Improved High-Yield PMMA/Graphene Pressure Sensor and Sealed Gas Effect Analysis
Abstract
:1. Introduction
2. Device Fabrication and Measurement Setup
2.1. Device Fabrication
2.2. Measurement Setup
3. Results and Discussion
3.1. Improved Performance of PMMA/Graphene Pressure with Through-Hole
3.2. Sealed Gas Effect Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Javed, Y. A Review of Principles of Mems Pressure Sensing with Its Aerospace Applications. Sens. Rev. 2019, 39, 652–664. [Google Scholar] [CrossRef]
- Chen, W.W.; Yan, X. Progress in Achieving High-Performance Piezoresistive and Capacitive Flexible Pressure Sensors: A Review. J. Mater. Sci. Technol. 2020, 43, 175–188. [Google Scholar] [CrossRef]
- Song, P.P.; Ma, Z.Z.; Ma, J.J.; Yang, L.L.; Wei, J.J.; Zhao, Y.Y.; Zhang, M.M.; Yang, F.F.; Wang, X. Recent Progress of Miniature Mems Pressure Sensors. Micromachines 2020, 11, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.J.; Chen, J.J.; Li, M.M.; Ge, Y.Y.; Wang, T.T.; Shan, P.P.; Mao, X. Design, Fabrication, and Implementation of an Array-Type Mems Piezoresistive Intelligent Pressure Sensor System. Micromachines 2018, 9, 104. [Google Scholar] [CrossRef] [Green Version]
- Escudero, P.P.; Yeste, J.J.; Pascual-Izarra, C.C.; Villa, R.R.; Alvarez, M. Color Tunable Pressure Sensors Based on Polymer Nanostructured Membranes for Optofluidic Applications. Sci. Rep. 2019, 9, 3259. [Google Scholar] [CrossRef]
- Meyer, J.C.C.; Geim, A.K.K.; Katsnelson, M.I.I.; Novoselov, K.S.S.; Booth, T.J.J.; Roth, S. The Structure of Suspended Graphene Sheets. Nature 2007, 446, 60–63. [Google Scholar] [CrossRef]
- Geim, A.K.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Lee, C.C.; Wei, X.X.; Kysar, J.W.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Kim, K.S.S.; Zhao, Y.Y.; Jang, H.H.; Lee, S.Y.Y.; Kim, J.M.M.; Kim, K.S.S.; Ahn, J.-H.H.; Kim, P.P.; Choi, J.-Y.Y.; Hong, B.H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706–710. [Google Scholar] [CrossRef]
- Cocco, G.G.; Cadelano, E.E.; Colombo, L. Gap Opening in Graphene by Shear Strain. Phys. Rev. B 2010, 81, 241412. [Google Scholar] [CrossRef] [Green Version]
- Bunch, J.S.S.; Verbridge, S.S.S.; Alden, J.S.S.; Van Der Zande, A.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Impermeable Atomic Membranes from Graphene Sheets. Nano Lett. 2008, 8, 2458–2462. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.D.; Niklaus, F.; Paussa, A.; Vaziri, S.; Fischer, A.C.; Sterner, M.; Forsberg, F.; Delin, A.; Essen, D.; Palestri, P.; et al. Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes. Nano Lett. 2013, 13, 3237–3242. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Servin, J.; Miao, T.; Bockrath, M. Nanoscale Pressure Sensors Realized from Suspended Graphene Membrane Devices. Appl. Phys. Lett. 2015, 106, 083103. [Google Scholar] [CrossRef]
- Li, M.; Zhang, T.; Wang, P.; Li, M.; Wang, J.; Liu, Z. Temperature Characteristics of a Pressure Sensor Based on Bn/Graphene/Bn Heterostructure. Sensors 2019, 19, 2223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milovanović, S.P.; Tadić, M.Ž.; Peeters, F.M. Graphene Membrane as a Pressure Gauge. Appl. Phys. Lett. 2017, 111, 043101. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Liu, Y.; Zhang, Y.; Yang, P.; Cheng, X.; Qiu, J.; Liu, G. Polymer-Assisted Pressure Sensor with Piezoresistive Suspended Graphene and Its Temperature Characteristics. Nano 2019, 14, 1950130. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wu, C.; Zhao, S.; Deng, T.; Wang, J.; Liu, Z.; Wang, L.; Wang, G. Pressure Sensing Element Based on the Bn–Graphene–Bn Heterostructure. Appl. Phys. Lett. 2018, 112, 143502. [Google Scholar] [CrossRef]
- Chen, Y.; Gong, X.L.; Gai, J.G. Progress and Challenges in Transfer of Large-Area Graphene Films. Adv. Sci. 2016, 3, 1500343. [Google Scholar] [CrossRef]
- Alemán, B.; Regan, W.; Aloni, S.; Altoe, V.; Alem, N.; Girit, C.; Geng, B.; Maserati, L.; Crommie, M.; Wang, F.; et al. Transfer-Free Batch Fabrication of Large-Area Suspended Graphene Membranes. ACS Nano 2010, 4, 4762–4768. [Google Scholar] [CrossRef]
- Biró, L.P.; Lambin, P. Grain Boundaries in Graphene Grown by Chemical Vapor Deposition. New J. Phys. 2013, 15, 035024. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Biswas, T.; Ghosh, P.; Suran, S.; Mishra, A.; Mishra, R.; Sachan, R.; Jain, M.; Varma, M.; Pratap, R.; et al. Reversible Defect Engineering in Graphene Grain Boundaries. Nat. Commun. 2019, 10, 1090. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.; Niklaus, F.; Paussa, A.; Schröder, S.; Fischer, A.C.; Sterner, M.; Wagner, S.; Vaziri, S.; Forsberg, F.; Esseni, D.; et al. Piezoresistive Properties of Suspended Graphene Membranes under Uniaxial and Biaxial Strain in Nanoelectromechanical Pressure Sensors. ACS Nano 2016, 10, 9879–9886. [Google Scholar] [CrossRef] [PubMed]
- Melvås, P.; Kälvesten, E.; Enoksson, P.; Stemme, G. A Free-Hanging Strain-Gauge for Ultraminiaturized Pressure Sensors. Sens. Actuators A Phys. 2002, 97, 75–82. [Google Scholar] [CrossRef]
- Stampfer, C.; Helbling, T.; Obergfell, D.; Sch?berle, B.; Tripp, M.K.; Jungen, A.; Roth, S.; Bright, V.M.; Hierold, C.J.N.L. Fabrication of Single-Walled Carbon-Nanotube-Based Pressure Sensors. Nano Lett. 2006, 6, 233–237. [Google Scholar] [CrossRef] [PubMed]
- González, P.C.; Rakowski, M.; Segundo, D.S.; Severi, S.; Meyer, K.D.; Witvrouw, A. Cmos-Integrated Poly-Sige Piezoresistive Pressure Sensor. IEEE Electron Device Lett. 2012, 33, 1204–1206. [Google Scholar] [CrossRef]
- Godovitsyn, I.V.; Amelichev, V.V.; Pankov, V.V. A High Sensitivity Surface-Micromachined Pressure Sensor. Sens. Actuators A Phys. 2013, 201, 274–280. [Google Scholar] [CrossRef]
- Davidovikj, D.; Scheepers, P.H.; van der Zant, H.S.; Steeneken, P.G. Static Capacitive Pressure Sensing Using a Single Graphene Drum. ACS Appl. Mater. Interfaces 2017, 9, 43205–43210. [Google Scholar] [CrossRef] [Green Version]
- Bunch, J.S. Mechanical and Electrical Properties of Graphene Sheets. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 2008. [Google Scholar]
- Polyanin, A.; Manzhirov, A. Handbook of Mathematics for Engineers and Scientists; CRC Press: Boca Raton, FL, USA, 2006; p. 69. [Google Scholar]
- West, J.B. Robert Boyle’s Landmark Book of 1660 with the First Experiments on Rarified Air. J. Appl. Physiol. 2005, 98, 31–39. [Google Scholar] [CrossRef]
Group | Year | Material | Size μm | Range kPa | Sensitivity /kPa | Sensitivity Per Unit Area/kPa |
---|---|---|---|---|---|---|
Melvas [23] | 2002 | Si | 100 × 100 | 10~140 | 3.75 × 10−5 | 3.75 × 10−9 |
Hierold [24] | 2007 | Al2O3/CNT | r = 100 | 0~130 | 6.53 × 10−5 | 2.08 × 10−9 |
Gonzalez [25] | 2012 | SiGe | 200 × 200 | 0~100 | 4.60 × 10−5 | 1.15 × 10−9 |
Godovitsyn [26] | 2013 | Si | 2000 × 2000 | 0~100 | 2.37 × 10−4 | 5.92 × 10−11 |
Smith [12] | 2013 | Graphene | 6 × 64 | 40~100 | 2.96 × 10−5 | 7.71 × 10−8 |
This paper | 2019 | Graphene | r = 8 | 0~70 | 7.42 × 10−5 | 12.30 × 10−8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, Y.; Lin, X.; Lv, K.-h.; Yang, P.; Qiu, J.; Liu, G.-j. Improved High-Yield PMMA/Graphene Pressure Sensor and Sealed Gas Effect Analysis. Micromachines 2020, 11, 786. https://doi.org/10.3390/mi11090786
Liu Y, Zhang Y, Lin X, Lv K-h, Yang P, Qiu J, Liu G-j. Improved High-Yield PMMA/Graphene Pressure Sensor and Sealed Gas Effect Analysis. Micromachines. 2020; 11(9):786. https://doi.org/10.3390/mi11090786
Chicago/Turabian StyleLiu, Ying, Yong Zhang, Xin Lin, Ke-hong Lv, Peng Yang, Jing Qiu, and Guan-jun Liu. 2020. "Improved High-Yield PMMA/Graphene Pressure Sensor and Sealed Gas Effect Analysis" Micromachines 11, no. 9: 786. https://doi.org/10.3390/mi11090786
APA StyleLiu, Y., Zhang, Y., Lin, X., Lv, K.-h., Yang, P., Qiu, J., & Liu, G.-j. (2020). Improved High-Yield PMMA/Graphene Pressure Sensor and Sealed Gas Effect Analysis. Micromachines, 11(9), 786. https://doi.org/10.3390/mi11090786