Self-Tuning Control Using an Online-Trained Neural Network to Position a Linear Actuator
Abstract
:1. Introduction
2. Background
2.1. DC Motor with Rotational Load
2.2. Neural Network Auto-Tuning PID Controller Design
3. Implementation and Control Execution
3.1. Experimentation in Simulation
3.2. Experimentation
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falcão Carneiro, J.; Bravo Pinto, J.; Gomes de Almeida, F. Accurate Motion Control of a Pneumatic Linear Peristaltic Actuator. Actuators 2020, 9, 63. [Google Scholar] [CrossRef]
- Driver, T.; Shen, X. Pressure Estimation-Based Robust Force Control of Pneumatic Actuators. Int. J. Fluid Power 2013, 14, 37–45. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, J.; Huang, Y.; Zheng, P.; Du, B. The simulation design of parameters optimization on tubular linear motor with optimal output force. In Proceedings of the 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, 3–5 October 2016; pp. 770–774. [Google Scholar] [CrossRef]
- Lucidarme, P.; Delanoue, N.; Mercier, F.; Aoustin, Y.; Chevallereau, C.; Wenger, P. Preliminary survey of backdrivable linear actuators for humanoid robots. In ROMANSY 22-Robot Design, Dynamics and Control; Springer: Berlin/Heidelberg, Germany, 2019; pp. 304–313. [Google Scholar]
- Rouzbeh, B.; Bone, G.M. Optimal Force Allocation and Position Control of Hybrid Pneumatic–Electric Linear Actuators. Actuators 2020, 9, 86. [Google Scholar] [CrossRef]
- Borase, R.P.; Maghade, D.K.; Sondkar, S.Y.; Pawar, S.N. A review of PID control, tuning methods and applications. Int. J. Dyn. Control 2021, 9, 818–827. [Google Scholar] [CrossRef]
- Jouppila, V.T.; Gadsden, S.A.; Bone, G.M.; Ellman, A.U.; Habibi, S.R. Sliding mode control of a pneumatic muscle actuator system with a PWM strategy. Int. J. Fluid Power 2014, 15, 19–31. [Google Scholar] [CrossRef]
- Zhou, M.; Mao, D.; Zhang, M.; Guo, L.; Gong, M. A Hybrid Control with PID–Improved Sliding Mode for Flat-Top of Missile Electromechanical Actuator Systems. Sensors 2018, 18, 4449. [Google Scholar] [CrossRef] [Green Version]
- Mohd Faudzi, A.A.; Mustafa, N.D.; Osman, K. Force Control for a Pneumatic Cylinder Using Generalized Predictive Controller Approach. Math. Probl. Eng. 2014, 2014, 261829. [Google Scholar] [CrossRef]
- Humaidi, A.J.; Kasim Ibraheem, I. Speed Control of Permanent Magnet DC Motor with Friction and Measurement Noise Using Novel Nonlinear Extended State Observer-Based Anti-Disturbance Control. Energies 2019, 12, 1651. [Google Scholar] [CrossRef] [Green Version]
- Luoren, L.; Jinling, L. Research of PID control algorithm based on neural network. Energy Procedia 2011, 13, 6988–6993. [Google Scholar]
- Ponce, A.; Behar, A.; Hernández, A.; Sitar, V. Neural Networks for Self-tuning Control Systems. Acta Polytech. 2004, 44. [Google Scholar] [CrossRef]
- Rodriguez-Ponce, R.; Gomez-Loenzo, R.; Rodriguez-Resendiz, J. A project-oriented approach for power electronics and motor drive courses. Int. J. Electr. Eng. Educ. 2015, 52, 219–236. [Google Scholar] [CrossRef]
- Martinez-Hernandez, M.; Mendoza-Mondragon, F.; Resendiz, J.; Rodriguez-Ponce, R.; Gutierrez-Villalobos, J. On-line rotor resistance estimation for an induction motor drive based on DSC. In Proceedings of the 2012 5th European DSP Education and Research Conference (EDERC), Amsterdam, The Netherlands, 13–14 September 2012; pp. 233–237. [Google Scholar]
- Kuantama, E.; Vesselenyi, T.; Dzitac, S.; Tarca, R. PID and Fuzzy-PID Control Model for Quadcopter Attitude with Disturbance Parameter. Int. J. Comput. Commun. Control 2017, 12, 519–532. [Google Scholar] [CrossRef] [Green Version]
- Chavoshian, M.; Taghizadeh, M.; Mazare, M. Hybrid dynamic neural network and PID control of pneumatic artificial muscle using the PSO algorithm. Int. J. Autom. Comput. 2020, 17, 428–438. [Google Scholar] [CrossRef]
- Muliadi, J.; Kusumoputro, B. Neural network control system of UAV altitude dynamics and its comparison with the PID control system. J. Adv. Transp. 2018, 2018, 3823201. [Google Scholar] [CrossRef]
- Hendookolaei, A.; Ahmadi, N. PID Controller with Neural Auto Tuner Applied in Drum Type Boilers. Can. J. Electr. Electron. Eng. 2012, 3. [Google Scholar] [CrossRef] [Green Version]
- Kawafuku, M.; Sasaki, M.; Kato, S. Self-tuning PID control of a flexible micro-actuator using neural networks. In Proceedings of the SMC’98 Conference, 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218), San Diego, CA, USA, 14 October 1998; Volume 3, pp. 3067–3072. [Google Scholar]
- Aggarwal, V.; Mao, M.; O’Reilly, U.M. A self-tuning analog proportional-integral-derivative (pid) controller. In Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS’06), Istanbul, Turkey, 15–18 June 2006; pp. 12–19. [Google Scholar]
- EL hamidi, K.; Mjahed, M.; Abdeljalil, E.; Ayad, H. Neural Network and Fuzzy-logic-based Self-tuning PID Control for Quadcopter Path Tracking. Stud. Inform. Control 2019, 28, 401–412. [Google Scholar] [CrossRef]
- Zhu, Z.; Pan, Y.; Zhou, Q.; Lu, C. Event-Triggered Adaptive Fuzzy Control for Stochastic Nonlinear Systems With Unmeasured States and Unknown Backlash-Like Hysteresis. IEEE Trans. Fuzzy Syst. 2021, 29, 1273–1283. [Google Scholar] [CrossRef]
- Gutierrez-Villalobos, J.; Rodriguez-Resendiz, J.; Rivas-Araiza, E.; Mucino, V. A review of parameter estimators and controllers for induction motors based on artificial neural networks. Neurocomputing 2013, 118, 87–100. [Google Scholar] [CrossRef]
- Rodríguez-Reséndiz, J.; Gutiérrez-Villalobos, J.; Duarte-Correa, D.; Mendiola-Santibañez, J.; Santillán-Méndez, I. Design and implementation of an adjustable speed drive for motion control applications. J. Appl. Res. Technol. 2012, 10, 180–194. [Google Scholar] [CrossRef]
- Mazare, M.; Taghizadeh, M.; Kazemi, M.G. Optimal hybrid scheme of dynamic neural network and PID controller based on harmony search algorithm to control a PWM-driven pneumatic actuator position. J. Vib. Control 2018, 24, 3538–3554. [Google Scholar] [CrossRef]
- Wang, D.; Han, P.; Guo, Q. Neural network self-tuning PID control for boiler-turbine unit. In Proceedings of the Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No. 04EX788), Hangzhou, China, 15–19 June 2004; Volume 6, pp. 5175–5179. [Google Scholar]
- Kim, J.S.; Kim, J.H.; Park, J.M.; Park, S.M.; Choe, W.Y.; Heo, H. Auto tuning PID controller based on improved genetic algorithm for reverse osmosis plant. World Acad. Sci. Eng. Technol. 2008, 47, 384–389. [Google Scholar]
- Bari, S.; Hamdani, S.S.Z.; Khan, H.U.; ur Rehman, M.; Khan, H. Artificial neural network based self-tuned PID controller for flight control of quadcopter. In Proceedings of the 2019 International Conference on Engineering and Emerging Technologies (ICEET), Lahore, Pakistan, 21–22 February 2019; pp. 1–5. [Google Scholar]
- Roman, R.C.; Precup, R.E.; Petriu, E.M. Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems. Eur. J. Control 2021, 58, 373–387. [Google Scholar] [CrossRef]
- Yechiel, O.; Guterman, H. A Survey of Adaptive Control. Int. Robot. Autom. J. 2017, 3, 290–292. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Alvarado, R.; García-Valdovinos, L.G.; Salgado-Jiménez, T.; Gómez-Espinosa, A.; Fonseca-Navarro, F. Neural network-based self-tuning PID control for underwater vehicles. Sensors 2016, 16, 1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Abreo, O.; Rodríguez-Reséndiz, J.; Fuentes-Silva, C.; Hernández-Alvarado, R.; Falcón, M.D.C.P.T. Self-Tuning Neural Network PID With Dynamic Response Control. IEEE Access 2021, 9, 65206–65215. [Google Scholar] [CrossRef]
- Basha, S.S.; Vinakota, S.K.; Pulabaigari, V.; Mukherjee, S.; Dubey, S.R. AutoTune: Automatically Tuning Convolutional Neural Networks for Improved Transfer Learning. Neural Netw. 2021, 133, 112–122. [Google Scholar] [CrossRef]
- Chertovskikh, P.; Seredkin, A.; Gobyzov, O.; Styuf, A.; Pashkevich, M.; Tokarev, M. An adaptive PID controller with an online auto-tuning by a pretrained neural network. J. Phys. Conf. Ser. 2019, 1359, 012090. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, M.; Jiang, W.; Huang, Y.; Lin, R. A Design of FPGA-Based Neural Network PID Controller for Motion Control System. Sensors 2022, 22, 889. [Google Scholar] [CrossRef]
- Homod, R.Z.; Sahari, K.S.M.; Almurib, H.A.; Nagi, F.H. Gradient auto-tuned Takagi–Sugeno Fuzzy Forward control of a HVAC system using predicted mean vote index. Energy Build. 2012, 49, 254–267. [Google Scholar] [CrossRef]
Variable | Concept | Unit |
---|---|---|
Induced electromotive force | V | |
B | Coefficient of friction | Nm |
J | Inertia | Kgm |
Armature current | A | |
Electrical constant | − | |
Mechanical constant | − | |
Armor resistance | ||
v | Armature voltage | V |
Angular velocity | ||
Angular position | rad |
Reference | Online | Error | Perturbations | PID Auto Tuning |
---|---|---|---|---|
Proposed method | X | X | X | |
[11] | - | X | - | |
[16] | X | , | - | X |
[17] | X | X | X | |
[18] | - | - | X | |
[19] | - | - | X | |
[20] | X | - | X | |
[21] | X | , | - | X |
[25] | X | - | X | |
[26] | - | - | X | |
[28] | - | - | X | |
[31] | X | X | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez-Alvarado, R.; Rodriguez-Abreo, O.; Garcia-Guendulain, J.M.; Hernandez-Diaz, T. Self-Tuning Control Using an Online-Trained Neural Network to Position a Linear Actuator. Micromachines 2022, 13, 696. https://doi.org/10.3390/mi13050696
Hernandez-Alvarado R, Rodriguez-Abreo O, Garcia-Guendulain JM, Hernandez-Diaz T. Self-Tuning Control Using an Online-Trained Neural Network to Position a Linear Actuator. Micromachines. 2022; 13(5):696. https://doi.org/10.3390/mi13050696
Chicago/Turabian StyleHernandez-Alvarado, Rodrigo, Omar Rodriguez-Abreo, Juan Manuel Garcia-Guendulain, and Teresa Hernandez-Diaz. 2022. "Self-Tuning Control Using an Online-Trained Neural Network to Position a Linear Actuator" Micromachines 13, no. 5: 696. https://doi.org/10.3390/mi13050696
APA StyleHernandez-Alvarado, R., Rodriguez-Abreo, O., Garcia-Guendulain, J. M., & Hernandez-Diaz, T. (2022). Self-Tuning Control Using an Online-Trained Neural Network to Position a Linear Actuator. Micromachines, 13(5), 696. https://doi.org/10.3390/mi13050696