Simultaneous Patch-Group Sparse Coding with Dual-Weighted ℓp Minimization for Image Restoration
Abstract
:1. Introduction
2. Sparse Coding for Image Processing
2.1. Patch Sparse Coding
2.2. Group Sparse Coding
3. Image Restoration Using Simultaneous Patch-Group Sparse Coding with Dual-Weighted Minimization
3.1. Modeling of Simultaneous Patch-Group Sparse Coding for Image Restoration
3.2. Generalized Iteration Shrinkage Algorithm Based on the ADMM Framework to Solve the Proposed SPG-SC Model
3.2.1. Sub-Problem
3.2.2. Sub-Problem
3.2.3. Sub-Problem
3.3. Setting the Weight and Regularization Parameter
3.4. Summary of the Proposed Algorithm
Algorithm 1 Image Restoration Using SPG-SC Model. |
|
4. Experimental Results
4.1. Parameter Setting
4.2. Image Inpainting
4.3. Image Deblurring
4.4. Algorithm Convergence
4.5. Suitable Setting of the Power p
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, H.; He, X.; Tao, D.; Tang, Y.; Wang, R. Joint medical image fusion, denoising and enhancement via discriminative low-rank sparse dictionaries learning. Pattern Recognit. 2018, 79, 130–146. [Google Scholar]
- Huang, B.; Song, H. Spatiotemporal reflectance fusion via sparse representation. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3707–3716. [Google Scholar]
- Ji, H.; Huang, S.; Shen, Z.; Xu, Y. Robust video restoration by joint sparse and low rank matrix approximation. SIAM J. Imag. Sci. 2011, 4, 1122–1142. [Google Scholar]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; pp. 60–65. [Google Scholar]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Trans. Imag. Process. 2007, 16, 2080–2095. [Google Scholar]
- Dong, W.; Zhang, L.; Shi, G.; Li, X. Nonlocally Centralized Sparse Representation for Image Restoration. IEEE Trans. Imag. Process. 2013, 22, 1620–1630. [Google Scholar]
- Zhang, J.; Zhao, D.; Xiong, R.; Ma, S.; Gao, W. Image restoration using joint statistical modeling in a space-transform domain. IEEE Trans. Circuits Syst. Video Technol. 2014, 24, 915–928. [Google Scholar]
- Ding, D.; Ram, S.; Rodriguez, J.J. Perceptually aware image inpainting. Pattern Recognit. 2018, 83, 174–184. [Google Scholar]
- Zha, Z.; Yuan, X.; Wen, B.; Zhou, J.; Zhu, C. Joint patch-group based sparse representation for image inpainting. Proc. Mach. Learn. Res. 2018, 95, 145. [Google Scholar]
- Zhang, J.; Zhao, D.; Gao, W. Group-based sparse representation for image restoration. IEEE Trans. Imag. Process. 2014, 23, 3336–3351. [Google Scholar]
- Zha, Z.; Liu, X.; Huang, X.; Shi, H.; Xu, Y.; Wang, Q.; Tang, L.; Zhang, X. Analyzing the group sparsity based on the rank minimization methods. In Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017; pp. 883–888. [Google Scholar]
- Zha, Z.; Yuan, X.; Wen, B.; Zhou, J.; Zhu, C. Group Sparsity Residual Constraint With Non-Local Priors for Image Restoration. IEEE Trans. Imag. Process. 2020, 29, 8960–8975. [Google Scholar]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar]
- Osher, S.; Burger, M.; Goldfarb, D.; Xu, J.; Yin, W. An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 2005, 4, 460–489. [Google Scholar]
- Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Imag. Process. 2006, 15, 3736–3745. [Google Scholar]
- Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image super-resolution via sparse representation. IEEE Trans. Imag. Process. 2010, 19, 2861–2873. [Google Scholar]
- Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Imag. Process. 2006, 54, 4311–4322. [Google Scholar]
- Mairal, J.; Bach, F.R.; Ponce, J.; Sapiro, G.; Zisserman, A. Non-local sparse models for image restoration. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 54–62. [Google Scholar]
- Wang, Q.; Zhang, X.; Wu, Y.; Tang, L.; Zha, Z. Nonconvex Weighted ℓp Minimization Based Group Sparse Representation Framework for Image Denoising. IEEE Signal Process. Lett. 2017, 24, 1686–1690. [Google Scholar]
- Yang, B.; Ma, A.J.; Yuen, P.C. Learning domain-shared group-sparse representation for unsupervised domain adaptation. Pattern Recognit. 2018, 81, 615–632. [Google Scholar]
- Xu, J.; Zhang, L.; Zuo, W.; Zhang, D.; Feng, X. Patch group based nonlocal self-similarity prior learning for image denoising. In Proceedings of the 2015 International Conference on Computer Vision, Santiago, Chile, 13–16 December 2015; pp. 244–252. [Google Scholar]
- Zha, Z.; Wen, B.; Yuan, X.; Zhou, J.; Zhu, C.; Kot, A.C. A Hybrid Structural Sparsification Error Model for Image Restoration. IEEE Trans. Neural Netw. Learn. Syst. 2021, 3, 1–15. [Google Scholar]
- Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 210–227. [Google Scholar]
- Wen, B.; Ravishankar, S.; Bresler, Y. Structured overcomplete sparsifying transform learning with convergence guarantees and applications. Int. J. Comput. Vis. 2015, 114, 137–167. [Google Scholar]
- Gao, S.; Chia, L.T.; Tsang, I.W.H.; Ren, Z. Concurrent single-label image classification and annotation via efficient multi-layer group sparse coding. IEEE Trans. Multimed. 2014, 16, 762–771. [Google Scholar]
- Wen, B.; Li, Y.; Bresler, Y. When sparsity meets low-rankness: Transform learning with non-local low-rank constraint for image restoration. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 2297–2301. [Google Scholar]
- Zha, Z.; Yuan, X.; Zhou, J.; Zhu, C.; Wen, B. Image restoration via simultaneous nonlocal self-similarity priors. IEEE Trans. Imag. Process. 2020, 29, 8561–8576. [Google Scholar]
- Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G. Online dictionary learning for sparse coding. In Proceedings of the 26th annual international conference on machine learning, Montreal, QC, Canada, 14–18 June 2009; pp. 689–696. [Google Scholar]
- Hu, J.; Tan, Y.P. Nonlinear dictionary learning with application to image classification. Pattern Recognit. 2018, 75, 282–291. [Google Scholar]
- Wang, S.; Zhang, L.; Liang, Y.; Pan, Q. Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2216–2223. [Google Scholar]
- Zhang, Q.; Li, B. Discriminative K-SVD for dictionary learning in face recognition. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2691–2698. [Google Scholar]
- Budianto; Lun, D.P.K. Robust Fringe Projection Profilometry via Sparse Representation. IEEE Trans. Imag. Process. 2016, 25, 1726–1739. [Google Scholar] [CrossRef]
- Elad, M.; Yavneh, I. A Plurality of Sparse Representations Is Better Than the Sparsest One Alone. IEEE Trans. Inf. Theory 2009, 55, 4701–4714. [Google Scholar] [CrossRef]
- Zha, Z.; Yuan, X.; Wen, B.; Zhou, J.; Zhang, J.; Zhu, C. A benchmark for sparse coding: When group sparsity meets rank minimization. IEEE Trans. Imag. Process. 2020, 29, 5094–5109. [Google Scholar]
- Zhang, L.; Dong, W.; Zhang, D.; Shi, G. Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recognit. 2010, 43, 1531–1549. [Google Scholar]
- Dong, W.; Zhang, L.; Shi, G. Centralized sparse representation for image restoration. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 1259–1266. [Google Scholar]
- Wang, S.; Zhang, L.; Liang, Y. Nonlocal spectral prior model for low-level vision. In Proceedings of the 2012 Asian Conference on Computer Vision, Daejeon, Korea, 5–9 November 2012; pp. 231–244. [Google Scholar]
- Zha, Z.; Yuan, X.; Zhou, J.T.; Zhou, J.; Wen, B.; Zhu, C. The power of triply complementary priors for image compressive sensing. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020; pp. 983–987. [Google Scholar]
- Dong, W.; Shi, G.; Li, X. Nonlocal image restoration with bilateral variance estimation: A low-rank approach. IEEE Trans. Imag. Process. 2012, 22, 700–711. [Google Scholar]
- Gu, S.; Xie, Q.; Meng, D.; Zuo, W.; Feng, X.; Zhang, L. Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vis. 2017, 121, 183–208. [Google Scholar]
- Zhang, J.; Xiong, R.; Zhao, C.; Zhang, Y.; Ma, S.; Gao, W. CONCOLOR: Constrained non-convex low-rank model for image deblocking. IEEE Trans. Imag. Process. 2016, 25, 1246–1259. [Google Scholar]
- Zha, Z.; Yuan, X.; Wen, B.; Zhou, J.; Zhang, J.; Zhu, C. From rank estimation to rank approximation: Rank residual constraint for image restoration. IEEE Trans. Imag. Process. 2019, 29, 3254–3269. [Google Scholar]
- Li, M.; Liu, J.; Xiong, Z.; Sun, X.; Guo, Z. Marlow: A joint multiplanar autoregressive and low-rank approach for image completion. In Proceedings of the 2016 European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 819–834. [Google Scholar]
- Shi, J.; Ren, X.; Dai, G.; Wang, J.; Zhang, Z. A non-convex relaxation approach to sparse dictionary learning. CVPR 2011, 2011, 1809–1816. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Figueiredo, M.A. A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Imag. Process. 2007, 16, 2992–3004. [Google Scholar]
- Beck, A.; Teboulle, M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Imag. Process. 2009, 18, 2419–2434. [Google Scholar]
- Goldstein, T.; Osher, S. The split Bregman method for L1-regularized problems. SIAM J. Imag. Sci. 2009, 2, 323–343. [Google Scholar]
- Dong, W.; Shi, G.; Li, X.; Ma, Y.; Huang, F. Compressive sensing via nonlocal low-rank regularization. IEEE Trans. Imag. Process. 2014, 23, 3618–3632. [Google Scholar]
- Donoho, D.L. For most large underdetermined systems of linear equations the minimal L1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci. 2006, 59, 797–829. [Google Scholar]
- Lyu, Q.; Lin, Z.; She, Y.; Zhang, C. A comparison of typical ℓp minimization algorithms. Neurocomputing 2013, 119, 413–424. [Google Scholar]
- Candes, E.J.; Wakin, M.B.; Boyd, S.P. Enhancing sparsity by reweighted ℓ1 minimization. J. Fourier Anal. Appl. 2008, 14, 877–905. [Google Scholar]
- Zha, Z.; Wen, B.; Yuan, X.; Zhou, J.; Zhu, C. Reconciliation of group sparsity and low-rank models for image restoration. In Proceedings of the 2020 IEEE International Conference on Multimedia and Expo (ICME), London, UK, 6–10 July 2020; pp. 1–6. [Google Scholar]
- Keller, J.M.; Gray, M.R.; Givens, J.A. A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 1985, SMC-15, 580–585. [Google Scholar]
- He, B.; Liao, L.Z.; Han, D.; Yang, H. A new inexact alternating directions method for monotone variational inequalities. Math. Program. 2002, 92, 103–118. [Google Scholar]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [Google Scholar]
- Chartrand, R.; Wohlberg, B. A nonconvex ADMM algorithm for group sparsity with sparse groups. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6009–6013. [Google Scholar]
- Zuo, W.; Meng, D.; Zhang, L.; Feng, X.; Zhang, D. A generalized iterated shrinkage algorithm for non-convex sparse coding. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 3–6 December 2013; pp. 217–224. [Google Scholar]
- Xu, Z.; Chang, X.; Xu, F.; Zhang, H. L1/2 regularization: A thresholding representation theory and a fast solver. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1013–1027. [Google Scholar]
- Dong, W.; Zhang, L.; Shi, G.; Wu, X. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Imag. Process. 2011, 20, 1838–1857. [Google Scholar]
- Jin, K.H.; Ye, J.C. Annihilating filter-based low-rank Hankel matrix approach for image inpainting. IEEE Trans. Imag. Process. 2015, 24, 3498–3511. [Google Scholar]
- Quan, Y.; Huang, Y.; Ji, H. Dynamic texture recognition via orthogonal tensor dictionary learning. In Proceedings of the IEEE international conference on computer vision, Santiago, Chile, 13–16 December 2015; pp. 73–81. [Google Scholar]
- Chang, S.G.; Yu, B.; Vetterli, M. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Imag. Process. 2000, 9, 1532–1546. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Imag. Process. 2004, 13, 600–612. [Google Scholar]
- Zhou, M.; Chen, H.; Paisley, J.; Ren, L.; Li, L.; Xing, Z.; Dunson, D.; Sapiro, G.; Carin, L. Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images. IEEE Trans. Imag. Process. 2011, 21, 130–144. [Google Scholar]
- Ram, I.; Elad, M.; Cohen, I. Image processing using smooth ordering of its patches. IEEE Trans. Imag. Process. 2013, 22, 2764–2774. [Google Scholar]
- He, L.; Wang, Y. Iterative support detection-based split bregman method for wavelet frame-based image inpainting. IEEE Trans. Imag. Process. 2014, 23, 5470–5485. [Google Scholar]
- Liu, H.; Xiong, R.; Zhang, X.; Zhang, Y.; Ma, S.; Gao, W. Nonlocal Gradient Sparsity Regularization for Image Restoration. IEEE Trans. Circuits Syst. Video Technol. 2017, 27, 1909–1921. [Google Scholar]
- Serra, J.G.; Testa, M.; Molina, R.; Katsaggelos, A.K. Bayesian K-SVD using fast variational inference. IEEE Trans. Imag. Process. 2017, 26, 3344–3359. [Google Scholar]
- Guo, Q.; Gao, S.; Zhang, X.; Yin, Y.; Zhang, C. Patch-Based Image Inpainting via Two-Stage Low Rank Approximation. IEEE Trans. Vis. Comput. Graph. 2018, 24, 2023–2036. [Google Scholar]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image restoration by sparse 3D transform-domain collaborative filtering. Image Processing: Algorithms and Systems VI. Int. Soc. Opt. Photon. 2008, 6812, 681207. [Google Scholar]
- Portilla, J. Image restoration through l0 analysis-based sparse optimization in tight frames. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 3909–3912. [Google Scholar]
- Zoran, D.; Weiss, Y. From learning models of natural image patches to whole image restoration. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 479–486. [Google Scholar]
- Portilla, J.; Tristan-Vega, A.; Selesnick, I.W. Efficient and robust image restoration using multiple-feature L2-relaxed sparse analysis priors. IEEE Trans. Imag. Process. 2015, 24, 5046–5059. [Google Scholar]
- Liu, H.; Tan, S. Image Regularizations Based on the Sparsity of Corner Points. IEEE Trans. Imag. Process. 2019, 28, 72–87. [Google Scholar]
- Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 898–916. [Google Scholar]
Pixels Missing = 80% | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Images | Mickey | Barbara | Butterfly | Fence | Haight | Leaves | Lena | Light | Lily | Pepper | Starfish | Tower | Zebra | Average |
BPFA [64] | 24.53 | 25.11 | 24.04 | 26.24 | 19.42 | 23.78 | 29.50 | 19.26 | 27.30 | 29.58 | 26.79 | 23.94 | 20.90 | 24.65 |
IPPO [65] | 26.33 | 28.32 | 25.13 | 27.98 | 20.90 | 25.56 | 30.64 | 21.49 | 28.33 | 30.48 | 26.30 | 24.50 | 22.71 | 26.05 |
ISD-SB [66] | 22.25 | 22.35 | 18.57 | 21.39 | 17.00 | 18.70 | 26.01 | 17.48 | 24.53 | 25.19 | 23.00 | 21.47 | 18.41 | 21.26 |
JSM [7] | 26.09 | 26.95 | 25.57 | 28.59 | 21.37 | 26.18 | 30.46 | 20.23 | 27.99 | 30.48 | 27.07 | 24.59 | 21.88 | 25.96 |
Aloha [60] | 25.33 | 29.59 | 24.88 | 28.88 | 20.62 | 25.90 | 30.89 | 21.50 | 27.70 | 29.95 | 26.33 | 23.88 | 22.72 | 26.01 |
NGS [67] | 24.50 | 23.88 | 23.85 | 25.26 | 18.76 | 23.87 | 28.87 | 18.52 | 27.08 | 29.35 | 26.17 | 23.47 | 20.49 | 24.16 |
BKSVD [68] | 23.72 | 25.21 | 22.00 | 24.20 | 18.83 | 22.05 | 28.16 | 18.77 | 26.49 | 27.75 | 25.36 | 22.93 | 19.37 | 23.45 |
WNNM [40] | 26.66 | 30.49 | 26.46 | 29.74 | 21.43 | 27.10 | 30.99 | 22.09 | 28.94 | 30.74 | 27.66 | 24.60 | 22.67 | 26.89 |
TSLRA [69] | 25.71 | 28.22 | 25.32 | 28.83 | 20.85 | 25.47 | 30.58 | 21.73 | 28.17 | 29.31 | 26.84 | 24.26 | 22.37 | 25.97 |
SPG-SC | 26.75 | 30.69 | 26.47 | 29.80 | 21.83 | 27.16 | 31.41 | 22.43 | 28.94 | 31.55 | 28.03 | 24.64 | 23.06 | 27.14 |
Pixels Missing = 70% | ||||||||||||||
Images | Mickey | Barbara | Butterfly | Fence | Haight | Leaves | Lena | Light | Lily | Pepper | Starfish | Tower | Zebra | Average |
BPFA [64] | 26.16 | 28.32 | 26.68 | 28.87 | 21.46 | 26.98 | 31.62 | 21.58 | 29.30 | 31.74 | 28.93 | 25.66 | 22.78 | 26.93 |
IPPO [65] | 28.59 | 30.89 | 27.68 | 30.08 | 23.02 | 28.58 | 32.97 | 23.47 | 30.28 | 33.05 | 28.91 | 26.11 | 24.76 | 28.34 |
ISD-SB [66] | 24.40 | 23.56 | 22.65 | 23.16 | 18.89 | 21.85 | 28.16 | 18.70 | 26.46 | 28.37 | 25.09 | 23.18 | 20.17 | 23.43 |
JSM [7] | 28.25 | 30.48 | 27.97 | 30.46 | 23.01 | 29.28 | 32.69 | 23.12 | 29.83 | 33.47 | 29.36 | 26.64 | 23.95 | 28.35 |
Aloha [60] | 27.11 | 32.40 | 27.29 | 30.57 | 22.12 | 29.04 | 32.80 | 23.17 | 29.58 | 32.76 | 28.22 | 25.77 | 24.55 | 28.11 |
NGS [67] | 26.68 | 26.11 | 26.36 | 27.32 | 21.03 | 26.44 | 30.77 | 20.78 | 28.83 | 31.59 | 28.35 | 25.22 | 22.71 | 26.32 |
BKSVD [68] | 26.17 | 27.58 | 25.00 | 28.35 | 21.12 | 25.29 | 30.96 | 20.85 | 28.65 | 30.96 | 27.79 | 25.07 | 23.06 | 26.22 |
WNNM [40] | 29.16 | 33.05 | 29.19 | 31.55 | 23.56 | 30.55 | 33.32 | 24.00 | 30.79 | 33.49 | 30.07 | 26.61 | 24.75 | 29.24 |
TSLRA [69] | 27.64 | 30.79 | 27.76 | 30.75 | 22.61 | 28.03 | 32.64 | 23.43 | 29.92 | 32.72 | 28.78 | 26.05 | 24.25 | 28.11 |
SPG-SC | 29.29 | 34.20 | 29.22 | 31.80 | 23.96 | 30.64 | 33.68 | 24.30 | 31.26 | 34.79 | 30.57 | 26.81 | 25.22 | 29.67 |
Pixels Missing = 60% | ||||||||||||||
Images | Mickey | Barbara | Butterfly | Fence | Haight | Leaves | Lena | Light | Lily | Pepper | Starfish | Tower | Zebra | Average |
BPFA [64] | 27.83 | 31.06 | 28.88 | 30.79 | 23.33 | 29.83 | 33.54 | 23.62 | 31.35 | 34.20 | 30.98 | 27.28 | 24.53 | 29.02 |
IPPO [65] | 30.76 | 33.55 | 29.85 | 32.14 | 25.34 | 30.88 | 34.89 | 25.13 | 32.17 | 35.16 | 31.09 | 27.81 | 26.79 | 30.43 |
ISD-SB [66] | 26.59 | 24.86 | 25.07 | 25.30 | 21.02 | 24.55 | 30.52 | 19.81 | 28.23 | 30.68 | 27.36 | 24.95 | 22.34 | 25.48 |
JSM [7] | 29.85 | 33.21 | 29.83 | 32.23 | 24.70 | 31.47 | 34.56 | 24.83 | 31.59 | 35.47 | 31.40 | 28.09 | 25.90 | 30.24 |
Aloha [60] | 28.59 | 35.13 | 29.16 | 32.33 | 23.58 | 31.41 | 34.72 | 24.47 | 31.47 | 35.00 | 30.19 | 27.16 | 26.24 | 29.96 |
NGS [67] | 28.09 | 28.24 | 28.37 | 30.11 | 22.81 | 28.87 | 32.81 | 22.78 | 30.53 | 33.59 | 30.26 | 27.04 | 24.39 | 28.30 |
BKSVD [68] | 28.53 | 29.86 | 27.70 | 30.72 | 23.39 | 28.61 | 33.48 | 23.00 | 31.00 | 33.44 | 29.99 | 26.68 | 25.27 | 28.59 |
WNNM [40] | 31.23 | 35.61 | 31.27 | 33.18 | 25.87 | 32.89 | 35.06 | 25.43 | 32.80 | 35.49 | 32.28 | 28.10 | 27.07 | 31.25 |
TSLRA [69] | 29.28 | 33.37 | 29.42 | 32.32 | 24.21 | 30.19 | 34.26 | 24.80 | 31.55 | 34.96 | 30.69 | 27.60 | 25.92 | 29.89 |
SPG-SC | 31.44 | 36.82 | 31.60 | 33.66 | 26.34 | 33.56 | 36.01 | 25.68 | 33.34 | 36.87 | 33.05 | 28.55 | 27.33 | 31.87 |
Pixels Missing = 50% | ||||||||||||||
Images | Mickey | Barbara | Butterfly | Fence | Haight | Leaves | Lena | Light | Lily | Pepper | Starfish | Tower | Zebra | Average |
BPFA [64] | 29.43 | 34.01 | 30.98 | 32.82 | 25.40 | 32.79 | 35.61 | 25.73 | 33.41 | 36.44 | 33.13 | 28.83 | 26.37 | 31.15 |
IPPO [65] | 32.74 | 35.91 | 31.69 | 33.95 | 27.53 | 33.32 | 36.50 | 26.70 | 34.04 | 36.91 | 33.10 | 29.57 | 28.42 | 32.34 |
ISD-SB [66] | 27.96 | 26.57 | 27.76 | 27.60 | 22.92 | 26.97 | 32.04 | 21.17 | 30.05 | 32.43 | 29.16 | 26.75 | 23.91 | 27.33 |
JSM [7] | 31.96 | 35.87 | 31.47 | 33.75 | 26.67 | 33.78 | 36.39 | 26.48 | 33.46 | 37.35 | 33.24 | 29.48 | 27.77 | 32.13 |
Aloha [60] | 30.33 | 37.46 | 30.78 | 33.79 | 25.16 | 34.01 | 36.41 | 25.84 | 33.33 | 36.88 | 31.85 | 28.71 | 27.67 | 31.71 |
NGS [67] | 29.75 | 30.93 | 30.28 | 32.00 | 24.50 | 31.23 | 34.56 | 24.62 | 32.31 | 35.59 | 32.10 | 28.53 | 26.03 | 30.19 |
BKSVD [68] | 29.95 | 33.58 | 29.64 | 32.44 | 25.23 | 31.25 | 35.44 | 24.68 | 32.93 | 35.87 | 31.99 | 28.27 | 26.97 | 30.63 |
WNNM [40] | 33.67 | 37.47 | 33.00 | 34.53 | 28.36 | 35.41 | 36.80 | 27.28 | 34.74 | 37.26 | 34.27 | 29.83 | 29.07 | 33.21 |
TSLRA [69] | 31.00 | 35.74 | 31.01 | 33.89 | 26.02 | 32.56 | 35.52 | 26.27 | 33.20 | 36.61 | 32.44 | 29.14 | 27.67 | 31.62 |
SPG-SC | 34.00 | 39.11 | 33.25 | 35.22 | 28.90 | 36.26 | 37.81 | 27.37 | 35.42 | 38.60 | 34.98 | 30.20 | 29.33 | 33.88 |
Text Inlayed | ||||||||||||||
Images | Mickey | Barbara | Butterfly | Fence | Haight | Leaves | Lena | Light | Lily | Pepper | Starfish | Tower | Zebra | Average |
BPFA [64] | 31.70 | 34.27 | 31.71 | 32.23 | 26.64 | 31.78 | 35.27 | 28.63 | 35.18 | 37.50 | 33.88 | 30.94 | 27.04 | 32.06 |
IPPO [65] | 34.04 | 37.65 | 33.98 | 35.10 | 29.10 | 35.26 | 37.29 | 29.92 | 36.67 | 39.42 | 35.35 | 31.91 | 29.99 | 34.28 |
ISD-SB [66] | 29.96 | 30.43 | 28.09 | 27.62 | 24.61 | 27.64 | 33.13 | 24.94 | 32.72 | 34.70 | 31.38 | 28.81 | 24.96 | 29.15 |
JSM [7] | 32.99 | 37.79 | 33.19 | 35.41 | 28.69 | 35.40 | 36.98 | 29.65 | 35.67 | 39.27 | 35.17 | 32.48 | 29.11 | 33.98 |
Aloha [60] | 30.49 | 39.16 | 31.58 | 34.94 | 26.21 | 34.74 | 36.03 | 28.38 | 34.47 | 37.40 | 32.06 | 30.34 | 28.87 | 32.67 |
NGS [67] | 31.10 | 33.57 | 31.78 | 28.73 | 26.16 | 30.05 | 34.71 | 27.26 | 34.00 | 35.61 | 33.02 | 30.21 | 26.24 | 30.96 |
BKSVD [68] | 31.43 | 35.16 | 29.09 | 31.69 | 26.59 | 29.74 | 34.66 | 27.77 | 34.01 | 34.90 | 32.83 | 30.35 | 27.91 | 31.24 |
WNNM [40] | 34.51 | 39.58 | 34.50 | 36.25 | 29.93 | 36.34 | 37.31 | 30.31 | 36.68 | 39.73 | 36.18 | 32.70 | 29.86 | 34.91 |
TSLRA [69] | 32.43 | 37.78 | 32.64 | 35.23 | 28.21 | 33.66 | 32.76 | 29.41 | 35.42 | 37.02 | 34.50 | 31.43 | 28.95 | 33.03 |
SPG-SC | 34.87 | 39.94 | 34.54 | 37.07 | 30.43 | 36.24 | 37.73 | 30.26 | 36.56 | 39.84 | 36.27 | 33.23 | 30.46 | 35.19 |
Pixels Missing = 80% | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Images | Mickey | Barbara | Butterfly | Fence | Haight | Leaves | Lena | Light | Lily | Pepper | Starfish | Tower | Zebra | Average |
BPFA [64] | 0.8117 | 0.8042 | 0.8517 | 0.7960 | 0.7307 | 0.8557 | 0.8899 | 0.6285 | 0.8234 | 0.9127 | 0.8379 | 0.7790 | 0.7160 | 0.8029 |
IPPO [65] | 0.8678 | 0.8834 | 0.8995 | 0.8614 | 0.8251 | 0.9119 | 0.9085 | 0.7827 | 0.8587 | 0.9238 | 0.8243 | 0.8217 | 0.7744 | 0.8572 |
ISD-SB [66] | 0.7506 | 0.6442 | 0.7363 | 0.5994 | 0.6403 | 0.6941 | 0.8071 | 0.4902 | 0.7059 | 0.8335 | 0.7035 | 0.6595 | 0.5899 | 0.6811 |
JSM [7] | 0.8598 | 0.8354 | 0.9026 | 0.8530 | 0.8320 | 0.9213 | 0.8988 | 0.7254 | 0.8418 | 0.9224 | 0.8383 | 0.8257 | 0.7556 | 0.8471 |
Aloha [60] | 0.8300 | 0.9118 | 0.8805 | 0.8699 | 0.7955 | 0.9085 | 0.9095 | 0.7734 | 0.8402 | 0.9177 | 0.8217 | 0.8090 | 0.7720 | 0.8492 |
NGS [67] | 0.8230 | 0.7594 | 0.8635 | 0.7898 | 0.7351 | 0.8687 | 0.8767 | 0.6041 | 0.8174 | 0.9117 | 0.8272 | 0.7783 | 0.7132 | 0.7976 |
BKSVD [68] | 0.7713 | 0.7912 | 0.7817 | 0.7833 | 0.6951 | 0.7782 | 0.8500 | 0.5792 | 0.7804 | 0.8759 | 0.7741 | 0.7344 | 0.6912 | 0.7605 |
WNNM [40] | 0.8738 | 0.9148 | 0.9184 | 0.8717 | 0.8526 | 0.9319 | 0.8968 | 0.8236 | 0.8615 | 0.9146 | 0.8435 | 0.8426 | 0.7958 | 0.8724 |
TSLRA [69] | 0.8536 | 0.8786 | 0.8928 | 0.8679 | 0.8119 | 0.9029 | 0.9001 | 0.7780 | 0.8460 | 0.9166 | 0.8311 | 0.8078 | 0.7572 | 0.8496 |
SPG-SC | 0.8770 | 0.9162 | 0.9241 | 0.8780 | 0.8555 | 0.9375 | 0.9171 | 0.8318 | 0.8719 | 0.9353 | 0.8660 | 0.8365 | 0.7966 | 0.8803 |
Pixels Missing = 70% | ||||||||||||||
Images | Mickey | Barbara | Butterfly | Fence | Haight | Leaves | Lena | Light | Lily | Pepper | Starfish | Tower | Zebra | Average |
BPFA [64] | 0.8661 | 0.8919 | 0.9124 | 0.8726 | 0.8269 | 0.9276 | 0.9269 | 0.7864 | 0.8856 | 0.9435 | 0.8942 | 0.8519 | 0.8042 | 0.8762 |
IPPO [65] | 0.9151 | 0.9334 | 0.9356 | 0.9042 | 0.8878 | 0.9538 | 0.9422 | 0.8612 | 0.9088 | 0.9518 | 0.8923 | 0.8771 | 0.8498 | 0.9087 |
ISD-SB [66] | 0.8251 | 0.7259 | 0.8541 | 0.7131 | 0.7430 | 0.8222 | 0.8647 | 0.6222 | 0.7955 | 0.8971 | 0.7957 | 0.7508 | 0.7047 | 0.7780 |
JSM [7] | 0.9064 | 0.9228 | 0.9377 | 0.8996 | 0.8831 | 0.9581 | 0.9354 | 0.8528 | 0.8935 | 0.9534 | 0.8954 | 0.8860 | 0.8344 | 0.9045 |
Aloha [60] | 0.8797 | 0.9505 | 0.9205 | 0.9105 | 0.8557 | 0.9549 | 0.9420 | 0.8496 | 0.8934 | 0.9493 | 0.8793 | 0.8738 | 0.8432 | 0.9002 |
NGS [67] | 0.8791 | 0.8556 | 0.9145 | 0.8607 | 0.8303 | 0.9233 | 0.9145 | 0.7538 | 0.8728 | 0.9414 | 0.8856 | 0.8478 | 0.8063 | 0.8681 |
BKSVD [68] | 0.8509 | 0.8775 | 0.8753 | 0.8615 | 0.8013 | 0.8896 | 0.9094 | 0.7331 | 0.8579 | 0.9264 | 0.8552 | 0.8247 | 0.7941 | 0.8505 |
WNNM [40] | 0.9195 | 0.9449 | 0.9473 | 0.9098 | 0.9037 | 0.9641 | 0.9358 | 0.8860 | 0.9052 | 0.9454 | 0.8997 | 0.8962 | 0.8584 | 0.9166 |
TSLRA [69] | 0.8993 | 0.9298 | 0.9347 | 0.9071 | 0.8717 | 0.9452 | 0.9367 | 0.8502 | 0.8949 | 0.9499 | 0.8862 | 0.8705 | 0.8321 | 0.9006 |
SPG-SC | 0.9227 | 0.9582 | 0.9520 | 0.9201 | 0.9065 | 0.9696 | 0.9489 | 0.8902 | 0.9208 | 0.9618 | 0.9167 | 0.8965 | 0.8665 | 0.9254 |
Pixels Missing = 60% | ||||||||||||||
Images | Mickey | Barbara | Butterfly | Fence | Haight | Leaves | Lena | Light | Lily | Pepper | Starfish | Tower | Zebra | Average |
BPFA [64] | 0.9033 | 0.9394 | 0.9436 | 0.9125 | 0.8844 | 0.9615 | 0.9498 | 0.8662 | 0.9260 | 0.9620 | 0.9280 | 0.8971 | 0.8647 | 0.9184 |
IPPO [65] | 0.9425 | 0.9598 | 0.9566 | 0.9346 | 0.9287 | 0.9726 | 0.9601 | 0.9057 | 0.9394 | 0.9672 | 0.9290 | 0.9146 | 0.9001 | 0.9393 |
ISD-SB [66] | 0.8749 | 0.7969 | 0.9017 | 0.7994 | 0.8260 | 0.8953 | 0.9049 | 0.7097 | 0.8552 | 0.9291 | 0.8587 | 0.8225 | 0.7994 | 0.8441 |
JSM [7] | 0.9327 | 0.9554 | 0.9570 | 0.9296 | 0.9195 | 0.9751 | 0.9557 | 0.9010 | 0.9286 | 0.9682 | 0.9293 | 0.9182 | 0.8856 | 0.9351 |
Aloha [60] | 0.9127 | 0.9697 | 0.9428 | 0.9385 | 0.8968 | 0.9736 | 0.9594 | 0.8910 | 0.9288 | 0.9657 | 0.9171 | 0.9072 | 0.8899 | 0.9302 |
NGS [67] | 0.9119 | 0.9099 | 0.9451 | 0.9086 | 0.8842 | 0.9556 | 0.9443 | 0.8452 | 0.9115 | 0.9602 | 0.9222 | 0.8982 | 0.8630 | 0.9123 |
BKSVD [68] | 0.9050 | 0.9324 | 0.9266 | 0.9075 | 0.8780 | 0.9480 | 0.9409 | 0.8414 | 0.9121 | 0.9515 | 0.9059 | 0.8790 | 0.8626 | 0.9070 |
WNNM [40] | 0.9450 | 0.9651 | 0.9630 | 0.9376 | 0.9381 | 0.9780 | 0.9525 | 0.9175 | 0.9379 | 0.9604 | 0.9315 | 0.9241 | 0.9060 | 0.9428 |
TSLRA [69] | 0.9263 | 0.9577 | 0.9531 | 0.9343 | 0.9104 | 0.9666 | 0.9555 | 0.8934 | 0.9282 | 0.9654 | 0.9231 | 0.9086 | 0.8830 | 0.9312 |
SPG-SC | 0.9485 | 0.9750 | 0.9677 | 0.9461 | 0.9401 | 0.9840 | 0.9667 | 0.9209 | 0.9500 | 0.9739 | 0.9453 | 0.9282 | 0.9106 | 0.9505 |
Pixels Missing = 50% | ||||||||||||||
Images | Mickey | Barbara | Butterfly | Fence | Haight | Leaves | Lena | Light | Lily | Pepper | Starfish | Tower | Zebra | Average |
BPFA [64] | 0.9312 | 0.9633 | 0.9617 | 0.9390 | 0.9226 | 0.9795 | 0.9658 | 0.9169 | 0.9516 | 0.9723 | 0.9510 | 0.9260 | 0.9076 | 0.9453 |
IPPO [65] | 0.9606 | 0.9749 | 0.9697 | 0.9550 | 0.9540 | 0.9832 | 0.9723 | 0.9350 | 0.9599 | 0.9769 | 0.9531 | 0.9413 | 0.9301 | 0.9589 |
ISD-SB [66] | 0.9077 | 0.8562 | 0.9364 | 0.8658 | 0.8792 | 0.9355 | 0.9298 | 0.7968 | 0.8989 | 0.9484 | 0.9002 | 0.8756 | 0.8558 | 0.8913 |
JSM [7] | 0.9537 | 0.9741 | 0.9695 | 0.9502 | 0.9459 | 0.9846 | 0.9707 | 0.9322 | 0.9528 | 0.9775 | 0.9518 | 0.9411 | 0.9218 | 0.9558 |
Aloha [60] | 0.9371 | 0.9815 | 0.9580 | 0.9555 | 0.9244 | 0.9850 | 0.9719 | 0.9212 | 0.9525 | 0.9764 | 0.9418 | 0.9323 | 0.9197 | 0.9505 |
NGS [67] | 0.9386 | 0.9469 | 0.9630 | 0.9376 | 0.9190 | 0.9734 | 0.9625 | 0.8983 | 0.9408 | 0.9735 | 0.9464 | 0.9296 | 0.9035 | 0.9410 |
BKSVD [68] | 0.9302 | 0.9561 | 0.9487 | 0.9317 | 0.9146 | 0.9713 | 0.9576 | 0.8926 | 0.9409 | 0.9630 | 0.9341 | 0.9100 | 0.9003 | 0.9347 |
WNNM [40] | 0.9651 | 0.9756 | 0.9765 | 0.9541 | 0.9610 | 0.9868 | 0.9674 | 0.9447 | 0.9592 | 0.9718 | 0.9535 | 0.9473 | 0.9369 | 0.9615 |
TSLRA [69] | 0.9480 | 0.9743 | 0.9672 | 0.9536 | 0.9395 | 0.9803 | 0.9702 | 0.9261 | 0.9518 | 0.9758 | 0.9490 | 0.9361 | 0.9192 | 0.9532 |
SPG-SC | 0.9661 | 0.9845 | 0.9768 | 0.9621 | 0.9623 | 0.9906 | 0.9776 | 0.9465 | 0.9678 | 0.9814 | 0.9631 | 0.9495 | 0.9396 | 0.9668 |
Text Inlayed | ||||||||||||||
Images | Mickey | Barbara | Butterfly | Fence | Haight | Leaves | Lena | Light | Lily | Pepper | Starfish | Tower | Zebra | Average |
BPFA [64] | 0.9605 | 0.9658 | 0.9695 | 0.9555 | 0.9482 | 0.9721 | 0.9688 | 0.9530 | 0.9660 | 0.9782 | 0.9630 | 0.9530 | 0.9362 | 0.9608 |
IPPO [65] | 0.9778 | 0.9841 | 0.9850 | 0.9764 | 0.9751 | 0.9892 | 0.9811 | 0.9675 | 0.9771 | 0.9881 | 0.9755 | 0.9685 | 0.9587 | 0.9772 |
ISD-SB [66] | 0.9502 | 0.9336 | 0.9586 | 0.9195 | 0.9358 | 0.9501 | 0.9549 | 0.9077 | 0.9456 | 0.9721 | 0.9475 | 0.9345 | 0.9141 | 0.9403 |
JSM [7] | 0.9727 | 0.9828 | 0.9836 | 0.9747 | 0.9729 | 0.9892 | 0.9792 | 0.9655 | 0.9715 | 0.9870 | 0.9732 | 0.9696 | 0.9535 | 0.9750 |
Aloha [60] | 0.9530 | 0.9858 | 0.9653 | 0.9723 | 0.9492 | 0.9853 | 0.9755 | 0.9541 | 0.9630 | 0.9803 | 0.9528 | 0.9550 | 0.9429 | 0.9642 |
NGS [67] | 0.9527 | 0.9633 | 0.9759 | 0.9412 | 0.9523 | 0.9558 | 0.9654 | 0.9396 | 0.9551 | 0.9639 | 0.9633 | 0.9465 | 0.9337 | 0.9545 |
BKSVD [68] | 0.9474 | 0.9639 | 0.9463 | 0.9479 | 0.9423 | 0.9551 | 0.9584 | 0.9413 | 0.9524 | 0.9610 | 0.9479 | 0.9413 | 0.9359 | 0.9493 |
WNNM [40] | 0.9784 | 0.9866 | 0.9865 | 0.9789 | 0.9785 | 0.9902 | 0.9806 | 0.9714 | 0.9769 | 0.9876 | 0.9762 | 0.9727 | 0.9604 | 0.9788 |
TSLRA [69] | 0.9690 | 0.9829 | 0.9801 | 0.9725 | 0.9691 | 0.9843 | 0.9695 | 0.9621 | 0.9696 | 0.9832 | 0.9697 | 0.9633 | 0.9494 | 0.9711 |
SPG-SC | 0.9779 | 0.9878 | 0.9869 | 0.9797 | 0.9784 | 0.9908 | 0.9819 | 0.9708 | 0.9765 | 0.9884 | 0.9778 | 0.9728 | 0.9607 | 0.9793 |
9 × 9 Uniform Kernel, | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Images | Barbara | Bear | Fence | Lake | Lena | Lily | Flowers | Nanna | Corn | Agaric | Monk | Zebra | Man | Fireman | Average |
BM3D [70] | 26.89 | 30.49 | 28.94 | 27.32 | 30.35 | 28.58 | 28.54 | 26.42 | 26.75 | 29.02 | 34.33 | 23.68 | 27.31 | 26.53 | 28.22 |
0.7814 | 0.8074 | 0.8325 | 0.8230 | 0.8563 | 0.8119 | 0.8022 | 0.8001 | 0.8406 | 0.7695 | 0.8979 | 0.7561 | 0.7331 | 0.7435 | 0.8040 | |
L0-ABS [71] | 25.57 | 30.84 | 27.41 | 27.33 | 30.15 | 28.05 | 28.42 | 25.99 | 26.13 | 28.74 | 34.46 | 22.54 | 27.15 | 26.47 | 27.80 |
0.7344 | 0.8246 | 0.7990 | 0.8289 | 0.8597 | 0.8004 | 0.7999 | 0.7925 | 0.8201 | 0.7629 | 0.9033 | 0.7353 | 0.7290 | 0.7490 | 0.7956 | |
ASDS [59] | 26.86 | 31.27 | 29.48 | 27.88 | 31.22 | 29.21 | 29.10 | 27.01 | 27.31 | 29.52 | 35.38 | 24.17 | 27.78 | 27.32 | 28.82 |
0.7938 | 0.8333 | 0.8468 | 0.8344 | 0.8795 | 0.8290 | 0.8159 | 0.8261 | 0.8525 | 0.7954 | 0.9185 | 0.7844 | 0.7682 | 0.7801 | 0.8256 | |
EPLL [72] | 23.64 | 28.84 | 25.69 | 25.09 | 28.10 | 27.04 | 26.33 | 24.04 | 24.54 | 28.05 | 33.34 | 22.46 | 25.53 | 25.15 | 26.27 |
0.7308 | 0.8250 | 0.7917 | 0.8287 | 0.8634 | 0.7981 | 0.8006 | 0.7961 | 0.8169 | 0.7585 | 0.9139 | 0.7364 | 0.7193 | 0.7423 | 0.7944 | |
NCSR [6] | 27.10 | 31.14 | 29.84 | 28.12 | 31.27 | 29.39 | 29.29 | 27.07 | 27.89 | 29.56 | 35.04 | 24.64 | 27.91 | 27.40 | 28.98 |
0.7988 | 0.8264 | 0.8569 | 0.8472 | 0.8760 | 0.8393 | 0.8276 | 0.8286 | 0.8699 | 0.7980 | 0.9028 | 0.7984 | 0.7747 | 0.7857 | 0.8307 | |
JSM [7] | 25.72 | 28.32 | 27.26 | 26.22 | 28.05 | 26.97 | 27.15 | 25.47 | 25.69 | 27.42 | 29.99 | 23.32 | 26.36 | 25.71 | 26.69 |
0.6953 | 0.6612 | 0.7456 | 0.7000 | 0.6953 | 0.6924 | 0.6524 | 0.7179 | 0.7751 | 0.6652 | 0.6698 | 0.7055 | 0.6589 | 0.6807 | 0.6940 | |
L2-r-L0 [73] | 26.07 | 31.10 | 27.92 | 27.88 | 30.44 | 28.47 | 28.73 | 26.52 | 27.00 | 29.08 | 35.04 | 23.35 | 27.47 | 26.77 | 28.27 |
0.7610 | 0.8324 | 0.8167 | 0.8457 | 0.8712 | 0.8155 | 0.8125 | 0.8145 | 0.8479 | 0.7815 | 0.9185 | 0.7642 | 0.7468 | 0.7626 | 0.8136 | |
WNNM [40] | 27.23 | 31.33 | 30.16 | 28.17 | 31.35 | 29.25 | 29.21 | 26.86 | 28.22 | 29.52 | 35.53 | 24.33 | 27.68 | 27.23 | 29.01 |
0.8065 | 0.8389 | 0.8570 | 0.8571 | 0.8898 | 0.8406 | 0.8336 | 0.8277 | 0.8825 | 0.7973 | 0.9257 | 0.7846 | 0.7602 | 0.7813 | 0.8345 | |
NLNCDR [74] | 26.22 | 30.75 | 28.23 | 27.58 | 30.44 | 28.69 | 28.73 | 26.59 | 26.68 | 29.16 | 33.73 | 23.36 | 27.65 | 27.02 | 28.20 |
0.7552 | 0.8005 | 0.8181 | 0.8087 | 0.8380 | 0.8039 | 0.7889 | 0.8026 | 0.8300 | 0.7715 | 0.8581 | 0.7548 | 0.7512 | 0.7647 | 0.7962 | |
SPG-SC | 27.51 | 31.37 | 30.12 | 28.21 | 31.42 | 29.40 | 29.35 | 27.02 | 27.96 | 29.61 | 35.80 | 24.60 | 27.90 | 27.24 | 29.11 |
0.8187 | 0.8408 | 0.8619 | 0.8592 | 0.8914 | 0.8476 | 0.8431 | 0.8357 | 0.8775 | 0.8074 | 0.9287 | 0.7990 | 0.7796 | 0.7888 | 0.8414 | |
Gaussian Kernel: fspecial(‘gaussian’, 25, 1.6), | |||||||||||||||
Images | Barbara | Bear | Fence | Lake | Lena | Lily | Flowers | Nanna | Corn | Agaric | Monk | Zebra | Man | Fireman | Average |
BM3D [70] | 25.77 | 31.99 | 27.31 | 29.17 | 32.24 | 30.41 | 29.84 | 27.92 | 28.91 | 30.34 | 36.91 | 24.64 | 28.00 | 27.80 | 29.37 |
0.7987 | 0.8618 | 0.7978 | 0.8836 | 0.9028 | 0.8701 | 0.8592 | 0.8652 | 0.8970 | 0.8368 | 0.9337 | 0.8127 | 0.7733 | 0.8138 | 0.8505 | |
L0-ABS [71] | 23.86 | 32.03 | 26.07 | 29.06 | 32.15 | 30.54 | 29.61 | 27.45 | 28.75 | 30.07 | 37.38 | 24.01 | 27.69 | 27.56 | 29.02 |
0.7151 | 0.8776 | 0.7747 | 0.8934 | 0.9115 | 0.8801 | 0.8612 | 0.8660 | 0.9067 | 0.8392 | 0.9474 | 0.8055 | 0.7785 | 0.8236 | 0.8486 | |
ASDS [59] | 25.33 | 31.60 | 26.96 | 29.01 | 31.91 | 30.28 | 29.63 | 27.96 | 29.15 | 30.06 | 35.10 | 24.71 | 27.94 | 27.87 | 29.11 |
0.7586 | 0.8246 | 0.7710 | 0.8450 | 0.8679 | 0.8368 | 0.8102 | 0.8460 | 0.8863 | 0.8113 | 0.8744 | 0.7997 | 0.7550 | 0.8042 | 0.8208 | |
EPLL [72] | 22.09 | 27.67 | 23.87 | 22.61 | 28.01 | 26.67 | 25.09 | 23.82 | 23.89 | 27.69 | 34.37 | 22.58 | 24.81 | 23.72 | 25.49 |
0.6914 | 0.8570 | 0.7517 | 0.8562 | 0.8976 | 0.8519 | 0.8389 | 0.8322 | 0.8623 | 0.8118 | 0.9428 | 0.7813 | 0.7487 | 0.7854 | 0.8221 | |
NCSR [6] | 25.93 | 32.24 | 27.41 | 29.46 | 32.65 | 30.81 | 30.20 | 28.22 | 29.69 | 30.56 | 36.92 | 25.05 | 28.25 | 28.15 | 29.68 |
0.7854 | 0.8621 | 0.8051 | 0.8865 | 0.9036 | 0.8773 | 0.8616 | 0.8681 | 0.9079 | 0.8466 | 0.9257 | 0.8279 | 0.7902 | 0.8294 | 0.8555 | |
JSM [7] | 25.89 | 31.31 | 27.08 | 28.97 | 31.48 | 30.03 | 29.52 | 27.84 | 29.01 | 29.96 | 34.43 | 24.66 | 27.88 | 27.76 | 28.99 |
0.7592 | 0.8135 | 0.7719 | 0.8461 | 0.8487 | 0.8343 | 0.8082 | 0.8399 | 0.8861 | 0.8087 | 0.8481 | 0.8008 | 0.7543 | 0.8051 | 0.8161 | |
L2-r-L0 [73] | 24.18 | 32.44 | 26.50 | 29.51 | 32.53 | 30.53 | 29.97 | 27.97 | 29.40 | 30.30 | 37.78 | 24.23 | 28.12 | 27.87 | 29.38 |
0.7301 | 0.8802 | 0.7850 | 0.8996 | 0.9176 | 0.8813 | 0.8656 | 0.8707 | 0.9111 | 0.8458 | 0.9543 | 0.8126 | 0.7843 | 0.8244 | 0.8545 | |
WNNM [40] | 25.51 | 32.62 | 27.46 | 29.65 | 33.00 | 30.90 | 30.17 | 28.16 | 29.93 | 30.68 | 38.10 | 24.53 | 28.24 | 28.14 | 29.79 |
0.7669 | 0.8837 | 0.8061 | 0.9017 | 0.9239 | 0.8886 | 0.8741 | 0.8764 | 0.9193 | 0.8570 | 0.9559 | 0.8183 | 0.7897 | 0.8336 | 0.8639 | |
NLNCDR [74] | 24.43 | 31.19 | 26.67 | 28.99 | 31.42 | 30.17 | 29.47 | 27.71 | 28.88 | 29.92 | 34.32 | 24.46 | 27.84 | 27.81 | 28.81 |
0.7295 | 0.8139 | 0.7654 | 0.8490 | 0.8515 | 0.8401 | 0.8132 | 0.8419 | 0.8881 | 0.8081 | 0.8502 | 0.7959 | 0.7587 | 0.8063 | 0.8151 | |
SPG-SC | 26.08 | 32.59 | 27.50 | 29.67 | 33.03 | 30.91 | 30.27 | 28.25 | 29.85 | 30.84 | 37.98 | 24.77 | 28.31 | 28.20 | 29.88 |
0.7894 | 0.8804 | 0.8104 | 0.9002 | 0.9213 | 0.8880 | 0.8751 | 0.8779 | 0.9173 | 0.8603 | 0.9516 | 0.8261 | 0.7955 | 0.8355 | 0.8664 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Tong, Y.; Jiao, L. Simultaneous Patch-Group Sparse Coding with Dual-Weighted ℓp Minimization for Image Restoration. Micromachines 2021, 12, 1205. https://doi.org/10.3390/mi12101205
Zhang J, Tong Y, Jiao L. Simultaneous Patch-Group Sparse Coding with Dual-Weighted ℓp Minimization for Image Restoration. Micromachines. 2021; 12(10):1205. https://doi.org/10.3390/mi12101205
Chicago/Turabian StyleZhang, Jiachao, Ying Tong, and Liangbao Jiao. 2021. "Simultaneous Patch-Group Sparse Coding with Dual-Weighted ℓp Minimization for Image Restoration" Micromachines 12, no. 10: 1205. https://doi.org/10.3390/mi12101205
APA StyleZhang, J., Tong, Y., & Jiao, L. (2021). Simultaneous Patch-Group Sparse Coding with Dual-Weighted ℓp Minimization for Image Restoration. Micromachines, 12(10), 1205. https://doi.org/10.3390/mi12101205