Metasurfaces as Energy Valves for Sustainable Energy Management
Abstract
1. Introduction
2. Experimental Procedures and Modeling
2.1. Fabrication of Transparent Metasurfaces
2.2. Optical Characterization
2.3. FDTD Simulation of MIM Properties
3. Results and Discussion
3.1. Thin Au as a Metal Base in MIM Metasurface
3.2. ITO as a Metal Base in MIM Metasurface
3.3. Large-Area Fabrication for Radiation Control (an Optical Window)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sreekanth, K.V.; Alapan, Y.; Ilker, M.E.E.; Hinczewski, M.; Gurkan, U.A.; Luca, A.D.; Strangi, G. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 2016, 15, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Monticone, F.; Alu, A. Invisibility exposed: Physical bounds on passive cloaking. Optica 2016, 3, 718–724. [Google Scholar] [CrossRef]
- Kuttruff, J.; Gabbani, A.; Petrucci, G.; Zhao, Y.; Iarossi, M.; Pedrueza-Villalmanzo, E.; Dmitriev, A.; Parracino, A.; Strangi, G.; Angelis, F.D.; et al. Magneto-Optical Activity in Nonmagnetic Hyperbolic Nanoparticles. Phys. Rev. Lett. 2021, 127, 217402. [Google Scholar] [CrossRef]
- Zhao, B.; Guo, C.; Garcia, C.A.C.; Narang, P.; Fan, S. Axion-Field-Enabled Nonreciprocal Thermal Radiation in Weyl Semimetals. Nano Lett. 2020, 20, 1923–1927. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.; Song, J.; Lee, S.S.; Lee, J.; Lee, B.J. Surface-Plasmon-Enhanced Near-Field Radiative Heat Transfer between Planar Surfaces with a Thin-Film Plasmonic Coupler. Phys. Rev. Appl. 2020, 14, 014070. [Google Scholar] [CrossRef]
- Barho, F.B.; Gonzalez-Posada, F.; Cerutti, L.; Taliercio, T. Heavily Doped Semiconductor Metamaterials for Mid-Infrared Multispectral Perfect Absorption and Thermal Emission. Adv. Opt. Mater. 2020, 8, 1901502. [Google Scholar] [CrossRef]
- Berquist, Z.J.; Turaczy, K.K.; Lenert, A. Plasmon-enhanced greenhouse selectivity for high-temperature solar thermal energy conversion. ACS Nano 2020, 14, 12605–12613. [Google Scholar] [CrossRef]
- Yada, K.; Sakurai, A. Active thermal radiation control with nanoslit graphene metasurface. J. Quant. Spectrosc. Radiat. Transf. 2021, 260, 107450. [Google Scholar] [CrossRef]
- Shi, K.; Sun, Y.; Chen, Z.; He, N.; Bao, F.; Evans, J.; He, S. Colossal Enhancement of Near-Field Thermal Radiation across Hundreds of Nanometers between Millimeter-Scale Plates through Surface Plasmon and Phonon Polaritons Coupling. Nano Lett. 2019, 19, 8082–8088. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Zhang, X.; Dong, W.; Lu, L.; Zhou, X.; Zhuang, X.; Deng, J.; Cheng, X.; Li, G.; Simpson, R.E. Tuneable Thermal Emission Using Chalcogenide Metasurface. Adv. Opt. Mater. 2018, 6, 1800169. [Google Scholar] [CrossRef]
- Li, W.; Fan, S. Nanophotonic control of thermal radiation for energy applications. Opt. Express 2018, 26, 15995. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Wu, D.; Liu, Y.; Ye, H.; Sutherland, D. Copper plasmonic metamaterial glazing for directional thermal energy management. Mater. Des. 2020, 188, 108407. [Google Scholar] [CrossRef]
- Kang, Q.; Li, D.; Guo, K.; Gao, J.; Guo, Z. Tunable Thermal Camouflage Based on GST Plasmonic Metamaterial. Nanomaterials 2021, 11, 260. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Huang, S.; Ma, Y.; Cheng, Q.; Hu, R.; Luo, X. Radiative metasurface for thermal camouflage, illusion and messaging. Opt. Express 2020, 28, 875. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, C.H.; Yi, H.L.; Tan, H.P. Multiple surface plasmon polaritons mediated near-field radiative heat transfer between graphene/vacuum multilayers. J. Quant. Spectrosc. Radiat. Transf. 2018, 221, 138–146. [Google Scholar] [CrossRef]
- Kondo, T.; Hasegawa, S.; Yanagishita, T.; Kimura, N.; Toyonaga, T.; Masuda, H. Control of thermal radiation in metal hole array structures formed by anisotropic anodic etching of Al. Opt. Express 2018, 26, 27865. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Du, W.; Su, Y.; Fu, Y.; Gong, S.; He, S.; Ma, Y. Observing of the super-Planckian near-field thermal radiation between graphene sheets. Nat. Commun. 2018, 9, 4033. [Google Scholar] [CrossRef] [PubMed]
- Ryu, M.; Nishijima, Y.; Morimoto, S.; To, N.; Hashizume, T.; Matsubara, R.; Kubono, A.; Hu, J.; Ng, S.H.; Juodkazis, S.; et al. Hyperspectral Molecular Orientation Mapping in Metamaterials. Appl. Sci. 2021, 11, 1544. [Google Scholar] [CrossRef]
- Beni, T.; Yamasaku, N.; Kurotsu, T.; To, N.; Okazaki, S.; Arakawa, T.; Balcytis, A.; Seniutinas, G.; Juodkazis, S.; Nishijima, Y. Metamaterial for Hydrogen Sensing. ACS Sens. 2019, 4, 2389–2394. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, T.; To, N.; Balcytis, A.; Seniutinas, G.; Juodkazis, S.; Nishijima, Y. Kirchhoff’s Thermal Radiation from Lithography-Free Black Metals. Micromachines 2020, 11, 824. [Google Scholar] [CrossRef]
- Lundgaard, S.; Ng, S.H.; Nishijima, Y.; Mazilu, M.; Juodkazis, S. Black Metals: Optical Absorbers. Micromachines 2020, 11, 256. [Google Scholar] [CrossRef] [PubMed]
- Nishijima, Y.; Morimoto, S.; Balcytis, A.; Hashizume, T.; Matsubara, R.; Kubono, A.; To, N.; Meguya, R.; Morikawa, J.; Juodkazis, S. Efficient molecular emitter. J. Mater. Chem. C 2022, 10, 451–462. [Google Scholar] [CrossRef]
- To, N.; Juodkazis, S.; Nishijima, Y. Detailed Experiment- Theory Comparison of Mid-Infrared Metasurface Perfect Absorbers. Micromachines 2020, 11, 409. [Google Scholar] [CrossRef] [PubMed]
- Nishijima, Y.; Balcytis, A.; Naganuma, S.; Seniutinas, G.; Juodkazis, S. Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion. Sci. Rep. 2019, 9, 8284. [Google Scholar] [CrossRef] [PubMed]
- Nishijima, Y.; Balcytis, A.; Naganuma, S.; Seniutinas, G.; Juodkazis, S. Tailoring Metal and Insulator Contri- butions in Plasmonic Perfect Absorber Metasurfaces. ACS Appl. Nano Mater. 2018, 1, 3557–3564. [Google Scholar] [CrossRef]
- Raman, A.P.; Anoma, M.A.; Zhu, L.; Rephaeli, E.; Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Kusnandar, K.; Brazier, F.M.; van Kooten, O. Empowering change for sustainable agriculture: The need for participation. Int. J. Agric. Sustain. 2019, 17, 271–286. [Google Scholar] [CrossRef]
- Shrestha, S.; Wang, Y.; Overvig, A.C.; Lu, M.; Stein, A.; Dal Negro, L.; Yu, N. Indium Tin Oxide Broadband Metasurface Absorber. ACS Photonics 2018, 5, 3526–3533. [Google Scholar] [CrossRef]
- Modi, K.S.; Kaur, J.; Singh, S.P.; Tiwari, U.; Sinha, R.K. Extremely high figure of merit in all-dielectric split asymmetric arc metasurface for refractive index sensing. Opt. Commun. 2020, 462, 125327. [Google Scholar] [CrossRef]
- Ramarajan, R.; Kovendhan, M.; Thangaraju, K.; Joseph, D.P.; Babu, R.R.; Elumalai, V. Enhanced optical transparency and electrical conductivity of Ba and Sb co-doped SnO2 thin films. J. Alloy. Compd. 2020, 823, 153709. [Google Scholar] [CrossRef]
- Safari, M.; Kherani, N.P.; Eleftheriades, G.V. Multi-Functional Metasurface: Visibly and RF Transparent, NIR Control and Low Thermal Emissivity. Adv. Opt. Mater. 2021, 9, 2100176. [Google Scholar] [CrossRef]
- Yan, Z.; Bao, J.; Yue, X.Y.; Li, X.L.; Zhou, Y.N.; Wu, X.J. Impacts of preparation conditions on photoelectric properties of the ZnO:Ge transparent conductive thin films fabricated by pulsed laser deposition. J. Alloy. Compd. 2020, 812, 152093. [Google Scholar] [CrossRef]
- Okatani, T.; Abe, Y.; Nakazawa, T.; Hane, K.; Kanamori, Y. Fabrication of silicon nanospheres placeable on a desired position for dielectric metamaterials in the visible region. Opt. Mater. Express 2021, 11, 189. [Google Scholar] [CrossRef]
- Lopez-Santos, C.; Puerto, D.; Siegel, J.; Macias-Montero, M.; Florian, C.; Gil-Rostra, J.; López-Flores, V.; Borras, A.; González-Elipe, A.R.; Solis, J. Anisotropic Resistivity Surfaces Produced in ITO Films by Laser-Induced Nanoscale Self-organization. Adv. Opt. Mater. 2021, 9, 2001086. [Google Scholar] [CrossRef]
- Kim, J.H.; Seong, T.Y.; Ahn, K.J.; Chung, K.B.; Seok, H.J.; Seo, H.J.; Kim, H.K. The effects of film thickness on the electrical, optical, and structural properties of cylindrical, rotating, magnetron-sputtered ITO films. Appl. Surf. Sci. 2018, 440, 1211–1218. [Google Scholar] [CrossRef]
- Li, Y.T.; Chen, D.T.; Han, C.F.; Lin, J.F. Effect of the addition of zirconium on the electrical, optical, and mechanical properties and microstructure of ITO thin films. Vacuum 2021, 183, 109844. [Google Scholar] [CrossRef]
- Hsueh, T.J.; Peng, C.H.; Chen, W.S. A transparent ZnO nanowire MEMS gas sensor prepared by an ITO micro-heater. Sens. Actuators B Chem. 2020, 304, 127319. [Google Scholar] [CrossRef]
- Chai, X.; Zhang, Y.; Cao, Y.; Wu, L.; Ma, J.; Liu, Y.; Song, L. Modulation of photoelectric properties of indium tin oxide thin films via oxygen control, and its application to epsilon-near-zero properties for an infrared absorber. J. Appl. Phys. 2020, 128, 185301. [Google Scholar] [CrossRef]
- Yildirim, D.U.; Ghobadi, A.; Soydan, M.C.; Atesal, O.; Toprak, A.; Caliskan, M.D.; Ozbay, E. Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface. ACS Photonics 2019, 6, 1812–1822. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, T.; Lin, S.; Zhang, Y.; Tesfamichael, T.; Bell, J.; Wang, H. Effect of different thermo-treatment at relatively low temperatures on the properties of indium tin oxide thin films. Thin Solid Film. 2017, 636, 702–709. [Google Scholar] [CrossRef]
- Ali, H.M.; Mohamed, H.A.; Mohamed, S.H. Enhancement of the optical and electrical properties of ITO thin films deposited by electron beam evaporation technique. EPJ Appl. Phys. 2005, 31, 87–93. [Google Scholar] [CrossRef]
- Shirmanesh, G.K.; Sokhoyan, R.; Pala, R.A.; Atwater, H.A. Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability. Nano Lett. 2018, 18, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Wolf, N.; Gerstenlauer, D.; Manara, J. Modelling the spectral reflectances of miscellaneous ITO coatings by using only the Drude theory. J. Phys. Conf. Ser. 2012, 395, 012064. [Google Scholar] [CrossRef]
- Nishijima, Y.; To, N.; Balcytis, A.; Juodkazis, S. Absorption and scattering in perfect thermal radiation absorber-emitter metasurfaces. Optics Express 2022, 30, 4058–4070. [Google Scholar] [CrossRef] [PubMed]
- Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118, 5912–5951. [Google Scholar] [CrossRef]
- Nishijima, Y.; Rosa, L.; Juodkazis, S. Surface plasmon resonances in periodic and random patterns of gold nano-discs for broadband light harvesting. Opt. Express 2012, 20, 11466–11477. [Google Scholar] [CrossRef]
- Ishibashi, S.; Higuchi, Y.; Ota, Y.; Nakamura, K. Low resistivity indium-tin oxcide transparent conductive films. II. Effect of sputtering voltage on electrical property of films. J. Vac. Sci. Technol. A 1990, 8, 1403–1406. [Google Scholar] [CrossRef]
- Katsonis, N.; Kudernac, T.; Walko, M.; van der Molen, S.J.; van Wees, B.J.; Feringa, B.L. Reversible Conductance Switching of Single Diarylethenes on a Gold Surface. Adv. Mater. 2006, 18, 1397–1400. [Google Scholar] [CrossRef]
- Ray, S.; Banerjee, R.; Basu, N.; Batabyal, A.K.; Barua, A.K. Properties of tin doped indium oxide thin films prepared by magnetron sputtering. J. Appl. Phys. 1983, 54, 3497. [Google Scholar] [CrossRef]
- Ohhata, Y.; Shinoki, F.; Yoshida, S. Optical properties of r.f. reactive sputtered tin-doped In2O3 films. Thin Solid Film. 1979, 59, 255–261. [Google Scholar] [CrossRef]
- Kecebas, M.A.; Menguc, M.P.; Kosar, A.; Sendur, K. Passive radiative cooling design with broadband optical thin-film filters. J. Quant. Spectrosc. Radiat. Transf. 2017, 198, 179–186. [Google Scholar] [CrossRef]
- Santamouris, M.; Feng, J. Recent Progress in Daytime Radiative Cooling: Is It the Air Conditioner of the Future? Buildings 2018, 8, 168. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishijima, Y.; Kimura, S.; Takeshima, Y.; Juodkazis, S. Metasurfaces as Energy Valves for Sustainable Energy Management. Micromachines 2022, 13, 1769. https://doi.org/10.3390/mi13101769
Nishijima Y, Kimura S, Takeshima Y, Juodkazis S. Metasurfaces as Energy Valves for Sustainable Energy Management. Micromachines. 2022; 13(10):1769. https://doi.org/10.3390/mi13101769
Chicago/Turabian StyleNishijima, Yoshiaki, Syunya Kimura, Yu Takeshima, and Saulius Juodkazis. 2022. "Metasurfaces as Energy Valves for Sustainable Energy Management" Micromachines 13, no. 10: 1769. https://doi.org/10.3390/mi13101769
APA StyleNishijima, Y., Kimura, S., Takeshima, Y., & Juodkazis, S. (2022). Metasurfaces as Energy Valves for Sustainable Energy Management. Micromachines, 13(10), 1769. https://doi.org/10.3390/mi13101769