A Nut-and-Bolt Microfluidic Mixing System for the Rapid Labeling of Immune Cells with Antibodies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Sample Cartridge
2.2. Sample Preparation
2.2.1. Avidin–Biotin Binding Model
2.2.2. Blood Sample for CD4 Count
2.3. Motor Control System
2.4. Florescence Imaging Setup
2.4.1. Imaging of Microbead Complex
2.4.2. Imaging of CD4 Cells
3. Results and Discussion
3.1. Avidin–Biotin Reaction
3.2. CD4 Cell Labeling with Antibody
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, J.K.; Shourav, M.K.; Cho, M.-O.; Lee, Y. Nut and bolt microfluidics with helical minichannel for counting CD4+ T-cells. Bioengineering 2019, 6, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Prasad, B.; Kim, J.K. Alignment of microbeads using spinning helical minichannel cartridge. J. KSV 2016, 14, 38–45. [Google Scholar]
- Park, E.; Kim, S.; Cho, M.; Kim, K.; Shourav, M.K.; Kim, S.; Lee, J.; Kim, J.K. Evaluation of particle counting and particle sorting performance of rotating spiral channels in smartphone-based fluorescent smartscopes. J. Korea Ind. Inf. Syst. Res. 2015, 20, 19–28. [Google Scholar]
- Smith, S.; Mager, D.; Perebikovsky, A.; Shamloo, E.; Kinahan, D.; Mishra, R.; Torres Delgado, S.M.; Kido, H.; Saha, S.; Ducrée, J.; et al. CD-based microfluidics for primary care in extreme point-of-care settings. Micromachines 2016, 7, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.; Zaman, M.H. Low-cost tools for diagnosing and monitoring HIV infection in low-resource settings. Bull World Health Organ. 2012, 90, 914–920. [Google Scholar] [CrossRef]
- Mauk, M.; Song, J.; Bau, H.H.; Gross, R.; Bushman, F.D.; Collman, R.G.; Liu, C. Miniaturized devices for point of care molecular detection of HIV. Lab Chip 2017, 17, 382–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeling, R.W.; Mabey, D. Point-of-care tests for diagnosing infections in the developing world. Clin. Microbiol. Infect. 2010, 16, 1062–1069. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, J.; Islam, M.; Martinez-Duarte, R. Challenges in the Use of Compact Disc-Based Centrifugal Microfluidics for Healthcare Diagnostics at the Extreme Point of Care. Micromachines 2016, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Owen, D.; Ballard, M.; Alexeev, A.; Hesketh, P.J. Rapid microfluidic mixing via rotating magnetic microbeads. Sens. Actuators A Phys. 2016, 251, 10. [Google Scholar] [CrossRef] [Green Version]
- Ward, K.; Fan, Z.H. Mixing in microfluidic devices and enhancement methods. J. Micromech. Microeng. 2015, 25, 094001. [Google Scholar] [CrossRef]
- Green, J.; Holdø, A.E.; Khan, A. A review of passive and active mixing systems in microfluidic devices. Int. J. Multiphys. 2007, 1, 1–32. [Google Scholar] [CrossRef]
- Aubin, J.; Ferrando, M.; Jiřičný, V. Current methods for characterising mixing and flow in microchannels. Chem. Eng. Sci. 2010, 65, 2065–2093. [Google Scholar] [CrossRef]
- La, M.; Park, S.J.; Kim, H.W.; Park, J.J.; Ahn, K.T.; Ryew, S.M.; Kim, D.S. A centrifugal force-based serpentine micromixer (CSM) on a plastic lab-on-a-disk for biochemical assays. Microfluid. Nanofluid. 2013, 15, 87–98. [Google Scholar] [CrossRef]
- Haeberle, S.; Brenner, T.; Schlosser, H.; Zengerle, R.; Ducrée, J. Centrifugal Micromixer. Chem. Eng. Technol. 2005, 28, 5. [Google Scholar] [CrossRef]
- Burger, R.; Kinahan, D.J.; Cayron, H.; Reis, N.; Fonseca, J.; Ducrée, J. Siphon-Induced Droplet Break-Off for Enhanced Mixing on a Centrifugal Platform. Inventions 2020, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Cai, G.; Xue, L.; Zhang, H.; Lin, J. A review on micromixers. Micromachines 2017, 8, 274. [Google Scholar] [CrossRef] [PubMed]
- Grumann, M.; Geipel, A.; Riegger, L.; Zengerle, R.; Ducrée, J. Batch-mode mixing on centrifugal microfluidic platforms. Lab Chip 2005, 5, 560–565. [Google Scholar] [CrossRef]
- Patil, D.P.; Shrotri, A.P.; Patil, V.P.; Mane, N.S. Design and development of a special purpose bidirectional mixer to maximize agitating performance. Int. J. Modern Studies Mechanic Eng. 2015, 1, 1–7. [Google Scholar]
- Noroozi, Z.; Kido, H.; Micic, M.; Pan, H.; Bartolome, C.; Princevac, M.; Zoval, J.; Madou, M. Reciprocating flow-based centrifugal microfluidics mixer. Rev. Sci. Instrum. 2009, 80, 075102. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lin, K.-W.; Yen, D.; Shih, C.-H.; Lu, C.-H.; Wang, J.-M.; Lin, C.-Y. A point-of-care prothrombin time test on a microfluidic disk analyzer using alternate spinning. J. Nanosci. Nanotechnol. 2015, 15, 1401–1407. [Google Scholar] [CrossRef]
- Sukapirom, K.; Onlamoon, N.; Thepthai, C.; Polsrila, K.; Tassaneetrithep, B.; Pattanapanyasat, K. Performance evaluation of the Alera PIMA CD4 test for monitoring HIV-infected individuals in resource-constrained settings. J. Acquir. Immune Defic. Syndr. 2011, 58, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Gurkan, U.A.; Blander, J.; Fawzi, W.W.; Aboud, S.; Mugusi, F.; Kuritzkes, D.R.; Demirci, U. Enumeration of CD4+ T-cells using a portable microchip count platform in Tanzanian HIV-infected patients. PLoS ONE 2011, 6, e21409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yager, P.; Edwards, T.; Fu, E.; Helton, K.; Nelson, K.; Tam, M.R.; Weigl, B.H. Microfluidic diagnostic technologies for global public health. Nature 2006, 442, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Sher, M.; Asghar, W. Development of a multiplex fully automated assay for rapid quantification of CD4+ T cells from whole blood. Biosens. Bioelectron. 2019, 142, 111490. [Google Scholar] [CrossRef]
- Zeng, Y.; Jin, K.; Li, J.; Liu, J.; Li, T.; Li, S. A low cost and portable smartphone microscopic device for cell counting. Sens. Actuators A Phys. 2018, 274, 57–63. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Q. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectr. 2016, 75, 273–284. [Google Scholar] [CrossRef]
- Kanakasabapathy, M.K.; Pandya, H.J.; Draz, M.S.; Chug, M.K.; Sadasivam, M.; Kumar, S.; Etemad, B.; Yogesh, V.; Safavieh, M.; Asghar, W.; et al. Rapid, label-free CD4 testing using a smartphone compatible device. Lab Chip 2017, 17, 2910–2919. [Google Scholar] [CrossRef]
- Zhu, H.; Mavandadi, S.; Coskun, A.F.; Yaglidere, O.; Ozcan, A. Optofluidic fluorescent imaging cytometry on a cell phone. Anal. Chem. 2011, 83, 6641–6647. [Google Scholar] [CrossRef] [Green Version]
- Martinez, A.W.; Phillips, S.T.; Carrilho, E.; Thomas, S.W.; Sindi, H.; Whitesides, G.M. Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 2008, 80, 3699–3707. [Google Scholar] [CrossRef] [Green Version]
- Geng, Z.; Zhang, X.; Fan, Z.; Lv, X.; Su, Y.; Chen, H. Recent progress in optical biosensors based on smartphone platforms. Sensors 2017, 17, 2449. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imran, J.H.; Kim, J.K. A Nut-and-Bolt Microfluidic Mixing System for the Rapid Labeling of Immune Cells with Antibodies. Micromachines 2020, 11, 280. https://doi.org/10.3390/mi11030280
Imran JH, Kim JK. A Nut-and-Bolt Microfluidic Mixing System for the Rapid Labeling of Immune Cells with Antibodies. Micromachines. 2020; 11(3):280. https://doi.org/10.3390/mi11030280
Chicago/Turabian StyleImran, Jakir Hossain, and Jung Kyung Kim. 2020. "A Nut-and-Bolt Microfluidic Mixing System for the Rapid Labeling of Immune Cells with Antibodies" Micromachines 11, no. 3: 280. https://doi.org/10.3390/mi11030280
APA StyleImran, J. H., & Kim, J. K. (2020). A Nut-and-Bolt Microfluidic Mixing System for the Rapid Labeling of Immune Cells with Antibodies. Micromachines, 11(3), 280. https://doi.org/10.3390/mi11030280