A Systematic Approach for Developing 3D High-Quality PDMS Microfluidic Chips Based on Micromilling Technology
Abstract
:1. Introduction
2. Micromachining Setup
2.1. Main Equipment
2.2. Design Procedure
2.3. Machining Operations
3. Design Methodology for Developing Micromilling-Based Systems
3.1. Pre-Defining Acceptable Quality Criteria
3.1.1. Size Accuracy and Precision
3.1.2. Damage Mechanisms
3.1.3. Surface Roughness
3.2. Pre-Evaluation of Micromachining Process
3.2.1. Correct Alignment of the Worktable
3.2.2. Endmill Sharpness and Cleanliness
3.2.3. Positioning and Consistency of Air Cooling
3.2.4. Workpiece Fixture
3.3. Master Mold or Direct Microstructure
3.4. Decision-Making Toolbox
3.4.1. Endmill Material
3.4.2. Flute Number and Helix Angle
3.4.3. Aspect Ratio
3.4.4. Cutting Diameter (Dc)
- When a non-squared endmill is used in 3-axis micromachining devices for creating circular or tapered channels. In micromilling systems with more than 3 axes, although 3D-profile milling is possible, reaching acceptable surface roughness requires a time-intensive operation.
- When the surface removal area/volume for the milling process is notably large. In this situation, reducing endmill size increases the operation time significantly not only by increasing the toolpaths but also by the requirement for reducing the feed rate and depth increment to avoid tool break (Figure 2c).
3.4.5. Feed Rate, Spindle Speed and Cutting Depth
3.4.6. Stepover and Milling Direction
4. Results
4.1. Case Study of Surface Quality Improvement
4.1.1. Micromilling Optimization
4.1.2. Postprocessing
4.2. Strategies for Creating 3D Integrable Microsystems
4.2.1. Microfabrication Steps
4.2.2. Negative PMMA Master Mold Micromilling Design
4.2.3. Sensor Integration Strategy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, P.-C.; Pan, C.-W.; Lee, W.-C.; Li, K.-M. Optimization of micromilling microchannels on a polycarbonate substrate. Int. J. Precis. Eng. Manuf. 2014, 15, 149–154. [Google Scholar] [CrossRef]
- Serje, D.; Pacheco, J.; Diez, E. Micromilling research: Current trends and future prospects. Int. J. Adv. Manuf. Technol. 2020, 111, 1889–1916. [Google Scholar] [CrossRef]
- Meng, F.; Cheng, X.; Sun, Q.; Xu, R.; Yang, X. Study on Micromilling Processes for Polymethyl Methacrylate. In Proceedings of the 6th International Conference on Information Engineering for Mechanics and Materials, Huhhot, China, 30–31 July 2016; pp. 394–400. [Google Scholar]
- Guckenberger, D.J.; de Groot, T.E.; Wan, A.M.D.; Beebe, D.J.; Young, E.W.K. Micromilling: A method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 2015, 15, 2364–2378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Y. Micromanufacturing Engineering and Technology, 2nd ed.; William Andrew: Oxford, UK, 2015; pp. 1–814. [Google Scholar] [CrossRef]
- Yen, D.P.; Ando, Y.; Shen, K. A cost-effective micromilling platform for rapid prototyping of microdevices. Technology 2016, 4, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Ervine, P.; O’Donnell, G.E.; Walsh, B. Fundamental Investigations Into Burr Formation and Damage Mechanisms in the Micro-Milling of a Biomedical Grade Polymer. Mach. Sci. Technol. 2015, 19, 112–133. [Google Scholar] [CrossRef]
- Kuram, E.; Ozcelik, B. Micro Milling. In Materials Forming, Machining and Tribology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 325–365. [Google Scholar]
- Gietzelt, T.; Eichhorn, L.; Schubert, K. Manufacturing of microstructures with high aspect ratio by micromachining. Microsyst. Technol. 2008, 14, 1525–1529. [Google Scholar] [CrossRef]
- Lopes, R.; Rodrigues, R.O.; Pinho, D.; Garcia, V.; Schutte, H.; Lima, R.; Gassmann, S. Low cost microfluidic device for partial cell separation: Micromilling approach. In Proceedings of the 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 17–19 March 2015; pp. 3347–3350. [Google Scholar]
- Zhou, Z.; Chen, D.; Wang, X.; Jiang, J. Milling Positive Master for Polydimethylsiloxane Microfluidic Devices: The Microfabrication and Roughness Issues. Micromachines 2017, 8, 287. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.-C.; Zhang, R.-H.; Chen, L.-T. Using Micromachined Molds, Partial-curing PDMS Bonding Technique, and Multiple Casting to Create Hybrid Microfluidic Chip for Microlens Array. Micromachines 2019, 10, 572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, M.; Kwon, Y.J.; Lee, N.Y. Non-photolithographic plastic-mold-based fabrication of cylindrical and multi-tiered poly(dimethylsiloxane) microchannels for biomimetic lab-on-a-chip applications. RSC Adv. 2015, 5, 100905–100911. [Google Scholar] [CrossRef] [Green Version]
- Carugo, D.; Lee, J.Y.; Pora, A.; Browning, R.; Capretto, L.; Nastruzzi, C.; Stride, E. Facile and cost-effective production of microscale PDMS architectures using a combined micromilling-replica moulding (μMi-REM) technique. Biomed. Microdevices 2016, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kwapiszewska, K.; Żukowski, K.; Kwapiszewski, R.; Brzózka, Z. Double casting prototyping with a thermal aging step for fabrication of 3D microstructures in poly(dimethylsiloxane). AIMS Biophys. 2016, 3, 553–562. [Google Scholar] [CrossRef]
- Tushar, M.; Jagtap, U.; Mandave, H.A. Machining of Plastics: A Review. Int. J. Eng. Res. Gen. Sci. 2015, 3, 577–581. [Google Scholar]
- Dimov, S.; Pham, D.T.; Ivanov, A.; Popov, K.; Fansen, K. Micromilling strategies: Optimization issues. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2004, 218, 731–736. [Google Scholar] [CrossRef]
- de Oliveira, F.B.; Rodrigues, A.R.; Coelho, R.T.; de Souza, A.F. Size effect and minimum chip thickness in micromilling. Int. J. Mach. Tools Manuf. 2015, 89, 39–54. [Google Scholar] [CrossRef]
- Giraldo, M.M.; Serje, D.A.; Bolívar, J.A.P.; Cabrera, J.L.B. Burr formation and control for polymers micro-milling: A case study with vortex tube cooling. Dyna 2017, 84, 150–159. [Google Scholar] [CrossRef]
- Yan, Y.; Mao, Y.; Li, B.; Zhou, P. Machinability of the Thermoplastic Polymers: PEEK, PI, and PMMA. Polymers 2020, 13, 69. [Google Scholar] [CrossRef]
- Ferro Demarchi, E.; Henrique, M.; Dib, M.; Jasinevicius, R.G. Micro-Endmilling of Fresnel Structure on RSA 6061-T6 and PMMA. 2021. Available online: https://euspen.24livehost.com/knowledge-base/ICE21224.pdf (accessed on 21 December 2021).
- Ali, M.Y. Fabrication of Microfluidic Channel Using Micro End Milling and Micro Electrical Discharge Milling. Int. J. Mech. Mater. Eng. 2009, 4, 93–97. [Google Scholar]
- Aramcharoen, A.; Sean, S.K.C.; Kui, L. An experimental study of micromilling of polymer materials for microfluidic applications. Int. J. Abras. Technol. 2012, 5, 286. [Google Scholar] [CrossRef]
- Ogilvie, I.R.G.; Sieben, V.; A Floquet, C.F.; Zmijan, R.; Mowlem, M.C.; Morgan, H. Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC. J. Micromech. Microeng. 2010, 20, 065016. [Google Scholar] [CrossRef]
- Popov, K.; Dimov, S.; Ivanov, A.; Pham, D.; Gandarias, E. New tool-workpiece setting up technology for micro-milling. Int. J. Adv. Manuf. Technol. 2009, 47, 21–27. [Google Scholar] [CrossRef]
- Lashkaripour, A.; Silva, R.; Densmore, D. Desktop micromilled microfluidics. Microfluid. Nanofluidics 2018, 22, 31. [Google Scholar] [CrossRef]
- Wu, T.; Cheng, K.; Rakowski, R. Investigation on tooling geometrical effects of micro tools and the associated micro milling performance. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2012, 226, 1442–1453. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, P.; Wang, H.; Mao, Y. Thermal Effect on Poly(methyl methacrylate) (PMMA) Material Removal in the Micromilling Process. Polymers 2020, 12, 2122. [Google Scholar] [CrossRef]
- Wan, L.; Skoko, J.; Yu, J.; Ozdoganlar, O.B.; LeDuc, P.R.; Neumann, C.A. Mimicking Embedded Vasculature Structure for 3D Cancer on a Chip Approaches through Micromilling. Sci. Rep. 2017, 7, 16724. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, E.; Onler, R.; Ozdoganlar, O.B. Micromilling of Poly(methyl methacrylate, PMMA) Using Single-Crystal Diamond Tools. Procedia Manuf. 2017, 10, 683–693. [Google Scholar] [CrossRef]
- Richter, B.; Morrow, J.D.; Martin, B.; Heaney, P.J.; Segersten, J.; Pfefferkorn, F.E. Comparing the Performance of Diamond Coated and Uncoated Micro End Mills Using Robustness Testing. Procedia CIRP 2014, 14, 360–365. [Google Scholar] [CrossRef] [Green Version]
- Jiao, F.; Cheng, K. An experimental investigation on micro-milling of polymethyl methacrylate components with nanometric surface roughness. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2014, 228, 790–796. [Google Scholar] [CrossRef]
- Christ, K.V.; Smith, B.B.; Pfefferkorn, F.E.; Turner, K.T. Micro End Milling Polystyrene for Microfluidic Applications. Available online: http://digital.library.wisc.edu/1793/65525 (accessed on 21 December 2021).
- Ali, M.Y.; Mohamed, A.R.; Asfana, B.; Lutfi, M.; Fahmi, M.I. Investigation of Vibration and Surface Roughness in Micro Milling of PMMA. Appl. Mech. Mater. 2012, 217–219, 2187–2193. [Google Scholar] [CrossRef]
- Ali, M.Y.; Mohamed, A.R.; Khan, A.A.; Asfana, B.; Lutfi, M.; Fahmi, M.I. Empirical Modelling of Vibration in Micro End Milling of PMMA. World Appl. Sci. J. 2013, 21, 73–78. [Google Scholar] [CrossRef]
- Chen, P.-C.; Pan, C.-W.; Lee, W.-C.; Li, K.-M. An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate. Int. J. Adv. Manuf. Technol. 2014, 71, 1623–1630. [Google Scholar] [CrossRef]
- Atiqah, N.; Ali, M.Y.; Mohamed, A.R.; Chowdhury, S.H. Investigation of Surface Roughness and Material Removal Rate for High Speed Micro End Milling on PMMA. Adv. Mater. Res. 2015, 1115, 12–15. [Google Scholar] [CrossRef]
- Dhakad, M.R. Experimental Analysis and Optimization of Cutting Parameters for the Surface Roughness in the Facing Operation of PMMA Material. IOSR J. Mech. Civ. Eng. 2017, 17, 52–60. [Google Scholar] [CrossRef]
- Ridwan, F.; Xu, X.; Liu, G. A framework for machining optimisation based on STEP-NC. J. Intell. Manuf. 2012, 23, 423–441. [Google Scholar] [CrossRef]
- Zdebski, D.; Stephenson, D.J.; Allen, D.M. The Impact of Tool Performance on Micromachining Capability. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2011. [Google Scholar]
- Matellan, C.; Hernández, A.E.D.R. Cost-effective rapid prototyping and assembly of poly(methyl methacrylate) microfluidic devices. Sci. Rep. 2018, 8, 6971. [Google Scholar] [CrossRef] [Green Version]
- Mecomber, J.S.; Hurd, D.; Limbach, P.A. Enhanced machining of micron-scale features in microchip molding masters by CNC milling. Int. J. Mach. Tools Manuf. 2005, 45, 1542–1550. [Google Scholar] [CrossRef]
- Javidanbardan, A.; Chu, V.; Conde, J.P.; Azevedo, A.M. Microchromatography integrated with impedance sensor for bioprocess optimization: Experimental and numerical study of column efficiency for evaluation of scalability. J. Chromatogr. A 2021, 1661, 462678. [Google Scholar] [CrossRef] [PubMed]
Process Parameters | Coded Symbol | Levels | |
---|---|---|---|
Coded Low (−1) | Coded High (+1) | ||
Feed rate (mm/min) | A | 100 | 300 |
Spindle speed (rpm) | B | 6000 | 12,000 |
Final cutting depth (mm) | C | 0.05 | 0.15 |
Source | Sum of Squares [106] | DF | Mean Square [106] | F-Value | p-Value |
---|---|---|---|---|---|
Model | 4.065 | 3 | 1.355 | 118.70 | <0.0001 |
A-Feed rate | 2.794 | 1 | 2.794 | 244.76 | <0.0001 |
B-Spindle speed | 0.8445 | 1 | 0.8445 | 73.97 | <0.0001 |
AB | 0.4264 | 1 | 0.4264 | 37.35 | <0.0001 |
Residual | 0.1827 | 16 | 0.01141603 | ||
Lack of Fit | 0.1271 | 11 | 0.01155905 | 1.04 | 0.5183 |
Pure Error | 0.05550683 | 5 | 0.01110137 | ||
Cor Total | 4.248 | 19 |
Step | Endmill (2-Flute) | Milling Type | Cutting Depth (mm) | Spindle Speed (rpm) | Feed Rate (cm/s) | Step Over (mm) | Approximate Operation Time (min) |
---|---|---|---|---|---|---|---|
0 | Nonmilled | N/A | 0 | N/A | N/A | 0 | 0 |
1 | 3 mm | Contouring | 2 | 10,000 | 600 | 0.3 | 44 |
2 | 1 mm | Face milling (rough) | 0.5 | 12,000 | 300 | 0.3 | 35 |
Pocket milling | 0.5 | 12,000 | 100 | 0.3 | 3 | ||
Face spotting-Microcolumn | 0.5 | 12,000 | 100 | - | 2 | ||
Face spotting-Microcolumn | 0.5 * | 12,000 | 100 | - | 2 | ||
3 | 0.5 mm | Face milling (fine) | 0 * | 16,000 | 75 | 0.3 | 132 |
Pocket milling (rough) | 0.3 * | 16,000 | 75 | 0.2 | 2 | ||
4 | 0.1 mm | Pocket milling (fine) | 0.3 * | 16,000 | 50 | 0.3 | 5 |
Pocket milling (fine) | 0.1 * | 16,000 | 50 | 0.2 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javidanbardan, A.; Azevedo, A.M.; Chu, V.; Conde, J.P. A Systematic Approach for Developing 3D High-Quality PDMS Microfluidic Chips Based on Micromilling Technology. Micromachines 2022, 13, 6. https://doi.org/10.3390/mi13010006
Javidanbardan A, Azevedo AM, Chu V, Conde JP. A Systematic Approach for Developing 3D High-Quality PDMS Microfluidic Chips Based on Micromilling Technology. Micromachines. 2022; 13(1):6. https://doi.org/10.3390/mi13010006
Chicago/Turabian StyleJavidanbardan, Amin, Ana M. Azevedo, Virginia Chu, and João P. Conde. 2022. "A Systematic Approach for Developing 3D High-Quality PDMS Microfluidic Chips Based on Micromilling Technology" Micromachines 13, no. 1: 6. https://doi.org/10.3390/mi13010006
APA StyleJavidanbardan, A., Azevedo, A. M., Chu, V., & Conde, J. P. (2022). A Systematic Approach for Developing 3D High-Quality PDMS Microfluidic Chips Based on Micromilling Technology. Micromachines, 13(1), 6. https://doi.org/10.3390/mi13010006