, Gallium Ink | Glass, PET, ITO, Paper | 50–2.9 × 104 | 50–500 |
Pencil | Graphite Rod, Pencil Lead, SWCNT/MWCNT | Paper, Salt | 20–884 | 900–1900 |
Ball-Pen | Different Inks such as Silver, Copper, Gallium Enzymatic | Paper, PDMS, Skin | 5 × 103–1 × 105 | 100–800 |
Fountain Pen | Carbon Nanofibre Ink, CNT Ink, FeCl3 Ink | Paper | - | 770–980 |
Spray | Different Inks/Liquids such as Silver, Copper, Gallium and Enzymatic | Any | 5 × 103–1 × 105 | 100–800 |
Examples: Comparison of Button Antennas | |||||||
Ref | Button Antenna (Patch-Size) (mm) | Frequency (MHz/GHz) | Antenna Structure | Substrate Materials (εr/tan δ) | Conductor (σ orRs) | SAR (W/kg) | Radiation Efficiency (total Efficiency) % or Gain (dBi) or Other Performance |
[278] | 40 × 40 | 2.4/5.3/8 | Modular Snap-on Button | Cuming-Foam PF4 | Shieldit | NA | 7.8/3.1 (Half-Wave) 8.9 (Quarter-Wave) |
[275] | Dia(d): 15 | 2.4 | Circular Button with Split-Ring Resonator (CSRR) | Button Disc, FR4 Ground Substrate, Felt | Copper/Shieldit (Patch/Ground) | 0.45 | Free Space, On-body 97, 71 or 1.8/5.1 |
[276] | Dia (d): 9.77 | 5.5 | Circular Button | Button Disc, FR4, Ground Substrate, Felt | Copper/Shieldit (Patch/Ground) | 0.123 | Free Space, On-body 79.9, 70.8 or 3.5 (Entire band) |
[272] | Dia (d): 16 | 2.4/5 | Circular Button | Button Disc Rogers 5880 Ground Substrate Felt | Copper/Shieldit (Patch/Ground) | On chest 0.18/0.12 On arm 0.20/0.22 | Free Space, On-Body at Lower/Upper band ≥ 90/84 or 1.05, 0.24/4.50, 4.73 |
[277] | Dia (d): 22.3 | 2.4/5.6 | Circular Cuff Button | PTFE Ceramic | Copper (Patch/Ground) | NA | Free Space (94) or 1.5 (Both Bands) |
[280] | Dia (d): 19.5 | 4.50–4.61/ 5.04–5.50 | Circular Array Button | Button Disc RO4003 | Copper/Shieldit (Patch/Ground) | On chest 0.0664/ 0.0942 | Port-1 (Total-Efficiency) (86/93) or (7.4/7.6) Port-2 (Total-Efficiency) 85 /92 or (7.5/7.4) |
[279] | Radius (r): 18 | 2.45/5.8 | F-Inverted Button | Button Disc Rogers4003 | Patch/ Flange Ground (Copper) | 1g, 10 g 0.370, 0.199/0.584, 0.232 (Sim) | On-body 46.3/69.3 or −0.6 and 4.3 dBi |
Examples: Comparison of Single and Multiband antennas | |||||||
Ref | Antenna (mm) | Frequency Range (MHz/GHz) | Antenna Structure | Substrate Materials (εr/tan δ) | Conductor (σ or Rs) | SAR (W/kg) | Radiation Efficiency (%) or Gain (dBi) or other performance |
[299] | 30 × 45 | 2.45 | M-shaped with AMC | Kapton Polyimide | Silver Ink | 0.683 | 3.7 |
[343] | 59.8 × 59.8 | 2.3 to 2.68 | Reconfigurable Patch | PDMS | Shieldit | For 10 g 0.282 | 2.6 |
[344] | 70 (dia) | 2400/5800 | Circular Patch | PDMS | Shieldit | 0.248/0.091 | On-body Lower, Upper band 58.6, 50.6 or 4.16, 4.34 |
[306] | 74.5 × 48 × 3.34 | 2.45 | SIW Slot | Wool Felt | ShieldIt Super | 0.380 (Max) | On-body 74.3 (Total Efficiency) or 5.35 |
[345] | 80 ×61 ×4.51 | 3.1–10.6 | UWB | Felt | ShieldIt | 1.21 (3GHz), 0.52 (7GH) | On-body 96.6, 99.6 |
[285] | 50 ×57 | 2.45 | Circular Patch | Multilayered Textile | Shieldit | 0.34 | 55.3% (Sim) |
[292] | 13 cm × 13 cm | 4 | Circular Patch with Soft Surface | Felt | Shieldex Zell RS | 6.2 to 2.2% (Reduced Back radiation) | NA |
[346] | 52 × 250 | 450 MHz | Koch Fractal Dipole | Jeans | Copper Foil | 0.119 | 2 dBi |
[143] | 0.5 × 25.4 | 1.91 | Dipole | PDMS (2.67/0.0375) | EGaIn | NA | 90% |
[289] | 14.8 × 37.8 | 2.11–3.05/5.2 | Array Shape with Metamaterials | RT/Duroid5880 | Copper | NA | First band 95 or 2.8–3.48 Second band 80 |
[324] | 20 × 20 | 2.44 | Handbag Zipper | FR4 | Copper | NA | 97/5(2.90 GHz)/97.4 (2.70 GHz) |
[327] | 10 × 10 | 2.46 to 2.5 | Watch Strap | ArlonDi880 | Copper | NA | 5 dBi |
[347] | 50.0 × 37.5 | 2.45 | Dipole | Paper | Silver Ink | NA | NA |
[348] | Π × 242 × 3.2 | 2.5/5.8 | Circular (Reconfigurable) | FR4 | Copper | 5.04 and 14.79 (FS) | −3.03/3.83 |
[349] | 50 × 50 | 2.4 | Circularly with AMC Structure | PDMS | AgNWs Composite | 0.13 to 0.18 | 79 or 5.2 |
[320] | 22.3 × 22.5 | 2.45/4.5 | Louis Vuitton Logo | Leather | Shieldit | NA | Lower, Upper bands 15.2, 14.3 or −0.29, 3.05 |
[288] | 40 × 40 | Metal Rim | FR4 | Copper | 0.78 | On-Body 50 or 1.6 | |
[350] | 4.98 × 48.96 | 3.3, 3.4 | E-shaped | Felt | ShieldIt | NA | 2.98, 4.56 |
[52] | 3 cm × 3 cm | 2.86–2.92 | Stretchable | Soft Silicone | Copper | NA | NA |
[351] | 300 × 230 | 2.4 | Chinese Symbols | RO4350B | Copper | NA | 8.2 |
[257] | 10 mm (L) | 860 MHz | Dipole | PET | MXene Ink (5000 to 10,000 S/cm), thick, 62 nm to 8 µm) | NA | S11, −65 dB |
[258] | 10 × 10 | 2.01 to 2.80 | Monopole patch | PET | Niobium Diselenide (855 nm thickness) | NA | 70.6 or S11, −46.5 dB |
[352] | 15 × 63 | 2.45 | Dipole | Elastomer | Graphene | NA | NA |
[154] | 40 × 40 | 3.45 | Patch Antenna | PDMS | EGaIn | NA | 60 |
[353] | 53 × 63 60 × 50 | 868 MHz | Tattoo Antennas | Thin Adhesive Polymer | Conductive Ink | NA | 60 or S11, −17.1, −19.9 dB |
[354] | 42.4 × 48.5 | 2.45 | Patch Screen Printed (Washable) | Cotton/Polyester (CO/PES) | Flectron | NA | S11, −25 to −30 (2.4) (No-washing) S11, −30, −35(2.5) (Few Cycle Wash) |
[113] | 57 × 13 | UHF | RFID Tag (washable) | Cotton/Polyester (CO/PES) | Multifilament | NA | Stretchable Tag |
[355] | 30 × 22 µm | 2.67 to 2.92 THz | Rectangular Patch | Silicon Nitride (Si3N4) | Graphene | NA | 87 or 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.M.; Sovuthy, C.; Imran, M.A.; Socheatra, S.; Abbasi, Q.H.; Abidin, Z.Z. Recent Advances of Wearable Antennas in Materials, Fabrication Methods, Designs, and Their Applications: State-of-the-Art. Micromachines 2020, 11, 888. https://doi.org/10.3390/mi11100888
Ali SM, Sovuthy C, Imran MA, Socheatra S, Abbasi QH, Abidin ZZ. Recent Advances of Wearable Antennas in Materials, Fabrication Methods, Designs, and Their Applications: State-of-the-Art. Micromachines. 2020; 11(10):888. https://doi.org/10.3390/mi11100888
Chicago/Turabian StyleAli, Shahid M., Cheab Sovuthy, Muhammad A. Imran, Soeung Socheatra, Qammer H. Abbasi, and Zuhairiah Zainal Abidin. 2020. "Recent Advances of Wearable Antennas in Materials, Fabrication Methods, Designs, and Their Applications: State-of-the-Art" Micromachines 11, no. 10: 888. https://doi.org/10.3390/mi11100888
APA StyleAli, S. M., Sovuthy, C., Imran, M. A., Socheatra, S., Abbasi, Q. H., & Abidin, Z. Z. (2020). Recent Advances of Wearable Antennas in Materials, Fabrication Methods, Designs, and Their Applications: State-of-the-Art. Micromachines, 11(10), 888. https://doi.org/10.3390/mi11100888