Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,662)

Search Parameters:
Keywords = PMMA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 810 KiB  
Article
The Influence of the Ethyl Oleate and n-Hexane Mixture on the Wetting and Lubricant Properties of Canola Oil
by Anna Zdziennicka, Katarzyna Szymczyk and Bronisław Jańczuk
Appl. Sci. 2025, 15(17), 9243; https://doi.org/10.3390/app15179243 - 22 Aug 2025
Abstract
Canola oil (RO) is increasingly being considered as a potential lubricant for various types of abrasive materials. Unfortunately, its properties such as wettability, surface tension (ST), adhesion work and dynamic viscosity do not always meet the requirements of a lubricant. Therefore, these properties [...] Read more.
Canola oil (RO) is increasingly being considered as a potential lubricant for various types of abrasive materials. Unfortunately, its properties such as wettability, surface tension (ST), adhesion work and dynamic viscosity do not always meet the requirements of a lubricant. Therefore, these properties of RO were modified by adding n-hexane (Hex) and ethyl oleate (EO) to it and the result was analyzed based on the contact angle measurements as well as values of surface tension and dynamic viscosity. Contact angle, being a measure of wetting properties, was determined for RO + Hex, RO + EO, EO + Hex and RO + Hex + EO mixtures on polytetrafluoroethylene (PTFE), poly (methyl methacrylate) (PMMA) and steel. The obtained results allowed for the determination of the components and parameters of the surface tension of the tested mixtures and then the adhesion work of these mixtures to PTFE, PMMA and steel. Then, using different approaches to the work of adhesion, the pressure of the adsorption layer on the PMMA and steel surfaces was determined, which has a significant impact on the wettability of these solids. It was found that the addition of Hex to RO reduces its surface tension, adhesion work and dynamic viscosity and increases the wetting properties of RO. Adding EO to RO slightly lowers its surface tension, greatly decreases its dynamic viscosity and has minimal impact on its adhesive and wetting characteristics. When both EO and Hex are added to RO together, the resulting mixture achieves optimal values for the parameters that influence RO’s lubrication properties. Full article
9 pages, 882 KiB  
Article
Sensitivity and Contrast Characterization of PMMA 950K Resist Under 30 keV Focused Ga+ Ion Beam Exposure
by Mukhit Muratov, Yana Shabelnikova, Sergey Zaitsev, Renata Nemkayeva and Nazim Guseinov
Micromachines 2025, 16(8), 958; https://doi.org/10.3390/mi16080958 - 20 Aug 2025
Viewed by 139
Abstract
In this study, the key lithographic performance of PMMA 950K resist was evaluated by exposure to a 30 keV focused gallium (Ga+) ion beam. The sensitivity and contrast of PMMA 950K were directly compared with those of electron exposure under identical [...] Read more.
In this study, the key lithographic performance of PMMA 950K resist was evaluated by exposure to a 30 keV focused gallium (Ga+) ion beam. The sensitivity and contrast of PMMA 950K were directly compared with those of electron exposure under identical development conditions. It was found that the sensitivity of PMMA 950K to Ga+ ions for 50 nm films reaches a value of about 0.4 μC/cm2, which is more than 250 times higher than its sensitivity to electron exposure. A method for evaluating the resist contrast during ion exposure is proposed in this work, taking into account the highly non-uniform dose distribution across the resist depth; it yielded a contrast value of γ = 2.6, which is consistent with the result obtained with electron exposure (γ = 2.8). In addition, a pronounced dependence of the resist sensitivity on the resist thickness was found: with an increase in thickness from 10 nm to 60 nm the sensitivity decreases by an order of magnitude. The obtained results form a reliable methodological basis for characterizing the behavior of polymer resists under ion irradiation and provide valuable recommendations for optimizing lithography with a focused beam of Ga+ ions when creating nanostructures for microelectronics, photonics, and quantum technologies. Full article
Show Figures

Figure 1

22 pages, 2722 KiB  
Article
Optically Active, Chlorophyll-Based Fluorescent Dye from Calabrian Opuntia ficus-indica Cladodes for Sustainable Applications
by Antonio Ferraro, Rita Guzzi, Sephora Kamwe Sighano, Giuseppe Nicoletta, Roberto Caputo, Franco Cofone, Giovanni Desiderio and Oriella Gennari
Sustainability 2025, 17(16), 7504; https://doi.org/10.3390/su17167504 - 20 Aug 2025
Viewed by 233
Abstract
Using ultrasound-assisted extraction, we obtained a chlorophyll-rich extract from Opuntia ficus-indica cladodes (OFI) characterized through thin-layer chromatography (TLC), Fourier-transform infrared spectroscopy (FTIR), and spectrophotometric absorption analysis. The dye exhibited a strong fluorescence response in the visible range (400–800 nm) with a [...] Read more.
Using ultrasound-assisted extraction, we obtained a chlorophyll-rich extract from Opuntia ficus-indica cladodes (OFI) characterized through thin-layer chromatography (TLC), Fourier-transform infrared spectroscopy (FTIR), and spectrophotometric absorption analysis. The dye exhibited a strong fluorescence response in the visible range (400–800 nm) with a pronounced red emission when excited with a UV source. Antioxidant ability was evaluated via DPPH assay, showing an IC50 of 185 µg/mL, highlighting its potential for reactive oxygen species scavenging. The extract was incorporated into polymethyl methacrylate (PMMA), polyvinylpyrrolidone (PVP), and polyvinyl alcohol (PVA), leading to fluorescence intensity enhancements of up to 40 times compared to the dye alone depending on matrix polarity, consistent with aggregation and polarity effects. Stability tests confirmed the dye’s resistance to CO2 exposure, pH variations, and prolonged storage, positioning it as a viable alternative to synthetic fluorophores. These findings suggest that the OFI extract provides a functionally relevant, bio-derived dye platform promoting the valorization of agricultural by-products in high-value technological applications, highlighting a circular and scalable approach to developing ecofriendly fluorescent materials, aligning with sustainability and green technology goals. Full article
(This article belongs to the Special Issue Resource Sustainability: Sustainable Materials and Green Engineering)
Show Figures

Figure 1

19 pages, 5241 KiB  
Article
Photodegradation Behavior of Nanosilica-Filled PMMA Composite: Cooperative Effect of Mixed Solvents and Interfacial Functional Groups
by Zhiping Xu, Liangchen Li, Ying Liu and Rui Yang
Polymers 2025, 17(16), 2241; https://doi.org/10.3390/polym17162241 - 19 Aug 2025
Viewed by 274
Abstract
Poly(methyl methacrylate) (PMMA) and its composites are widely used in industrial applications; therefore, their durability is of great concern. In this study, the photooxidative degradation behavior of nanosilica-filled PMMA composite films and the cooperative effect of mixed solvents containing tetrahydrofuran (THF) and chloroform [...] Read more.
Poly(methyl methacrylate) (PMMA) and its composites are widely used in industrial applications; therefore, their durability is of great concern. In this study, the photooxidative degradation behavior of nanosilica-filled PMMA composite films and the cooperative effect of mixed solvents containing tetrahydrofuran (THF) and chloroform (TCM), as well as interfacial functional groups, was investigated. The surface functional groups of nanosilica fillers, such as polar, aryl, and alkyl moieties, significantly affect the photodegradation kinetics and pathways for PMMA. The key process lies in the modulation of solvent–solvent reaction selectivity at the polymer–filler interface. Functional groups that selectively promote the chlorination reaction between THF and TCM accelerate PMMA photodepolymerization, while those that suppress this reaction hinder degradation. This interfacial effect is validated by trends in molecular weight loss, volatile product profiles, and MMA yields during aging. Our findings reveal that the photodegradation behavior of PMMA composites is not only governed by environmental conditions but also critically influenced by interfacial chemistry. In this way, this study provides novel insight into the interfacial aging process for polymer nanocomposites, as well as guidance for the rational design of PMMA-based materials with improved durability. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 4202 KiB  
Article
Wetting Properties of a Saponin-Rich Aqueous Soapwort Extract
by Anna Zdziennicka, Katarzyna Szymczyk, Bronisław Jańczuk, Kamil Wojciechowski and Ewa Kobylska
Molecules 2025, 30(16), 3413; https://doi.org/10.3390/molecules30163413 - 18 Aug 2025
Viewed by 278
Abstract
The saponin-rich plant extracts are mixtures of various surface-active and non-surface-active compound substances. Their exact composition depends on the type of plant and its part from which they were extracted. In this study, we analyze the wetting properties of the extract obtained by [...] Read more.
The saponin-rich plant extracts are mixtures of various surface-active and non-surface-active compound substances. Their exact composition depends on the type of plant and its part from which they were extracted. In this study, we analyze the wetting properties of the extract obtained by boiling soapwort (Saponaria officinalis L.) roots in water (SE). To this aim, the contact angle measurements of aqueous solutions of SE on apolar (AP) (polytetrafluoroethylene, PTFE), monopolar (MP) (polymethyl methacrylate, PMMA), weak bipolar (WBP) (composites with varying content of cellulose and chitosan), and bipolar solids (BP) (quartz) were determined. The surface tension of the solids used for the contact angle measurements ranged from 20.24 to 47.7 mN/m. Based on the measured contact angles, the relationship between adhesion and surface tension, the cosine of the contact angle and surface tension, the cosine of the contact angle and the reciprocal of the surface tension, as well as the adsorption of the surface-active components of SE at the solid-solution and solid-air interfaces were analyzed. The results indicate that the adsorption of SE components at the hydrophobic solid-solution interface is comparable to that at the solution–air interface. Moreover, the Gibbs free energy of adsorption at the solid-air interface for all solids studied is comparable to that at the solution–air interface. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

15 pages, 1434 KiB  
Article
Shear Bond Strength of Self-Adhesive and Self-Etching Resin Cements to Dentin for Indirect Restorations
by Janet Kirilova, Georgi Veselinov Iliev, Sevda Yantcheva, Elitsa Deliverska and Viktoria Petrova
J. Funct. Biomater. 2025, 16(8), 289; https://doi.org/10.3390/jfb16080289 - 12 Aug 2025
Viewed by 478
Abstract
This study assessed and compared the shear bond strength of self-adhesive and self-etching resin cements for indirect aesthetic restorations to dentin. Four different materials, lithium disilicate ceramics, zirconia ceramics, polymethyl methacrylate (PMMA) composites, and hybrid materials, were used for indirect restorations cemented to [...] Read more.
This study assessed and compared the shear bond strength of self-adhesive and self-etching resin cements for indirect aesthetic restorations to dentin. Four different materials, lithium disilicate ceramics, zirconia ceramics, polymethyl methacrylate (PMMA) composites, and hybrid materials, were used for indirect restorations cemented to dentin. The null hypothesis was that there would be no differences in shear bond strength between the investigated materials. Eighty extracted human molars were used. Eighty dentin specimens with a flat surface were prepared and randomly distributed in groups of 10 (n = 10). From each material (Cerasmart 270, Initial LiSi Blok, Katana ZR Noritake, and Crowntec Next Dent), 20 blocks were made and cemented to the dentin samples. Half of the blocks from each material were cemented to dentin using self-etching resin cement (Panavia V5), and the other half using self-adhesive resin cement (i-CEM). After the specimens were prepared, a laboratory test was conducted to evaluate the shear bond strength. The fracture type was determined using a light microscope, and SEM confirmed the results. The results were statistically analysed. All materials cemented with self-etching cements (Panavia V5) showed statistically higher shear strength values than those cemented with self-adhesive resin cement (i-CEM). In the specimen groups where self-adhesive cement (i-CEM) was used, Cerasmart 270 bonded statistically better. A statistical difference was found between all groups of materials cemented with self-etching cement. The Initial LiSi Block showed the strongest bond, followed by Katana Zr Noritake, Crowntec NextDent, and Cerasmart 270. Adhesion fracture to dentin was observed for all groups cemented with i-CEM. This study highlights the superior performance of self-etching cements in terms of shear bond strength. 10-Methacryloyloxydecyl dihydrogen phosphate (10-MDP), a functional monomer, was found to enhance adhesion strength significantly. However, using self-adhesive cements was associated with a weaker bond to dentin, highlighting the importance of the right cementing agent in restorative dentistry. Full article
(This article belongs to the Special Issue Biomaterials for Dental Reparative and Regenerative Therapies)
Show Figures

Figure 1

13 pages, 2036 KiB  
Article
Improvement of Tracking-Integrated Photovoltaic Systems Using Secondary Optical Elements
by Maria A. Ceballos, Pedro Perez-Higueras, Katie Shanks, Jesus Montes-Romero, Alvaro Valera, Florencia Almonacid and Eduardo F. Fernández
Electronics 2025, 14(16), 3175; https://doi.org/10.3390/electronics14163175 - 9 Aug 2025
Viewed by 255
Abstract
Concentrator photovoltaic systems with tracking-integrated offer an alternative to traditional concentrator photovoltaic systems by eliminating the need for conventional solar trackers, reducing costs, and opening up new market opportunities. This study explores different configurations of modules with tracking-integrated systems. The first setup includes [...] Read more.
Concentrator photovoltaic systems with tracking-integrated offer an alternative to traditional concentrator photovoltaic systems by eliminating the need for conventional solar trackers, reducing costs, and opening up new market opportunities. This study explores different configurations of modules with tracking-integrated systems. The first setup includes a static bi-convex aspheric lens and a mobile triple-junction solar cell. The second setup adds a secondary optical element to these components. This study also compares two materials, PMMA and BK7. These systems have been simulated theoretically and measured experimentally in the laboratory. The experimental results obtained are similar to the theoretical ones, thus validating the design presented. In addition, a study of the annual energy generated by both configurations in different locations shows an annual energy gain of 14% when including secondary optics in module design. These results provide an idea of the advantage of including secondary optics in the system design under real operating conditions for different sites. Full article
(This article belongs to the Special Issue Materials and Properties for Solar Cell Application)
Show Figures

Figure 1

13 pages, 1527 KiB  
Article
A Cascaded Fabry–Pérot Interferometric Fiber Optic Force Sensor Utilizing the Vernier Effect
by Zhuochen Wang, Ginu Rajan, Zhe Wang, Anuradha Rout and Yuliya Semenova
Sensors 2025, 25(16), 4887; https://doi.org/10.3390/s25164887 - 8 Aug 2025
Viewed by 242
Abstract
An optical fiber force sensor based on the Vernier effect in cascaded Fabry–Perot interferometers (FPIs) formed by a barium tantalate microsphere and a section of polymethyl methacrylate (PMMA) optical fiber is proposed and investigated. Optical fiber sensors offer numerous advantages over their electronic [...] Read more.
An optical fiber force sensor based on the Vernier effect in cascaded Fabry–Perot interferometers (FPIs) formed by a barium tantalate microsphere and a section of polymethyl methacrylate (PMMA) optical fiber is proposed and investigated. Optical fiber sensors offer numerous advantages over their electronic counterparts, including immunity to electromagnetic interference and suitability for harsh environments. Despite these benefits, current optical fiber force sensors often face limitations in sensitivity, reliability, and fabrication costs. The proposed sensor has the potential to address these issues. Simulations and experimental results demonstrate that the sensor achieves a sensitivity of 9279.66 nm/N in a range of up to 3 mN. The sensor also exhibits excellent repeatability, making it a promising candidate for high-performance force monitoring in various challenging environments. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

26 pages, 4168 KiB  
Review
Biocompatible Thermoplastics in Additive Manufacturing of Bone Defect Fillers: State-of-the-Art and Future Prospects
by Dagmara Słota, Karina Niziołek, Edyta Kosińska, Julia Sadlik and Agnieszka Sobczak-Kupiec
Materials 2025, 18(16), 3723; https://doi.org/10.3390/ma18163723 - 8 Aug 2025
Viewed by 526
Abstract
The development of materials engineering allows for the creation of new materials intended for 3D printing, which has become a key tool in tissue engineering, particularly in bone tissue engineering, enabling the production of implants, defect fillers, and scaffolds tailored to the individual [...] Read more.
The development of materials engineering allows for the creation of new materials intended for 3D printing, which has become a key tool in tissue engineering, particularly in bone tissue engineering, enabling the production of implants, defect fillers, and scaffolds tailored to the individual needs of patients. Among the wide range of available biomaterials, thermoplastic polymers such as polycaprolactone (PCL), polylactic acid (PLA), polyether ether ketone (PEEK), and polymethyl methacrylate (PMMA) are of significant interest due to their biocompatibility, processability, and variable degradation profiles. This review compiles the latest reports on the applications, advantages, limitations, and modifications in bone tissue engineering. It highlights that PCL and PLA are promising for temporary, resorbable scaffolds, while PEEK and PMMA are suitable for permanent or load-bearing implants. The inclusion of ceramic phases is frequently used to enhance bioactivity. A growing trend can be observed toward developing customized, multifunctional materials that support bone regeneration and biological integration. Despite ongoing progress, the biocompatibility and long-term safety of these materials still require further clinical validation. Full article
Show Figures

Figure 1

8 pages, 2061 KiB  
Article
Flexible Cs3Cu2I5 Nanocrystal Thin-Film Scintillators for Efficient α-Particle Detection
by Yang Li, Xue Du, Silong Zhang, Bo Liu, Naizhe Zhao, Yapeng Zhang and Xiaoping Ouyang
Crystals 2025, 15(8), 716; https://doi.org/10.3390/cryst15080716 - 6 Aug 2025
Viewed by 313
Abstract
Thin-film detection technology plays a significant role in particle physics, X-ray imaging and radiation monitoring. In this paper, the detection capability of a Cs3Cu2I5 thin-film scintillator toward α particles is investigated. The flexible thin-film scintillator is fabricated by [...] Read more.
Thin-film detection technology plays a significant role in particle physics, X-ray imaging and radiation monitoring. In this paper, the detection capability of a Cs3Cu2I5 thin-film scintillator toward α particles is investigated. The flexible thin-film scintillator is fabricated by a facile and cost-effective in situ strategy, exhibiting excellent scintillation properties. Upon α-particle excitation, the light yield of the Cs3Cu2I5 thin-film is 2400 photons/MeV, which greatly benefits its application for single-particle events detection. Moreover, it shows linear energy response within the range of 4.7–5.5 MeV and moderate decay time of 667 ns. We further explored the cryogenic scintillation performance of Cs3Cu2I5@PMMA film. As the temperature decreases from 300 K to 50 K, its light yield gradually increases to 1.3 fold of its original value, while its decay time remains almost unchanged. This scintillator film also shows excellent low-temperature stability and flexible operational stability. This work demonstrates the great potential of the Cs3Cu2I5@PMMA film for the practical utilization in α-particle detection application. Full article
Show Figures

Figure 1

15 pages, 3447 KiB  
Article
Effects of Post-Curing on Mechanical Strength and Cytotoxicity of Stereolithographic Methacrylate Resins
by Alfredo Rondinella, Matteo Zanocco, Alex Lanzutti, Wenliang Zhu, Enrico Greco and Elia Marin
Polymers 2025, 17(15), 2132; https://doi.org/10.3390/polym17152132 - 2 Aug 2025
Viewed by 522
Abstract
This study investigated the influence of curing temperature and time on both the mechanical properties and cytotoxicity of stereolithographic polymethyl methacrylate (PMMA) resin. After printing using stereolithographic equipment, the resin was cured at 45 °C, 60 °C, and 75 °C for up to [...] Read more.
This study investigated the influence of curing temperature and time on both the mechanical properties and cytotoxicity of stereolithographic polymethyl methacrylate (PMMA) resin. After printing using stereolithographic equipment, the resin was cured at 45 °C, 60 °C, and 75 °C for up to 120 min. Our results reveal that the mechanical properties achieved a peak after approximately 30 min of curing at the two highest temperatures, followed by a subsequent decrease, while curing at 45 °C resulted in a constant increase in mechanical properties up to 120 min. Testing with S. epidermidis and E. coli exhibited a bland antibacterial effect, with the number of living bacteria increasing with both the time and temperature of curing. To assess potential cytotoxicity, the materials were also tested with human fibroblasts, and the trends observed were similar to what was previously seen for both bacteria strains. Interestingly, an association was observed between the intensity ratio of two Raman bands (around 2920 and 2945 cm−1), indicative of long-PMMA-chain formation and cytotoxicity. This finding suggests that Raman spectroscopy has the potential to serve as a viable method for estimating the cytotoxicity of 3D printed PMMA objects. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

14 pages, 3999 KiB  
Article
The Fabrication of Porous Al2O3 Ceramics with Ultra-High Mechanical Strength and Oil Conductivity via Reaction Bonding and the Addition of Pore-Forming Agents
by Ye Dong, Xiaonan Yang, Hao Li, Zun Xia and Jinlong Yang
Materials 2025, 18(15), 3574; https://doi.org/10.3390/ma18153574 - 30 Jul 2025
Viewed by 304
Abstract
Reaction bonding (RB) using Al powder is an effective method for preparing porous ceramics with low shrinkage, high porosity, and high strength. However, it remains challenging to optimize mechanical strength and oil conductivity simultaneously for atomizer applications. Herein, aiming at addressing this issue, [...] Read more.
Reaction bonding (RB) using Al powder is an effective method for preparing porous ceramics with low shrinkage, high porosity, and high strength. However, it remains challenging to optimize mechanical strength and oil conductivity simultaneously for atomizer applications. Herein, aiming at addressing this issue, porous Al2O3 ceramics with ultra-high mechanical strength and oil conductivity were fabricated via the RB process using polymethyl methacrylate (PMMA) microspheres as the pore-forming agent. The pore structure was gradually optimized by regulating the additive amount, particle size, and particle gradation of PMMA microspheres. The bimodal pores, formed by Al oxidation-induced hollow structures (enhancing bonding force) and burnout of large-sized PMMA microspheres, significantly improved mechanical strength; meanwhile, three-dimensional interconnected pores derived from particle gradation increased the diversity and quantity of oil-conduction channels, boosting oil conductivity. Consequently, under an open porosity of 58.2 ± 0.1%, a high compressive strength of 7.9 ± 0.3 MPa (a 54.7% improvement) and an excellent oil conductivity of 2.1 ± 0.0 mg·s−1 (a 46.5% improvement) were achieved. This superior performance combination, overcoming the trade-off between strength and oil conductivity, demonstrates substantial application potential in atomizers. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

14 pages, 8944 KiB  
Article
Nano-Hydroxyapatite-Based Mouthwash for Comprehensive Oral Care: Activity Against Bacterial and Fungal Pathogens with Antioxidant and Anti-Inflammatory Action
by Tomasz M. Karpiński, Magdalena Paczkowska-Walendowska and Judyta Cielecka-Piontek
Materials 2025, 18(15), 3567; https://doi.org/10.3390/ma18153567 - 30 Jul 2025
Viewed by 717
Abstract
Background/Objectives: The growing demand for biocompatible and fluoride-free alternatives in oral care has led to the development of formulations containing nano-hydroxyapatite (nanoHAP). This study aimed to evaluate the antimicrobial, antibiofilm, antioxidant, and anti-inflammatory properties of a novel mouthwash containing nanoHAP, zinc lactate, D-panthenol, [...] Read more.
Background/Objectives: The growing demand for biocompatible and fluoride-free alternatives in oral care has led to the development of formulations containing nano-hydroxyapatite (nanoHAP). This study aimed to evaluate the antimicrobial, antibiofilm, antioxidant, and anti-inflammatory properties of a novel mouthwash containing nanoHAP, zinc lactate, D-panthenol, licorice extract, and cetylpyridinium chloride, with particular focus on its efficacy against Staphylococcus aureus and its biofilm on various dental materials. Methods: The antimicrobial activities of the mouthwash KWT0000 and control product ELM were assessed via minimal inhibitory concentration (MIC) testing against selected Gram-positive and Gram-negative bacteria and Candida fungi. Antibiofilm activity was evaluated using fluorescence and digital microscopy following 1-h exposure to biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The efficacy was compared across multiple dental materials, including titanium, zirconia, and PMMA. Antioxidant capacity was determined using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay, and anti-inflammatory potential via hyaluronidase inhibition. Results: KWT0000 exhibited strong antimicrobial activity against S. aureus and C. albicans (MICs: 0.2–1.6%) and moderate activity against Gram-negative strains. Fluorescence imaging revealed significant biofilm disruption and bacterial death after 1 h. On metallic surfaces, especially polished titanium and zirconia, KWT0000 reduced S. aureus biofilm density considerably. The formulation also demonstrated superior antioxidant (55.33 ± 3.34%) and anti-inflammatory (23.33 ± 3.67%) activity compared to a fluoride-based comparator. Conclusions: The tested nanoHAP-based mouthwash shows promising potential in antimicrobial and antibiofilm oral care, particularly for patients with dental implants. Its multifunctional effects may support not only plaque control but also soft tissue health. Full article
Show Figures

Figure 1

14 pages, 6112 KiB  
Article
Polytetrafluoroethylene Isolation of the Periodontal Sulcus for Cementation of Full Veneer Restorations Using a Biologically Oriented Preparation Technique (BOPT): An In Vitro Study
by José Félix Mañes, Federica Tripodi, Jorge Alonso Pérez-Barquero, Blanca Serra-Pastor, Ana Roig-Vanaclocha, Jesús Maneiro-Lojo, Ignazio Loi and Rubén Agustín-Panadero
J. Clin. Med. 2025, 14(15), 5305; https://doi.org/10.3390/jcm14155305 - 27 Jul 2025
Viewed by 433
Abstract
Background: Prosthetic cementation using the biologically oriented preparation technique (BOPT) presents challenges in removing excess cement from the gingival sulcus, due to the absence of a finishing line and the impossibility of using absolute isolation with a rubber dam. This study aimed to [...] Read more.
Background: Prosthetic cementation using the biologically oriented preparation technique (BOPT) presents challenges in removing excess cement from the gingival sulcus, due to the absence of a finishing line and the impossibility of using absolute isolation with a rubber dam. This study aimed to evaluate the effectiveness of relative isolation using polytetrafluoroethylene (PTFE) tape in reducing cement retention during BOPT cementation. Methods: Fifteen 3D-printed resin models were created from an intraoral scan of a patient restored with BOPT in both upper central incisors. Each model included removable gingiva. Splinted polymethylmethacrylate (PMMA) provisional crowns were fabricated and cemented with temporary cement. One central incisor was isolated with PTFE (0.1 mm or 0.2 mm), while the contralateral tooth was left unisolated as a control. After debonding, digital scanning and volumetric analysis using root mean square (RMS) deviation were performed to quantify retained cement. Paired t-tests were applied to compare groups. Results: The mean RMS for the PTFE group was 0.1248 ± 0.0519 mm, compared to 0.1973 ± 0.0361 mm in the non-isolated group (p < 0.001). No significant difference was found between PTFE thicknesses of 0.1 mm and 0.2 mm (p = 0.388). Conclusions: PTFE tape is effective for relative isolation when rubber dam placement is not feasible in BOPT restorations. Further clinical studies are recommended to confirm these findings in vivo. Full article
(This article belongs to the Special Issue Clinical Updates on Prosthodontics)
Show Figures

Figure 1

14 pages, 7570 KiB  
Article
Experimental Study on Effects of Lateral Spacing on Flame Propagation over Solid Fuel Matrix
by Xin Xu, Yanyan Ma, Guoqing Zhu, Zhen Hu and Yumeng Wang
Fire 2025, 8(7), 284; https://doi.org/10.3390/fire8070284 - 20 Jul 2025
Viewed by 497
Abstract
The increasing complexity of urban structures has significantly elevated the risk and severity of façade fires in high-rise buildings. Unlike traditional models assuming continuous fuel beds, real-world fire scenarios often involve discrete combustible materials arranged in discrete fuel matrices. This study presents a [...] Read more.
The increasing complexity of urban structures has significantly elevated the risk and severity of façade fires in high-rise buildings. Unlike traditional models assuming continuous fuel beds, real-world fire scenarios often involve discrete combustible materials arranged in discrete fuel matrices. This study presents a systematic investigation into the influence of lateral spacing on vertical flame propagation behavior. Laboratory-scale experiments were conducted using vertically oriented polymethyl methacrylate (PMMA) fuel arrays under nine different spacing configurations. Results reveal that lateral spacing plays a critical role in determining flame spread paths and intensities. Specifically, with a vertical spacing fixed at 8 cm, a lateral spacing of 10 mm resulted in rapid flame growth, reaching a peak flame height of approximately 96.5 cm within 450 s after ignition. In contrast, increasing the lateral spacing to 15 mm significantly slowed flame development, achieving a peak flame height of just under 90 cm at approximately 600 s. This notable transition in flame dynamics is closely associated with the critical thermal boundary layer thickness (~11.5 mm). Additionally, at 10 mm spacing, a chimney-like effect was observed, enhancing upward air entrainment and resulting in intensified combustion. These findings reveal the coupled influence of geometric configuration and heat transfer mechanisms on façade flame propagation. The insights gained provide guidance for cladding system design, suggesting that increasing lateral separation between combustible elements may be an effective strategy to limit flame spread and enhance fire safety performance in buildings. Full article
Show Figures

Figure 1

Back to TopTop