Compact SPICE Model of Memristor with Barrier Modulated Considering Short- and Long-Term Memory Characteristics by IGZO Oxygen Content
Abstract
1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Ota, K.; Dong, M. Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing. IEEE Netw. 2018, 32, 96–101. [Google Scholar] [CrossRef]
- Hamdan, S.; Ayyash, M.; Almajali, S. Edge-Computing Architectures for Internet of Things Applications: A Survey. Sensors 2020, 20, 6441. [Google Scholar] [CrossRef] [PubMed]
- Capra, M.; Peloso, R.; Masera, G.; Roch, M.R.; Martina, M. Edge Computing: A Survey on the Hardware Requirements in the Internet of Things World. Future Internet 2019, 11, 100. [Google Scholar] [CrossRef]
- Chen, B.; Wan, J.; Celesti, A.; Li, D.; Abbas, H.; Zhang, Q. Edge Computing in IoT-Based Manufacturing. IEEE Commun. Mag. 2018, 56, 103–109. [Google Scholar] [CrossRef]
- Sittón-Candanedo, I.; Alonso, R.S.; García, Ó.; Muñoz, L.; Rodríguez-González, S. Edge Computing, Iot and Social Computing in Smart Energy Scenarios. Sensors 2019, 19, 3353. [Google Scholar] [CrossRef] [PubMed]
- Covi, E.; Donati, E.; Liang, X.; Kappel, D.; Heidari, H.; Payvand, M.; Wang, W. Adaptive Extreme Edge Computing for Wearable Devices. Front. Neurosci. 2021, 15, 611300. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Zhang, X.; Wang, W.; Yang, R.; Sun, Z.; Feng, W.; Lin, P.; Wang, Z.; Sun, L.; et al. Memristive Crossbar Arrays for Storage and Computing Applications. Adv. Intell. Syst. 2021, 3, 2100017. [Google Scholar] [CrossRef]
- Wang, W.; Covi, E.; Milozzi, A.; Farronato, M.; Ricci, S.; Sbandati, C.; Pedretti, G.; Ielmini, D. Neuromorphic Motion Detection and Orientation Selectivity by Volatile Resistive Switching Memories. Adv. Intell. Syst. 2021, 3, 2000224. [Google Scholar] [CrossRef]
- Wang, W.; Song, W.; Yao, P.; Li, Y.; Nostrand, J.V.; Qiu, Q.; Ielmini, D.; Yang, J.J. Integration and Co-design of Memristive Devices and Algorithms for Artificial Intelligence. IScience 2020, 23, 101809. [Google Scholar] [CrossRef]
- Wang, C.; He, W.; Tong, Y.; Zhao, R. Investigation and Manipulation of Different Analog Behaviors of Memristor as Electronic Synapse for Neuromorphic Applications. Sci. Rep. 2016, 6, 22970. [Google Scholar] [CrossRef]
- Indiveri, G.; Linares-Barranco, B.; Legenstein, R.; Deligeorgis, G.; Prodromakis, T. Integration of Nanoscale Memristor Synapses in Neuromorphic Computing Architectures. Nanotechnology 2013, 24, 384010. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A. Memristor-Based Neural Networks. J. Phys. D Appl. Phys. 2013, 46, 093001. [Google Scholar] [CrossRef]
- Min, J.G.; Cho, W.J. Chitosan-Based Flexible Memristors with Embedded Carbon Nanotubes for Neuromorphic Electronics. Micromachines 2021, 12, 1259. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Jang, J.T.; Yu, E.; Park, J.; Min, J.; Kim, D.M.; Choi, S.-J.; Mo, H.-S.; Cho, S.; Roy, K.; et al. Pd/IGZO/p + -Si Synaptic Device with Self-Graded Oxygen Concentrations for Highly Linear Weight Adjustability and Improved Energy Efficiency. ACS Appl. Electron. Mater. 2020, 2, 2390–2397. [Google Scholar] [CrossRef]
- Jang, J.T.; Ahn, G.; Choi, S.-J.; Kim, D.M.; Kim, D.H. Control of the Boundary between the Gradual and Abrupt Modulation of Resistance in the Schottky Barrier Tunneling-Modulated Amorphous Indium-Gallium-Zinc-Oxide Memristors for Neuromorphic Computing. Electronics 2019, 8, 1087. [Google Scholar] [CrossRef]
- Jang, J.T.; Min, J.; Kim, D.; Park, J.; Choi, S.; Myong, D.; Cho, S.; Hwan, D. A Highly Reliable Physics-Based SPICE Compact Model of IGZO Memristor Considering the Dependence on Electrode Metals and Deposition Sequence. Solid State Electron. 2020, 166, 107764. [Google Scholar] [CrossRef]
- Bang, S.; Kim, M.H.; Kim, T.H.; Lee, D.K.; Kim, S.; Cho, S.; Park, B.G. Gradual Switching and Self-Rectifying Characteristics of Cu/α-IGZO/P+-Si RRAM for Synaptic Device Application. Solid State Electron. 2018, 150, 60–65. [Google Scholar] [CrossRef]
- Jang, J.T.; Min, J.; Hwang, Y.; Choi, S.-J.; Kim, D.M.; Kim, H.; Kim, D.H. Digital and Analog Switching Characteristics of InGaZnO Memristor Depending on Top Electrode Material for Neuromorphic System. IEEE Access 2020, 8, 192304–192311. [Google Scholar] [CrossRef]
- Ma, P.; Liang, G.; Wang, Y.; Li, Y.; Xin, Q.; Li, Y.; Song, A. High-Performance InGaZnO-Based ReRAMs. IEEE Electron. Device 2019, 66, 2600–2605. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, R.; Zhao, H.; Sun, Z.; Liu, Z.; He, L.; Li, Y. Research Progress of Biomimetic Memristor Flexible Synapse. Coatings 2022, 12, 21. [Google Scholar] [CrossRef]
- Min, S.Y.; Cho, W.J. High-Performance Resistive Switching in Solution-Derived Igzo:N Memristors by Microwave-Assisted Nitridation. Nanomaterials 2021, 11, 1081. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Xing, X.; Huang, S.; Wang, Y.; Chen, Z.; Gong, Y.; Zhou, Y.; Han, S.-T. Self-assembling crystalline peptide microrod for neuromorphic function implementation. Matter 2021, 4, 1702–1719. [Google Scholar] [CrossRef]
- Ali, A.; Abbas, Y.; Abbas, H.; Jeon, Y.R.; Hussain, S.; Naqvi, B.A.; Choi, C.; Jung, J. Dependence of InGaZnO and SnO2 Thin Film Stacking Sequence for the Resistive Switching Characteristics of Conductive Bridge Memory Devices. Appl. Surf. Sci. 2020, 525, 146390. [Google Scholar] [CrossRef]
- Choi, B.J.; Torrezan, A.C.; Strachan, J.P.; Kotula, P.G.; Lohn, A.J.; Marinella, M.J.; Li, Z.; Williams, R.S.; Yang, J.J. High-Speed and Low-Energy Nitride Memristors. Adv. Funct. Mater. 2016, 26, 5290–5296. [Google Scholar] [CrossRef]
- Lee, C.; Lee, J.E.; Kim, M.; Song, Y.; Han, G.; Seo, J.; Kim, D.W.; Seo, Y.H.; Hwang, H.; Lee, D. Li Memristor-Based MOSFET Synapse for Linear I-V Characteristic and Processing Analog Input Neuromorphic System. Jpn. J. Appl. Phys. 2021, 60, 024003. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, Y.; Lv, Z.; Xie, P.; Xu, Z.-X.; Luo, M.; Zhang, Y.; Huang, S.; Zhou, K.; Zhang, G.; et al. Ferroelectric coupling for dual-mode non-filamentary memristors. Appl. Phys. Rev. 2022, 9, 021417. [Google Scholar] [CrossRef]
- Kim, S.; Park, B.G. Nonlinear and multilevel resistive switching memory in Ni/Si3N4/Al2O3/TiN structures. Appl. Phys. Lett. 2016, 108, 212103. [Google Scholar] [CrossRef]
- Ryu, H.; Kim, S. Self-Rectifying Resistive Switching and Short-Term Memory Characteristics in Pt/HfO2/TaOx/TiN Artificial Synaptic Device. Nanomaterials 2020, 10, 2159. [Google Scholar] [CrossRef]
- Sharbati, M.T.; Du, Y.; Torres, J.; Ardolino, N.D.; Yun, M.; Xiong, F. Low-Power, Electrochemically Tunable Graphene Synapses for Neuromorphic Computing. Adv. Mater. 2018, 30, 1802353. [Google Scholar] [CrossRef]
- Wang, T.Y.; He, Z.Y.; Chen, L.; Zhu, H.; Sun, Q.Q.; Ding, S.J.; Zhou, P.; Zhang, D.W. An Organic Flexible Artificial Bio-Synapses with Long-Term Plasticity for Neuromorphic Computing. Micromachines 2018, 9, 239. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, M.; Qian, F.; Roy, V.A.L.; Ye, W.; She, D.; Wang, Y.; Xu, Z.-X.; Zhou, Y.; Han, S.-Y. Mimicking neuroplasticity in a hybrid biopolymer transistor by dual modes modulation. Adv. Funct. Mater. 2019, 29, 1902374. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S.; Kim, S. Logic-in-memory application of CMOS compatible silicon nitride memristor. Chaos Soiltons Fractals 2021, 153, 111540. [Google Scholar] [CrossRef]
- Yang, J.; Cho, H.; Ryu, H.; Ismail, M.; Mahata, C.; Kim, S. Tunable Synaptic Characteristics of a Ti/TiO2/Si Memory Device for Reservoir Computing. ACS Appl. Mater. Interfaces 2021, 13, 33244. [Google Scholar] [CrossRef]
- Choi, W.S.; Kim, D.; Yang, T.J.; Chae, I.; Kim, C.; Kim, H.; Kim, D.H. Electrode-Dependent Electrical Switching Characteristics of InGaZnO Memristor. Chaos Solitons Fractals 2022, 158, 112106. [Google Scholar] [CrossRef]
OFR | 2 | 1.5 | 1 | Unit |
---|---|---|---|---|
Leff | 12 | 25 | 27 | nm |
Φint | 0.76 | 0.64 | 0.57 | eV |
A | 40,000 | μm2 | ||
A* | 32 | cm−2 K2 | ||
T | 300 | K |
Parameter | Value |
---|---|
αVL, αOL, αL | 0.31 V−1, 0.75 min/cm−3, −5.275 |
αVS, αOS, αS | 0.2 V−1, 1.31 min/cm−3, −5.9 |
γpVL, γpOL, γpL | −0.55 V−1, 1.21 min/cm−3, −2.125 |
γdVL, γdOL, γDl | 1.25 V−1, −1.25 min/cm−3, −1.375 |
κpL, κL | 0.4, −0.1 |
βdL | 0.4 |
τpS = τdS | 2 ms |
βpS = βdS | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Lee, H.J.; Yang, T.J.; Choi, W.S.; Kim, C.; Choi, S.-J.; Bae, J.-H.; Kim, D.M.; Kim, S.; Kim, D.H. Compact SPICE Model of Memristor with Barrier Modulated Considering Short- and Long-Term Memory Characteristics by IGZO Oxygen Content. Micromachines 2022, 13, 1630. https://doi.org/10.3390/mi13101630
Kim D, Lee HJ, Yang TJ, Choi WS, Kim C, Choi S-J, Bae J-H, Kim DM, Kim S, Kim DH. Compact SPICE Model of Memristor with Barrier Modulated Considering Short- and Long-Term Memory Characteristics by IGZO Oxygen Content. Micromachines. 2022; 13(10):1630. https://doi.org/10.3390/mi13101630
Chicago/Turabian StyleKim, Donguk, Hee Jun Lee, Tae Jun Yang, Woo Sik Choi, Changwook Kim, Sung-Jin Choi, Jong-Ho Bae, Dong Myong Kim, Sungjun Kim, and Dae Hwan Kim. 2022. "Compact SPICE Model of Memristor with Barrier Modulated Considering Short- and Long-Term Memory Characteristics by IGZO Oxygen Content" Micromachines 13, no. 10: 1630. https://doi.org/10.3390/mi13101630
APA StyleKim, D., Lee, H. J., Yang, T. J., Choi, W. S., Kim, C., Choi, S.-J., Bae, J.-H., Kim, D. M., Kim, S., & Kim, D. H. (2022). Compact SPICE Model of Memristor with Barrier Modulated Considering Short- and Long-Term Memory Characteristics by IGZO Oxygen Content. Micromachines, 13(10), 1630. https://doi.org/10.3390/mi13101630