Strain Rate Dependence of Compressive Mechanical Properties of Polyamide and Its Composite Fabricated Using Selective Laser Sintering under Saturated-Water Conditions
Abstract
:1. Introduction
2. Experimental Detail
2.1. Materials
2.2. Differential Scanning Calorimetry (DSC)
2.3. Compression Tests
3. Results and Discussion
3.1. Water Absorption of SLS PA12 and CF/PA12
3.2. Compressive Mechanical Properties
3.2.1. Influence of Strain Rate
3.2.2. Influence of Water Immersion
3.3. Fracture Surface
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Olakanmi, E.O.; Cochrane, R.F.; Dalgarno, K.W. A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties. Prog. Mater. Sci. 2015, 74, 401–477. [Google Scholar] [CrossRef]
- Yuan, S.Q.; Shen, F.; Chua, C.K.; Zhou, K. Polymeric Composites for Powder-Based Additive Manufacturing: Materials and Applications. Prog. Polym. Sci. 2019, 91, 141–168. [Google Scholar] [CrossRef]
- Carneiro, O.S.; Silva, A.F.; Gomes, R. Fused Deposition Modeling with Polypropylene. Mater. Des. 2015, 83, 768–776. [Google Scholar] [CrossRef]
- Pappu, A.; Pickering, K.L.; Thakur, V.K. Manufacturing and Characterization of Sustainable Hybrid Composites Using Sisal and Hemp Fibres as Reinforcement of Poly (Lactic Acid) via Injection Moulding. Ind. Crop. Prod. 2019, 137, 260–269. [Google Scholar] [CrossRef]
- Yuan, M.Q.; Diller, T.T.; Bourell, D.; Beaman, J. Thermal Conductivity of Polyamide 12 Powder for Use in Laser Sintering. Rapid Prototyp. J. 2013, 19, 437–445. [Google Scholar] [CrossRef]
- Güler, T.; Demirci, E.; Yildiz, A.R.; Yavuz, U. Lightweight Design of an Automobile Hinge Component Using Glass Fiber Polyamide Composites. Mater. Test. 2018, 60, 306–310. [Google Scholar] [CrossRef]
- O’Connor, H.J.; Dowling, D.P. Comparison between the Properties of Polyamide 12 and Glass Bead Filled Polyamide 12 Using the Multi Jet Fusion Printing Process. Addit. Manuf. 2020, 31, 2214–8604. [Google Scholar]
- Cai, C.; Tey, W.S.; Chen, J.Y.; Zhu, W.; Liu, X.J.; Liu, T.; Zhao, L.H.; Zhou, K. Comparative Study on 3D Printing of Polyamide 12 by Selective Laser Sintering and Multi jet Fusion. J. Mater. Process. Technol. 2021, 288, 116882. [Google Scholar] [CrossRef]
- Crespo, M.; Gómez-del, R.M.T.; Rodríguez, J. Failure of SLS Polyamide 12 Notched Samples at High Loading Rates. Theor. Appl. Fract. Mec. 2017, 92, 233–239. [Google Scholar] [CrossRef]
- Todo, M.; Takahashi, K.; Be´guelin, P.; Kausch, H.H. Strain-Rate Dependence of the Tensile Fracture Behaviour of Woven-Cloth Reinforced Polyamide Composites. Compos. Sci. Technol. 2000, 60, 763–771. [Google Scholar] [CrossRef]
- Wang, K.; Xie, X.; Wang, J.; Zhao, A.D.; Peng, Y.; Rao, Y.N. Effects of Infill Characteristics and Strain Rate on the Deformation and Failure Properties of Additively Manufactured Polyamide-Based Composite Structures. Results Phys. 2020, 18, 103346. [Google Scholar] [CrossRef]
- Sagradov, I.; Schob, D.; Roszak, R.; Maasch, P.; Sparr, H.; Ziegenhorn, M. Experimental Investigation and Numerical Modelling of 3D Printed Polyamide 12 with Viscoplasticity and a Crack Model at Different Strain Rates. Mater. Today Commun. 2020, 25, 101542. [Google Scholar] [CrossRef]
- Li, H.F.; Wang, Y.; Zhang, C.W.; Zhang, B.M. Effects of Thermal Histories on Interfacial Properties of Carbon Fiber/Polyamide 6 Composites:Thickness, Modulus, Adhesion and Shear Strength. Compos. Part A. Appl. Sci. Manuf. 2016, 85, 31–39. [Google Scholar] [CrossRef]
- Li, H.F.; Wang, S.F.; Sun, H.X.; Wang, Y.; Zhang, B.M. Moisture Absorption and Mechanical Properties of Continuous Carbon Fiber/Nylon 6 Thermoplastic Composites. J. Compos. Mater. 2019, 36, 114–121. [Google Scholar]
- Sang, L.; Wang, C.; Wang, Y.Y.; Hou, W.B. Effects of Hydrothermal Aging on Moisture Absorption and Property Prediction of Short Carbon Fiber Reinforced Polyamide 6 Composites. Compos. Part B. Eng. 2018, 153, 306–314. [Google Scholar] [CrossRef]
- Chaichanawong, J.; Thongchuea, C.; Areerat, S. Effect of Moisture on the Mechanical Properties of Glass Fiber Reinforced Polyamide Composites. Adv. Powder Technol. 2016, 27, 898–902. [Google Scholar] [CrossRef]
- Do, V.T.; Tran, H.D.N.; Chun, D.M. Effect of Polypropylene on the Mechanical Properties and Water Absorption of Carbon Fiber Reinforced Polyamide-6/Polypropylene Composite. Compos. Struct. 2016, 150, 240–245. [Google Scholar] [CrossRef]
- Yang, L.M.; Shim, V.P.W. An Analysis of Stress Uniformity in Split Hopkinson Bar Test Specimens. Int. J. Impact Eng. 2005, 31, 129–150. [Google Scholar] [CrossRef]
- Carrillo, J.G.; Gamboa, R.A.; Flores-Johnson, E.A.; Gonzalez-Chi, P.I. Ballistic Performance of Thermoplastic Composite Laminates Made from Aramid Woven Fabric and Polypropylene Matrix. Polym. Test. 2012, 31, 512–519. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Meng, J.; Zhu, L.; Chen, H.; Li, Z.; Li, S.; Wang, D.; Wang, Y.; Kosiba, K. Dynamic Compressive Properties and Underlying Failure Mechanisms of Selective Laser Melted Ti-6Al-4V Alloy under High Temperature and Strain Rate Conditions. Addit. Manuf. 2022, 54, 102772. [Google Scholar] [CrossRef]
- Hocker, S.J.; Kim, W.T.; Schniepp, H.C.; Kranbuehl, D.E. Polymer Crystallinity and the Ductile to Brittle Transition. Polymer 2018, 158, 72–76. [Google Scholar] [CrossRef]
- Deshoulles, Q.; Le Gall, M.; Dreanno, C.; Arhant, M.; Priour, D.; Le Gac, P.-Y. Modelling Pure Polyamide 6 Hydrolysis: Influence of Water Content in the Amorphous Phase. Polym. Degrad. Stab. 2021, 183, 109435. [Google Scholar] [CrossRef]
- Rabello, M.S.; White, J.R. Crystallization and Melting Behaviour of Photodegraded Polypropylene I. Chemi-Crystallization. Polymer 1997, 38, 6379–6387. [Google Scholar] [CrossRef]
- Das, V.; Kumar, V.; Singh, A.; Gautam, S.S.; Pandey, A.K. Compatibilization Efficacy of LLDPE-g-MA on Mechanical, Thermal, Morphological and Water Absorption Properties of Nylon-6/ LLDPE Blends. Polym. Plast. Technol. 2012, 51, 446–454. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Zhang, Z.Y.; Richardson, M.O.W. Effect of Water Absorption on the Mechanical Properties of Hemp Fiber Reinforced Unsaturated Polyester Composites. Compos. Sci. Technol. 2007, 67, 1674–1683. [Google Scholar] [CrossRef]
- Sun, J.L.; Trimby, P.W.; Yan, F.K.; Liao, X.Z.; Tao, N.R.; Wang, J.T. Shear Banding in Commercial Pure Titanium Deformed by Dynamic Compression. Acta Mater. 2014, 79, 47–58. [Google Scholar] [CrossRef]
- Yang, D.K.; Cizek, P.; Hodgson, P.D.; Wen, C.E. Microstructure Evolution and Nanograin Formation during Shear Localization in Cold-Rolled Titanium. Acta Mater. 2010, 58, 4536–4548. [Google Scholar] [CrossRef]
- Kalinka, G. Effect of Transcrystallization in Carbon Fiber Reinforced Poly (Phenylene Sulfide) Composites on the Interfacial Shear Strength Investigatied with the Single Fiber Pull-Out Test. J. Macromol. Sci. B. 1996, 35, 527–546. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Meng, J.; Liu, Y. Strain Rate Dependence of Compressive Mechanical Properties of Polyamide and Its Composite Fabricated Using Selective Laser Sintering under Saturated-Water Conditions. Micromachines 2022, 13, 1041. https://doi.org/10.3390/mi13071041
Zheng X, Meng J, Liu Y. Strain Rate Dependence of Compressive Mechanical Properties of Polyamide and Its Composite Fabricated Using Selective Laser Sintering under Saturated-Water Conditions. Micromachines. 2022; 13(7):1041. https://doi.org/10.3390/mi13071041
Chicago/Turabian StyleZheng, Xiaodong, Jiahuan Meng, and Yang Liu. 2022. "Strain Rate Dependence of Compressive Mechanical Properties of Polyamide and Its Composite Fabricated Using Selective Laser Sintering under Saturated-Water Conditions" Micromachines 13, no. 7: 1041. https://doi.org/10.3390/mi13071041
APA StyleZheng, X., Meng, J., & Liu, Y. (2022). Strain Rate Dependence of Compressive Mechanical Properties of Polyamide and Its Composite Fabricated Using Selective Laser Sintering under Saturated-Water Conditions. Micromachines, 13(7), 1041. https://doi.org/10.3390/mi13071041