Propagation Losses Estimation in a Cationic-Network-Based Hydrogel Waveguide
Abstract
:1. Introduction
2. The Photographic Method
3. Experimental Results and Analysis
3.1. The Samples
3.2. Comparison between Photographic and Cut-Back Methods
3.3. Determination of the Attenuation Coefficients
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Shabahang, S.; Kim, S.; Yun, S.H. Light-guiding biomaterials for biomedical applications. Adv. Funct. Mater. 2018, 28, 1706635. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zheng, Y.; Bhusari, S.; Villiou, M.; Pearson, S.; del Campo, A. Printed degradable optical waveguides for guiding light into tissue. Adv. Funct. Mater. 2020, 30, 2004327. [Google Scholar] [CrossRef]
- Shan, D.; Gerhard, E.; Zhang, C.; Tierney, J.W.; Xie, D. Polymeric biomaterials for biophotonic applications. Bioact. Mater. 2018, 3, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Choi, J.W.; Kim, S.; Nizamoglu, S.; Hahn, S.K.; Yun, S.H. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat. Photonics 2013, 7, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Yetisen, A.K.; Jiang, N.; Fallahi, A.; Montelongo, Y.; Ruiz-Esparza, G.U.; Tamayol, A.; Zhang, Y.S.; Mahmood, I.; Yang, S.A.; Kim, K.S.; et al. Glucose-Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid. Adv. Mater. 2017, 29, 1606380. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Song, W.; Sun, J.-Y. Hydrogel Soft Robotic. Mater. Today Phys. 2020, 15, 100258. [Google Scholar] [CrossRef]
- Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. Highly stretchable electroluminescent skin for optical signalling and tactile sensing. Science 2016, 351, 1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Xiong, C.; Liu, C.; Li, P.; Chen, Y. Fabrication and dynamic Modeling of Bidirectional Bending Soft Actuator Integrated with Optical Waveguide Curvature Sensor. Soft Robot. 2019, 6, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, G.; Liang, Y.; Cheng, T.; Dai, J.; Yang, X.; Liu, B.; Zeng, Z.; Huang, Z.; Yingwu Luo, Y.; et al. Fast-moving soft electronic fish. Sci. Adv. 2017, 3, e1602045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullah, F.; Othman, M.B.H.; Javed, F.; Ahmad, Z.; Akil, H.M. Classification, processing and application of hydrogels: A review. Mater. Sci. Eng. C 2015, 57, 414–433. [Google Scholar] [CrossRef] [PubMed]
- Hunsperger, R.G. Integrated Optics: Theory and Technology, 5th ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2002. [Google Scholar]
- Wang, F.; Liu, F.; Chang, G.K.; Adibi, A. Precision measurements for propagation properties of high-definition polymer waveguides by imaging of scattered light. Opt. Eng. 2008, 47, 024602. [Google Scholar] [CrossRef]
- Papakonstantinou, I.; Wang, K.; Selviah, D.R.; Fernández, F.A. Transition, radiation and propagation loss in polymer multimode waveguide bends. Opt. Express 2007, 15, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Canon EOS 1000D Review. Available online: http://www.dpreview.com/reviews/canoneos1000d/21 (accessed on 1 January 2020).
- Martín-Pacheco, A.; Del Río Castillo, A.E.; Martín, C.; Herrero, M.A.; Merino, S.; García Fierro, J.L.; Díez-Barra, E.; Vázquez, E. Graphene Quantum Dot–Aerogel: From Nanoscopic to Macroscopic Fluorescent Materials. Sensing Polyaromatic Compounds in Water. ACS Appl. Mater. Interfaces 2018, 10, 18192–18201. [Google Scholar] [CrossRef] [PubMed]
- López-Díaz, A.; Martín-Pacheco, A.; Rodríguez, A.M.; Herrero, M.A.; Vázquez, A.S.; Vázquez, E. Concentration Gradient-Based Soft Robotics: Hydrogels Out of Water. Adv. Funct. Mater. 2020, 30, 2004417. [Google Scholar] [CrossRef]
- Naranjo, A.; Martín, C.; López-Díaz, A.; Martín-Pacheco, A.; Rodríguez, A.M.; Patiño, F.J.; Herrero, M.A.; Vázquez, A.S.; Vázquez, E. Autonomous self-healing hydrogel with anti-drying properties and applications in soft robotics. Appl. Mater. Today 2020, 21, 100806. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, M.; Yang, C. Fluorescent hydrogel waveguide for on-site detection of heavy metal ions. Sci. Rep. 2017, 7, 7902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Blackwell, R.I.; Künzler, J.F.; Knox, W.H. Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers. Appl. Opt. 2008, 47, 3100–3108. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Humar, M.; Kim, S.; Yun, S.-H. Step-Index Optical Fiber Made of Biocompatible Hydrogels. Adv. Mater. 2015, 27, 4081–4086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Liu, X.; Jiang, N.; Yetisen, A.K.; Yuk, H.; Yang, C.; Khademhosseini, A.; Zhao, X.; Yun, S.-H. Highly Stretchable, Strain Sensing Hydrogel Optical Fibers. Adv. Mater. 2016, 28, 10244–10249. [Google Scholar] [CrossRef] [PubMed]
- Benedikt, S.; Wang, J.; Markovic, M.; Moszner, N.; Dietliker, K.; Ovsianikov, A.; Grützmacher, H.; Liska, R. Highly efficient water-soluble visible light photoinitiators. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 473–479. [Google Scholar] [CrossRef]
Wavelength (nm) | Absorption Loss (dB/cm) | Scattering Loss (dB/cm) | Optical Loss (dB/cm) (a) |
---|---|---|---|
450 | 1.78 | 1.73 × 10−1 | 1.95 |
532 | 8.24 × 10−1 | 8.79 × 10−2 | 0.91 |
633 | 2.73 × 10−1 | 4.43 × 10−2 | 0.32 |
Materials | Wavelength (nm) | Optical Loss (dB/cm) | References |
---|---|---|---|
PEGDA Hydrogels | 400–800 | 1.25–5.15 | [18] |
CDs-PEGDA Hydrogels | 405 | 0.55–1.1 | [18] |
Silicone-based Hydrogels | 632 | 7.5 | [19] |
PEG-Hydrogels | 450–550 | 0.17–0.68 | [4] |
PEGDA-DDT | 405–520 | 0.1–0.4 | [2] |
PEGDA 700–alginate hydrogel | 492 | 0.32–0.42 | [20] |
PAM–alginate hydrogel | 400–700 | 0.4 | [21] |
PAM hydrogel | 532 | 1–11 | [5] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pons, C.; Galindo, J.M.; Martín, J.C.; Torres-Moya, I.; Merino, S.; Herrero, M.A.; Vázquez, E.; Prieto, P.; Vallés, J.A. Propagation Losses Estimation in a Cationic-Network-Based Hydrogel Waveguide. Micromachines 2022, 13, 2253. https://doi.org/10.3390/mi13122253
Pons C, Galindo JM, Martín JC, Torres-Moya I, Merino S, Herrero MA, Vázquez E, Prieto P, Vallés JA. Propagation Losses Estimation in a Cationic-Network-Based Hydrogel Waveguide. Micromachines. 2022; 13(12):2253. https://doi.org/10.3390/mi13122253
Chicago/Turabian StylePons, Carolina, Josué M. Galindo, Juan C. Martín, Iván Torres-Moya, Sonia Merino, M. Antonia Herrero, Ester Vázquez, Pilar Prieto, and Juan A. Vallés. 2022. "Propagation Losses Estimation in a Cationic-Network-Based Hydrogel Waveguide" Micromachines 13, no. 12: 2253. https://doi.org/10.3390/mi13122253
APA StylePons, C., Galindo, J. M., Martín, J. C., Torres-Moya, I., Merino, S., Herrero, M. A., Vázquez, E., Prieto, P., & Vallés, J. A. (2022). Propagation Losses Estimation in a Cationic-Network-Based Hydrogel Waveguide. Micromachines, 13(12), 2253. https://doi.org/10.3390/mi13122253