Synergy Factorized Bilinear Network with a Dual Suppression Strategy for Brain Tumor Classification in MRI
Abstract
:1. Introduction
- We propose a DSE block that can guide the network to refine the global orderless information and the local spatial representations on purpose.
- We introduce a fusion layer named FBE to fuse the extracted features in a compact and discriminative form, enabling the network to offer more expressive and robust representation.
- We design a framework with transfer learning for end-to-end classification tasks where the DSE block and the FBE layer are learned together in a single network.
- Comparative experiments demonstrate that the proposed model is competent to support the decision-making processes of specialists in clinics.
2. Related Works
2.1. Feature Encoding
2.2. Feature Fusion
2.3. Feature Mapping
3. Proposed Method
3.1. Proposed Architecture
3.2. DSE Block
3.2.1. Global Orderless Feature Suppression
3.2.2. Local Spatial Feature Suppression
Algorithm 1 The implementation of local spatial feature suppression. |
Here, the feature map is , has p probability of being 1, c is the number of network channels, and is a random integer to control the number of loops. |
fordo |
Initialize r; |
if then |
Initialize ; |
for do |
; |
else |
; |
3.3. FBE Layer
4. Experimental Results and Analysis
4.1. Experimental Setting
4.1.1. Datasets
4.1.2. Implementation Details
4.1.3. Evaluation Metrics
4.2. Qualitative and Quantitative Analysis
4.2.1. Ablation Experiments
4.2.2. Effect of DSE
4.2.3. Effect of FBE
4.3. Performance Comparison
4.3.1. Performance on Dataset BT-4C
4.3.2. Performance on Dataset BT-3C
4.3.3. Performance on Dataset BT-2C
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Ismael, M.R.; Abdel-Qader, I. Brain Tumor Classification via Statistical Features and Back-Propagation Neural Network. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018; pp. 252–257. [Google Scholar] [CrossRef]
- Gu, X.; Shen, Z.; Xue, J.; Fan, Y.; Ni, T. Brain Tumor MR Image Classification Using Convolutional Dictionary Learning With Local Constraint. Front. Neurosci. 2021, 15, 511. [Google Scholar] [CrossRef] [PubMed]
- Karami, E.; Shehata, M.S.; Smith, A.J. Image Identification Using SIFT Algorithm: Performance Analysis against Different Image Deformations. arXiv 2017, arXiv:1710.02728. [Google Scholar]
- Woo, J.; Stone, M.; Prince, J.L. Multimodal Registration via Mutual Information Incorporating Geometric and Spatial Context. IEEE Trans. Image Process. 2015, 24, 757–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Gong, G.; Li, N. Automated Recognition of Epileptic EEG States Using a Combination of Symlet Wavelet Processing, Gradient Boosting Machine, and Grid Search Optimizer. Sensors 2019, 19, 219. [Google Scholar] [CrossRef] [Green Version]
- Gallos, I.K.; Galaris, E.; Siettos, C.I. Construction of embedded fMRI resting-state functional connectivity networks using manifold learning. Cogn. Neurodynam. 2021, 15, 585–608. [Google Scholar] [CrossRef]
- Parmar, H.S.; Mitra, S.; Nutter, B.; Long, R.; Antani, S. Visualization and Detection of Changes in Brain States Using t-SNE. In Proceedings of the 2020 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), Albuquerque, NM, USA, 29–31 March 2020; pp. 14–17. [Google Scholar] [CrossRef]
- Florimbi, G.; Fabelo, H.; Torti, E.; Lazcano, R.; Madroñal, D.; Ortega, S.; Salvador, R.; Leporati, F.; Danese, G.; Báez-Quevedo, A.; et al. Accelerating the K-Nearest Neighbors Filtering Algorithm to Optimize the Real-Time Classification of Human Brain Tumor in Hyperspectral Images. Sensors 2018, 18, 2314. [Google Scholar] [CrossRef] [Green Version]
- Nayak, D.R.; Dash, R.; Majhi, B. Pathological brain detection using curvelet features and least squares SVM. Multimed. Tools Appl. 2018, 77, 3833–3856. [Google Scholar] [CrossRef]
- Rubin, T.; Koyejo, O.; Gorgolewski, K.; Jones, M.; Poldrack, R.; Yarkoni, T. Decoding brain activity using a large-scale probabilistic functional-anatomical atlas of human cognition. PLoS Comput. Biol. 2017, 13. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Li, Q.; Shi, F.; Rekik, I.; Pan, Z. RFDCR: Automated brain lesion segmentation using cascaded random forests with dense conditional random fields. NeuroImage 2020, 211, 116620. [Google Scholar] [CrossRef]
- Chen, H.; Lu, F.; He, B. Topographic property of backpropagation artificial neural network: From human functional connectivity network to artificial neural network. Neurocomputing 2020, 418, 200–210. [Google Scholar] [CrossRef]
- Li, H.; Xiong, P.; Fan, H.; Sun, J. DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 9514–9523. [Google Scholar] [CrossRef] [Green Version]
- Alzu’bi, A.; Amira, A.; Ramzan, N. Content-based image retrieval with compact deep convolutional features. Neurocomputing 2017, 249, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Badža, M.M.; Barjaktarović, M.Č. Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network. Appl. Sci. 2020, 10, 1999. [Google Scholar] [CrossRef] [Green Version]
- Ayadi, W.; Charfi, I.; Elhamzi, W.; Atri, M. Brain tumor classification based on hybrid approach. Visual Comput. 2020. [Google Scholar] [CrossRef]
- Khan, H.A.; Jue, W.; Mushtaq, M.; Mushtaq, M.U. Brain tumor classification in MRI image using convolutional neural network. Math. Biosci. Eng. 2020, 17, 6203. [Google Scholar] [CrossRef]
- Bashir-Gonbadi, F.; Khotanlou, H. Brain tumor classification using deep convolutional autoencoder-based neural network: Multi-task approach. Multimed. Tools Appl. 2021, 80, 19909–19929. [Google Scholar] [CrossRef]
- Alhassan, A.M.; Zainon, W.M.N.W. Brain tumor classification in magnetic resonance image using hard swish-based RELU activation function-convolutional neural network. Neural Comput. Appl. 2021, 33, 9075–9087. [Google Scholar] [CrossRef]
- Polat, Ö.; Güngen, C. Classification of brain tumors from MR images using deep transfer learning. J. Supercomput. 2021, 77, 7236–7252. [Google Scholar] [CrossRef]
- Bodapati, J.D.; Shaik, N.S.; Naralasetti, V.; Mundukur, N.B. Joint training of two-channel deep neural network for brain tumor classification. Signal Image Video Process. 2021, 15, 753–760. [Google Scholar] [CrossRef]
- Sajjad, M.; Khan, S.; Muhammad, K.; Wu, W.; Ullah, A.; Baik, S.W. Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J. Comput. Sci. 2019, 30, 174–182. [Google Scholar] [CrossRef]
- Swati, Z.N.K.; Zhao, Q.; Kabir, M.; Ali, F.; Ali, Z.; Ahmed, S.; Lu, J. Brain tumor classification for MR images using transfer learning and fine-tuning. Comput. Med. Imaging Graph. 2019, 75, 34–46. [Google Scholar] [CrossRef]
- Toğaçar, M.; Ergen, B.; Cömert, Z. Tumor type detection in brain MR images of the deep model developed using hypercolumn technique, attention modules, and residual blocks. Med. Biol. Eng. Comput. 2021, 59, 57–70. [Google Scholar] [CrossRef]
- Kabir Anaraki, A.; Ayati, M.; Kazemi, F. Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybern. Biomed. Eng. 2019, 39, 63–74. [Google Scholar] [CrossRef]
- Kumar, A.; Ramachandran, M.; Gandomi, A.H.; Patan, R.; Lukasik, S.; Soundarapandian, R.K. A deep neural network based classifier for brain tumor diagnosis. Appl. Soft Comput. 2019, 82, 105528. [Google Scholar] [CrossRef]
- Noreen, N.; Palaniappan, S.; Qayyum, A.; Ahmad, I.; Alassafi, M.O. Brain Tumor Classification Based on Fine-Tuned Models and the Ensemble Method. Comput. Mater. Contin. 2021, 67, 3967–3982. [Google Scholar] [CrossRef]
- Song, Y.; Wang, P.; Hong, X.; McLoughlin, I. Fisher vector based CNN architecture for image classification. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 565–569. [Google Scholar] [CrossRef]
- Arandjelović, R.; Gronat, P.; Torii, A.; Pajdla, T.; Sivic, J. NetVLAD: CNN Architecture for Weakly Supervised Place Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1437–1451. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xue, J.; Dana, K. Deep TEN: Texture Encoding Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, 21–26 July 2017; pp. 2896–2905. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.Y.; RoyChowdhury, A.; Maji, S. Bilinear CNN Models for Fine-Grained Visual Recognition. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1449–1457. [Google Scholar] [CrossRef]
- O’Hara, S.; Draper, B.A. Introduction to the Bag of Features Paradigm for Image Classification and Retrieval. arXiv 2011, arXiv:1101.3354. [Google Scholar]
- Sánchez, J.; Perronnin, F.; Mensink, T.; Verbeek, J.J. Image Classification with the Fisher Vector: Theory and Practice. Int. J. Comput. Vis. 2013, 105, 222–245. [Google Scholar] [CrossRef]
- Jégou, H.; Douze, M.; Schmid, C.; Pérez, P. Aggregating local descriptors into a compact image representation. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 3304–3311. [Google Scholar] [CrossRef] [Green Version]
- Ng, J.Y.; Yang, F.; Davis, L.S. Exploiting local features from deep networks for image retrieval. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015; pp. 53–61. [Google Scholar] [CrossRef] [Green Version]
- Tang, P.; Wang, X.; Shi, B.; Bai, X.; Liu, W.; Tu, Z. Deep FisherNet for Image Classification. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2244–2250. [Google Scholar] [CrossRef]
- López-Sánchez, D.; González Arrieta, A.; Corchado, J.M. Compact bilinear pooling via kernelized random projection for fine-grained image categorization on low computational power devices. Neurocomputing 2020, 398, 411–421. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, J.; Wang, F. Attention Bilinear Pooling for Fine-Grained Classification. Symmetry 2019, 11, 1033. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, L.; Jia, S. Attention Bilinear Pooling for Fine-Grained Facial Expression Recognition. In Cyberspace Safety and Security; Vaidya, J., Zhang, X., Li, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 535–542. [Google Scholar]
- Wei, X.; Zhang, Y.; Gong, Y.; Zhang, J.; Zheng, N. Grassmann Pooling as Compact Homogeneous Bilinear Pooling for Fine-Grained Visual Classification. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 355–370. [Google Scholar]
- Gao, Y.; Beijbom, O.; Zhang, N.; Darrell, T. Compact Bilinear Pooling. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 317–326. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, N.; Liu, J.; Hou, X. Factorized Bilinear Models for Image Recognition. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2098–2106. [Google Scholar]
- Gao, Z.; Wu, Y.; Zhang, X.; Dai, J.; Jia, Y.; Harandi, M. Revisiting Bilinear Pooling: A Coding Perspective. Proc. AAAI Conf. Artif. Intell. 2020, 34, 3954–3961. [Google Scholar] [CrossRef]
- Dar, S.U.; Ozbey, M.; Catli, A.B.; Cukur, T. A Transfer-Learning Approach for Accelerated MRI Using Deep Neural Networks. Magn. Reson. Med. 2020, 84, 663–685. [Google Scholar] [CrossRef] [Green Version]
- Rehman, A.; Naz, S.; Razzak, M.I.; Akram, F.; Imran, M. A Deep Learning-Based Framework for Automatic Brain Tumors Classification Using Transfer Learning. Circ. Syst. Signal Process. 2020, 39, 757–775. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.L.; Kakarla, J.; Isunuri, B.V.; Singh, M. Multi-class brain tumor classification using residual network and global average pooling. Multimed. Tools Appl. 2021, 80, 13429–13438. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, C.; Zhang, Z.; Zhu, Y.; Zhang, Z.L.; Lin, H.; Sun, Y.; He, T.; Mueller, J.; Manmatha, R.; et al. ResNeSt: Split-Attention Networks. arXiv 2020, arXiv:2004.08955. [Google Scholar]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 22–24 June 2009; pp. 248–255. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; On, K.W.; Lim, W.; Kim, J.; Ha, J.; Zhang, B. Hadamard Product for Low-rank Bilinear Pooling. arXiv 2016, arXiv:1610.0432. [Google Scholar]
- Bhuvaji, S.; Kadam, A.; Bhumkar, P.; Dedge, S. Brain Tumor Classification (MRI) Dataset. 2020. Available online: https://www.kaggle.com/sartajbhuvaji/brain-tumor-classification-mri (accessed on 10 October 2021).
- Cheng, J. Brain Tumor Dataset. Figshare. Available online: https://doi.org/10.6084/m9.figshare.1512427.v5 (accessed on 10 October 2021).
- Johnson, D.; Guerin, J.; Giannini, C.; Morris, J.; Eckel, L.; Kaufmann, T. 2016 Updates to the WHO Brain Tumor Classification System: What the Radiologist Needs to Know. RadioGraphics 2017, 37, 2164–2180. [Google Scholar] [CrossRef] [Green Version]
- Van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2019, arXiv:1905.11946. [Google Scholar]
- Cheng, J.; Huang, W.; Cao, S.; Yang, R.; Yang, W.; Yun, Z.; Wang, Z.; Feng, Q. Correction: Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition. PLoS ONE 2015, 10, e0144479. [Google Scholar] [CrossRef]
- Afshar, P.; Plataniotis, K.N.; Mohammadi, A. Capsule Networks for Brain Tumor Classification Based on MRI Images and Coarse Tumor Boundaries. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 1368–1372. [Google Scholar] [CrossRef]
- Phaye, S.S.R.; Sikka, A.; Dhall, A.; Bathula, D. Dense and Diverse Capsule Networks: Making the Capsules Learn Better. arXiv 2018, arXiv:1805.04001. [Google Scholar]
- Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing between Capsules. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 4–9 December 2017; pp. 3859–3869. [Google Scholar]
- Kaplan, K.; Kaya, Y.; Kuncan, M.; Ertunç, H.M. Brain tumor classification using modified local binary patterns (LBP) feature extraction methods. Med. Hypotheses 2020, 139, 109696. [Google Scholar] [CrossRef]
- Deepak, S.; Ameer, P. Brain tumor classification using deep CNN features via transfer learning. Comput. Biol. Med. 2019, 111, 103345. [Google Scholar] [CrossRef]
Layer Name | Filter Type | Number | Output Size | |
---|---|---|---|---|
layer0 | conv1 | |||
downsample | ||||
layer1 | conv1 | |||
conv2 | ||||
conv3 | ||||
downsampl | ||||
layer2 | conv1 | |||
conv2 | ||||
conv3 | ||||
downsampl | ||||
layer3 | conv1 | |||
conv2 | ||||
conv3 | ||||
downsampl | ||||
layer4 | conv1 | |||
conv2 | ||||
conv3 | ||||
downsampl | ||||
DSE Block | Section 3.2 | |||
FBE Layer | Section 3.3 | |||
Classification | n classes |
Dataset | Class | Number | Resolution | Format |
---|---|---|---|---|
BT-4C | Glioma | 937 | , | .jpg |
Meningioma | 926 | , | ||
Normal | 500 | , | ||
Pituitary | 901 | etc. | ||
BT-3C | Glioma | 708 | .mat | |
Meningioma | 1426 | |||
Pituitary | 930 | |||
BT-2C | Metastatic | 495 | .jpg | |
Normal | 614 |
Methods | Accuracy (%) |
---|---|
ResNeSt-50 | 95.91 |
ResNeSt-50 + Dual-path + Concat | 95.91 |
ResNeSt-50 + DSE + Concat | 97.14 |
ResNeSt-50 + Dual-path + FBE | 96.94 |
Ours | 97.96 |
0 | 0.1 | 0.2 | 1 | ||
---|---|---|---|---|---|
0 | 97.55 | 97.96 | 97.35 | 96.73 | |
0.1 | 97.35 | 97.35 | 97.14 | 96.73 | |
0.2 | 96.94 | 96.94 | 96.73 | 96.53 | |
1 | 96.72 | 96.53 | 96.53 | 96.33 |
Method | Options | Accuracy (%) |
---|---|---|
Bilinear pooling [32] | - | 96.86 |
Compact bilinear pooling [42] | 95.56 | |
o = 16,000 | 95.71 | |
Low-rank bilinear pooling [52] | 96.32 | |
96.17 | ||
96.17 | ||
FBE | 96.63 | |
96.94 | ||
96.48 |
Partition Ratio | Class | Precision | Recall | Specificity | F1 Score |
---|---|---|---|---|---|
90:10 | Glioma | 0.9907 | 0.9727 | 0.9954 | 0.9817 |
Meningioma | 0.9753 | 0.9634 | 0.9918 | 0.9693 | |
Normal | 0.9592 | 0.9792 | 0.9928 | 0.9691 | |
Pituitary | 0.9775 | 1.0000 | 0.9917 | 0.9886 | |
80:20 | Glioma | 0.9899 | 0.9703 | 0.9956 | 0.9800 |
Meningioma | 0.9727 | 0.9834 | 0.9894 | 0.9780 | |
Normal | 0.9528 | 0.9712 | 0.9909 | 0.9619 | |
Pituitary | 0.9819 | 0.9819 | 0.9938 | 0.9819 | |
70:30 | Glioma | 0.9795 | 0.9695 | 0.9912 | 0.9744 |
Meningioma | 0.9625 | 0.9809 | 0.9861 | 0.9716 | |
Normal | 0.9868 | 0.9804 | 0.9976 | 0.9836 | |
Pituitary | 0.9888 | 0.9852 | 0.9958 | 0.9870 | |
60:40 | Glioma | 0.9725 | 0.9489 | 0.9893 | 0.9605 |
Meningioma | 0.9595 | 0.9673 | 0.9851 | 0.9634 | |
Normal | 0.9718 | 0.9857 | 0.9945 | 0.9787 | |
Pituitary | 0.9861 | 0.9944 | 0.9947 | 0.9902 |
Method | Precision | Recall | Specificity | F1 Score | Accuracy |
---|---|---|---|---|---|
VGG-16 | 0.9522 | 0.9533 | 0.9851 | 0.9526 | 0.9556 |
ResNet-50 | 0.9544 | 0.9556 | 0.9856 | 0.9549 | 0.9571 |
EfficientNet-B0 | 0.9608 | 0.9623 | 0.9870 | 0.9615 | 0.9617 |
Ours | 0.9743 | 0.9767 | 0.9924 | 0.9755 | 0.9770 |
Partition Ratio | Class | Precision | Recall | Specificity | F1 Score |
---|---|---|---|---|---|
90:10 | Meningioma | 0.9620 | 0.9620 | 0.9868 | 0.9620 |
Glioma | 0.9924 | 0.9776 | 0.9942 | 0.9850 | |
Pituitary | 0.9792 | 1.0000 | 0.9906 | 0.9895 | |
80:20 | Meningioma | 0.9401 | 0.9752 | 0.9779 | 0.9573 |
Glioma | 0.9886 | 0.9667 | 0.9912 | 0.9775 | |
Pituitary | 0.9945 | 0.9945 | 0.9977 | 0.9945 | |
70:30 | Meningioma | 0.9127 | 0.9812 | 0.9717 | 0.9457 |
Glioma | 0.9927 | 0.9557 | 0.9939 | 0.9739 | |
Pituitary | 0.9964 | 0.9964 | 0.9984 | 0.9964 | |
60:40 | Meningioma | 0.8944 | 0.9783 | 0.96628 | 0.9345 |
Glioma | 0.9945 | 0.9510 | 0.9954 | 0.9722 | |
Pituitary | 0.9920 | 0.9894 | 0.9965 | 0.9907 |
Reference | Method | Accuracy (%) |
---|---|---|
Cheng et al. [59] | BoW + SVM | 91.28 |
Ismael et al. [2] | DWT + Gabor | 91.90 |
Afshar et al. [60] | CapsNet | 90.89 |
Phaye et al. [61] | Diverse CapsNet | 95.03 |
Anaraki et al. [26] | CNN + Genetic Algorithm | 94.20 |
Kaplan et al. [63] | nLBP + KNN | 95.56 |
Deepak and Ameer [64] | Freeze GoogLeNet-inception-4e + SVM | 95.44 |
Noreen et al. [28] | Inception-v3 + Ensemble Learning | 94.34 |
Jyostna et al. [22] | Two-channel DNN | 95.23 |
Badža et al. [16] | Four-layer CNN | 97.39 |
Proposed | ResNeSt-50 + DSE + FBE | 98.02 |
Cross-Validation | Method | Class | Precision | Recall | Specificity | F1 Score |
---|---|---|---|---|---|---|
3-fold | VGG-16 | Metastatic | 0.9371 | 0.9577 | 0.9212 | 0.9472 |
Normal | 0.9471 | 0.9213 | 0.9577 | 0.9338 | ||
ResNet-50 | Metastatic | 0.9401 | 0.9751 | 0.9242 | 0.9573 | |
Normal | 0.9683 | 0.9243 | 0.9751 | 0.9458 | ||
EfficientNet-B0 | Metastatic | 0.9228 | 0.9801 | 0.9000 | 0.9506 | |
Normal | 0.9738 | 0.9000 | 0.9801 | 0.9354 | ||
Ours | Metastatic | 0.9672 | 0.9528 | 0.9606 | 0.9599 | |
Normal | 0.9437 | 0.9606 | 0.9528 | 0.9520 | ||
5-fold | VGG-16 | Metastatic | 0.9433 | 0.9709 | 0.9314 | 0.9569 |
Normal | 0.9645 | 0.9314 | 0.9709 | 0.9477 | ||
ResNet-50 | Metastatic | 0.9472 | 0.9709 | 0.9363 | 0.9589 | |
Normal | 0.9647 | 0.9363 | 0.9709 | 0.9503 | ||
EfficientNet-B0 | Metastatic | 0.9084 | 0.9917 | 0.8824 | 0.9482 | |
Normal | 0.9890 | 0.8824 | 0.9917 | 0.9326 | ||
Ours | Metastatic | 0.9710 | 0.9667 | 0.9657 | 0.9687 | |
Normal | 0.9612 | 0.9657 | 0.9667 | 0.9633 | ||
10-fold | VGG-16 | Metastatic | 0.9750 | 0.9207 | 0.9688 | 0.9469 |
Normal | 0.9034 | 0.9688 | 0.9207 | 0.9348 | ||
ResNet-50 | Metastatic | 0.9466 | 0.9841 | 0.9271 | 0.9650 | |
Normal | 0.9781 | 0.9271 | 0.9841 | 0.9518 | ||
EfficientNet-B0 | Metastatic | 0.9197 | 0.9921 | 0.8855 | 0.9543 | |
Normal | 0.9889 | 0.8855 | 0.9921 | 0.9338 | ||
Ours | Metastatic | 0.9690 | 0.9841 | 0.9584 | 0.9765 | |
Normal | 0.9788 | 0.9584 | 0.9841 | 0.9683 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, G.; Wang, H.; Shen, J.; Chen, Z.; Zhang, Z.; Ge, X. Synergy Factorized Bilinear Network with a Dual Suppression Strategy for Brain Tumor Classification in MRI. Micromachines 2022, 13, 15. https://doi.org/10.3390/mi13010015
Xiao G, Wang H, Shen J, Chen Z, Zhang Z, Ge X. Synergy Factorized Bilinear Network with a Dual Suppression Strategy for Brain Tumor Classification in MRI. Micromachines. 2022; 13(1):15. https://doi.org/10.3390/mi13010015
Chicago/Turabian StyleXiao, Guanghua, Huibin Wang, Jie Shen, Zhe Chen, Zhen Zhang, and Xiaomin Ge. 2022. "Synergy Factorized Bilinear Network with a Dual Suppression Strategy for Brain Tumor Classification in MRI" Micromachines 13, no. 1: 15. https://doi.org/10.3390/mi13010015
APA StyleXiao, G., Wang, H., Shen, J., Chen, Z., Zhang, Z., & Ge, X. (2022). Synergy Factorized Bilinear Network with a Dual Suppression Strategy for Brain Tumor Classification in MRI. Micromachines, 13(1), 15. https://doi.org/10.3390/mi13010015