Periodic Structural Defects in Graphene Sheets Engineered via Electron Irradiation
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EBI | Electron Beam Irradiation |
SEM | Scanning Electron Microscopy |
AFM | Atomic Force Microscopy |
BSE | Back-Scattered Electron |
FFT | Fast Fourier Transform |
FWHM | Full Width at Half Maximum |
References
- Banhart, F.; Kotakoski, J.; Krasheninnikov, A.V. Structural Defects in Graphene. ACS Nano 2011, 5, 26–41. [Google Scholar] [CrossRef]
- Childres, I.; Jauregui, L.A.; Foxe, M.; Tian, J.; Jalilian, R.; Jovanovic, I.; Chen, Y.P. Effect of electron-beam irradiation on graphene field effect devices. Appl. Phys. Lett. 2010, 97, 173109. [Google Scholar] [CrossRef]
- Liu, L.; Qing, M.; Wang, Y.; Chen, S. Defects in Graphene: Generation, Healing, and Their Effects on the Properties of Graphene: A Review. J. Mater. Sci. Technol. 2015, 31, 599–606. [Google Scholar] [CrossRef]
- Teweldebrhan, D.; Balandin, A.A. Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 2009, 94, 013101. [Google Scholar] [CrossRef]
- Boukhvalov, D.W.; Katsnelson, M.I. Chemical Functionalization of Graphene with Defects. Nano Lett. 2008, 8, 4373–4379. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Li, L.; Lee, W.B.; Ng, M.C. Structure of graphene and its disorders: A review. Sci. Technol. Adv. Mater. 2018, 19, 613–648. [Google Scholar] [CrossRef]
- Lan, Y.W.; Chang, W.H.; Xiao, B.T.; Liang, B.W.; Chen, J.H.; Jiang, P.h.; Li, L.J.; Su, Y.W.; Zhong, Y.L.; Chen, C.D. Polymer-Free Patterning of Graphene at Sub-10-nm Scale by Low-Energy Repetitive Electron Beam. Small 2014, 10, 4778–4784. [Google Scholar] [CrossRef]
- Sunnardianto, G.; Bokas, G.; Hussein, A.; Walters, C.; Moultos, O.; Dey, P. Efficient hydrogen storage in defective graphene and its mechanical stability: A combined density functional theory and molecular dynamics simulation study. Int. J. Hydrog. Energy 2021, 46, 5485–5494. [Google Scholar] [CrossRef]
- Akilan, R.; Malarkodi, M.; Vijayakumar, S.; Gopalakrishnan, S.; Shankar, R. Modeling of 2-D hydrogen-edge capped defected & boron-doped defected graphene sheets for the adsorption of CO2, SO2 towards energy harvesting applications. Appl. Surf. Sci. 2019, 463, 596–609. [Google Scholar] [CrossRef]
- Malekpour, H.; Ramnani, P.; Srinivasan, S.; Balasubramanian, G.; Nika, D.L.; Mulchandani, A.; Lake, R.K.; Balandin, A.A. Thermal conductivity of graphene with defects induced by electron beam irradiation. Nanoscale 2016, 8, 14608–14616. [Google Scholar] [CrossRef]
- Anno, Y.; Imakita, Y.; Takei, K.; Akita, S.; Arie, T. Enhancement of graphene thermoelectric performance through defect engineering. 2D Mater. 2017, 4, 025019. [Google Scholar] [CrossRef]
- Han, Q.; Gao, T.; Zhang, R.; Chen, Y.; Chen, J.; Liu, G.; Zhang, Y.; Liu, Z.; Wu, X.; Yu, D. Highly sensitive hot electron bolometer base on disordered graphene. Sci. Rep. 2013, 3, 3533. [Google Scholar] [CrossRef]
- Fthenakis, Z.G.; Zhu, Z.; Tománek, D. Effect of structural defects on the thermal conductivity of graphene: From point to line defects to haeckelites. Phys. Rev. B 2014, 89, 125421. [Google Scholar] [CrossRef]
- Rodrigues, J.N.B.; Peres, N.M.R.; dos Santos, J.M.B.L. Scattering by linear defects in graphene: A tight-binding approach. J. Phys. Condens. Matter 2013, 25, 075303. [Google Scholar] [CrossRef]
- Liu, Y.; Song, J.; Li, Y.; Liu, Y.; Sun, Q.f. Controllable valley polarization using graphene multiple topological line defects. Phys. Rev. B 2013, 87, 195445. [Google Scholar] [CrossRef]
- Lü, X.; Jiang, L.; Zheng, Y. Transport properties in a line defect superlattice of graphene. Phys. Lett. A 2013, 377, 2687–2691. [Google Scholar] [CrossRef]
- Luo, W.; Cai, W.; Wu, W.; Xiang, Y.; Ren, M.; Zhang, X.; Xu, J. Tailorable reflection of surface plasmons in defect engineered graphene. 2D Mater. 2016, 3, 045001. [Google Scholar] [CrossRef]
- Tao, L.; Qiu, C.; Yu, F.; Yang, H.; Chen, M.; Wang, G.; Sun, L. Modification on Single-Layer Graphene Induced by Low-Energy Electron-Beam Irradiation. J. Phys. Chem. C 2013, 117, 10079–10085. [Google Scholar] [CrossRef]
- Meyer, J.C.; Eder, F.; Kurasch, S.; Skakalova, V.; Kotakoski, J.; Park, H.J.; Roth, S.; Chuvilin, A.; Eyhusen, S.; Benner, G.; et al. Accurate Measurement of Electron Beam Induced Displacement Cross Sections for Single-Layer Graphene. Phys. Rev. Lett. 2012, 108, 196102. [Google Scholar] [CrossRef]
- Wu, X. Influence of Particle Beam Irradiation on the Structure and Properties of Graphene; Springer Theses; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Guseinov, N.R.; Ilyin, A.M. Under Threshold Structural Damaging in Few-Layer Graphene due to Middle- and Low-Energy Electron Irradiation. J. Mater. Sci. Eng. A 2014, 4, 39–44. [Google Scholar] [CrossRef]
- Guseinov, N.R.; Ilyin, A.M. Subthreshold Radiation Damage in Few-Layer Graphene Nanostructures Due to Low-Energy Electron Irradiation. In New Approaches in Engineering Research Vol. 10; B.P. Publishing: West Bengal, India, 2021; pp. 32–40. [Google Scholar] [CrossRef]
- Stevens-Kalceff, M.A. Electron-Irradiation-Induced Radiolytic Oxygen Generation and Microsegregation in Silicon Dioxide Polymorphs. Phys. Rev. Lett. 2000, 84, 3137–3140. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.; Mahajan, K.; Williams, W.; Ecton, P.; Mo, Y.; Perez, J. Formation of graphane and partially hydrogenated graphene by electron irradiation of adsorbates on graphene. Carbon 2010, 48, 2335–2340. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, T.; Lu, J.; Sun, L.; Ni, Z. Defect engineering in 2D materials: Precise manupulation and improved functionalities. Research 2019. [Google Scholar] [CrossRef] [PubMed]
- Basta, L.; Moscardini, A.; Veronesi, S.; Bianco, F. Substrate surface effects on electron-irradiated graphene. Surfaces Interfaces 2022, 28, 101694. [Google Scholar] [CrossRef]
- Islam, A.E.; Susner, M.A.; Carpena-Núñez, J.; Back, T.C.; Rao, R.; Jiang, J.; Pachter, R.; Tenney, S.A.; Boeckl, J.J.; Maruyama, B. Defect engineering of graphene using electron-beam chemistry with radiolyzed water. Carbon 2020, 166, 446–455. [Google Scholar] [CrossRef]
- Ye, X.L.; Cai, J.; Yang, X.D.; Tang, X.Y.; Zhou, Z.Y.; Tan, Y.Z.; Xie, S.Y.; Zheng, L.S. Quantifying defect-enhanced chemical functionalization of single-layer graphene and its application in supramolecular assembly. J. Mater. Chem. A 2017, 5, 24257–24262. [Google Scholar] [CrossRef]
- Beams, R.; Cançado, L.G.; Novotny, L. Raman characterization of defects and dopants in graphene. J. Phys. Condens. Matter 2015, 27, 083002. [Google Scholar] [CrossRef]
- Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K.S.; Casiraghi, C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12, 3925–3930. [Google Scholar] [CrossRef]
- Krauss, B.; Lohmann, T.; Chae, D.H.; Haluska, M.; von Klitzing, K.; Smet, J.H. Laser-induced disassembly of a graphene single crystal into a nanocrystalline network. Phys. Rev. B 2009, 79, 165428. [Google Scholar] [CrossRef]
- Bruna, M.; Ott, A.K.; Ijäs, M.; Yoon, D.; Sassi, U.; Ferrari, A.C. Doping Dependence of the Raman Spectrum of Defected Graphene. ACS Nano 2014, 8, 7432–7441. [Google Scholar] [CrossRef]
- Cançado, L.G.; Jorio, A.; Ferreira, E.H.M.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.O.; Lombardo, A.; Kulmala, T.S.; Ferrari, A.C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef]
- Childres, I.; Jauregui, L.A.; Chen, Y.P. Raman spectra and electron-phonon coupling in disordered graphene with gate-tunable doping. J. Appl. Phys. 2014, 116, 233101. [Google Scholar] [CrossRef]
- Lee, J.E.; Ahn, G.; Shim, J.; Lee, Y.S.; Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 2012, 3, 1024. [Google Scholar] [CrossRef]
- Burson, K.M.; Cullen, W.G.; Adam, S.; Dean, C.R.; Watanabe, K.; Taniguchi, T.; Kim, P.; Fuhrer, M.S. Direct Imaging of Charged Impurity Density in Common Graphene Substrates. Nano Lett. 2013, 13, 3576–3580. [Google Scholar] [CrossRef]
- Park, H.; Qi, J.; Xu, Y.; Varga, K.; Weiss, S.M.; Rogers, B.R.; Lüpke, G.; Tolk, N. Characterization of boron charge traps at the interface of Si/SiO2 using second harmonic generation. Appl. Phys. Lett. 2009, 95, 062102. [Google Scholar] [CrossRef]
- Yoon, D.; Son, Y.W.; Cheong, H. Strain-Dependent Splitting of the Double-Resonance Raman Scattering Band in Graphene. Phys. Rev. Lett. 2011, 106, 155502. [Google Scholar] [CrossRef]
- Eckmann, A.; Felten, A.; Verzhbitskiy, I.; Davey, R.; Casiraghi, C. Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects. Phys. Rev. B 2013, 88, 035426. [Google Scholar] [CrossRef]
- Neumann, C.; Reichardt, S.; Venezuela, P.; Drögeler, M.; Banszerus, L.; Schmitz, M.; Watanabe, K.; Taniguchi, T.; Mauri, F.; Beschoten, B.; et al. Raman spectroscopy as probe of nanometre-scale strain variations in graphene. Nat. Commun. 2015, 6, 8429. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melchioni, N.; Fabbri, F.; Tredicucci, A.; Bianco, F. Periodic Structural Defects in Graphene Sheets Engineered via Electron Irradiation. Micromachines 2022, 13, 1666. https://doi.org/10.3390/mi13101666
Melchioni N, Fabbri F, Tredicucci A, Bianco F. Periodic Structural Defects in Graphene Sheets Engineered via Electron Irradiation. Micromachines. 2022; 13(10):1666. https://doi.org/10.3390/mi13101666
Chicago/Turabian StyleMelchioni, Nicola, Filippo Fabbri, Alessandro Tredicucci, and Federica Bianco. 2022. "Periodic Structural Defects in Graphene Sheets Engineered via Electron Irradiation" Micromachines 13, no. 10: 1666. https://doi.org/10.3390/mi13101666
APA StyleMelchioni, N., Fabbri, F., Tredicucci, A., & Bianco, F. (2022). Periodic Structural Defects in Graphene Sheets Engineered via Electron Irradiation. Micromachines, 13(10), 1666. https://doi.org/10.3390/mi13101666