Circuit Techniques for High Efficiency Piezoelectric Energy Harvesting
Abstract
:1. Introduction
2. Circuit Model and Impedance Matching
2.1. Piezoelectric Energy Harvester Circuit Model
2.2. Impedance Matching
3. Rectifiers
3.1. Rectifier Models
3.2. Active Implementations of FBR
3.3. Expansions of Active Rectifiers
3.4. Performance Comparison between Different Rectifier Topologies
4. Non-Linear Methods
4.1. Synchronous Electric Charge Extraction
4.2. Synchronized Switch Harvesting
5. Maximum Power Point Tracking
5.1. General Types of MPPT
5.2. MPPT for MCE
5.3. MPPT for Wide Frequency Range
5.4. MPPT for Multi-Input Single-Inductor Multi-Output (MISIMO) Systems
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.; Law, M.-K.; Mak, P.-I.; Martins, R.P. A single-chip solar energy harvesting IC using integrated photodiodes for biomedical implant applications. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Qian, Y.; Xue, P.; Lu, D.; He, J.; Hong, Z. 27.1 An 84% Peak Efficiency Bipolar-Input Boost/Flyback Hybrid Converter With MPPT and on-Chip Cold Starter for Thermoelectric Energy Harvesting. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 420–422. [Google Scholar] [CrossRef]
- Chen, Z.; Law, M.; Mak, P.; Ki, W.; Martins, R.P. Fully Integrated Inductor-Less Flipping-Capacitor Rectifier for Piezoelectric Energy Harvesting. IEEE J. Solid-State Circuits 2017, 52, 3168–3180. [Google Scholar] [CrossRef]
- Vullers, R.J.M.; Schaijk, R.V.; Visser, H.J.; Penders, J.; Hoof, C.V. Energy harvesting for autonomous wireless sensor networks. IEEE Solid State Circuits Mag. 2010, 2, 29–38. [Google Scholar] [CrossRef]
- Kwan, J.C.; Fapojuwo, A.O. Radio frequency energy harvesting and data rate optimization in wireless information and power transfer sensor networks. IEEE Sens. J. 2017, 17, 4862–4874. [Google Scholar] [CrossRef]
- Sahoo, S.; Ratha, S.; Rout, C.S. Self-charging supercapacitors for smart electronic devices: A concise review on the recent trends and future sustainability. J. Mater. Sci. 2022, 57, 4399–4440. [Google Scholar] [CrossRef]
- Sahoo, S.; Walke, P. Recent developments in self-powered smart chemical sensors for wearable electronics. Nano Res. 2021, 14, 3669–3689. [Google Scholar] [CrossRef]
- Tan, Y.H.; Hitesh, A.; Li, K.H.H. Application of Machine Learning Algorithm on MEMS-Based Sensors for Determination of Helmet Wearing for Workplace Safety. Micromachines 2021, 12, 449. [Google Scholar] [CrossRef]
- Yang, B.M.; Mittal, H.; Wu, Y.-M. Real-Time Production of PGA, PGV, Intensity, and Sa Shakemaps Using Dense MEMS-Based Sensors in Taiwan. Sensors 2021, 21, 943. [Google Scholar] [CrossRef]
- Ramadass, Y.K.; Chandrakasan, A.P. An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor. IEEE J. Solid-State Circuits 2010, 45, 189–204. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Ngo, K.D.T.; Nishida, T.; Chung, G.; Sharma, A. Low Frequency Pulsed Resonant Converter for Energy Har-vesting. IEEE Trans. Power Electron. 2007, 22, 63–68. [Google Scholar] [CrossRef]
- Guo, S.; Lee, H. An efficiency-enhanced CMOS rectifier with unbalanced-biased comparators for transcutaneous-powered high-current implants. IEEE J. Solid-State Circuits 2009, 44, 1796–1804. [Google Scholar] [CrossRef]
- Sun, Y.; Hieu, N.H.; Jeong, C.; Lee, S. An Integrated High-Performance Active Rectifier for Piezoelectric Vibration Energy Harvesting Systems. IEEE Trans. Power Electron. 2012, 27, 623–627. [Google Scholar] [CrossRef]
- Sanchez, D.A.; Leicht, J.; Hagedorn, F.; Jodka, E.; Fazel, E.; Manoli, Y. A Parallel-SSHI Rectifier for Piezoelectric Energy Harvesting of Periodic and Shock Excitations. IEEE J. Solid-State Circuits 2016, 51, 2867–2879. [Google Scholar] [CrossRef]
- Aktakka, E.E.; Najafi, K. A Micro Inertial Energy Harvesting Platform With Self-Supplied Power Management Cir-cuit for Autonomous Wireless Sensor Nodes. IEEE J. Solid-State Circuits 2014, 49, 2017–2029. [Google Scholar] [CrossRef]
- Javvaji, S.; Singhal, V.; Menezes, V.; Chauhan, R.; Pavan, S. Analysis and Design of a Multi-Step Bias-Flip Rectifier for Piezoelectric Energy Harvesting. IEEE J. Solid-State Circuits 2019, 54, 2590–2600. [Google Scholar] [CrossRef]
- Chamanian, S.; Uluşan, H.; Koyuncuoğlu, A.; Muhtaroğlu, A.; Külah, H. An Adaptable Interface Circuit With Multi-stage Energy Extraction for Low-Power Piezoelectric Energy Harvesting MEMS. IEEE Trans. Power Electron. 2019, 34, 2739–2747. [Google Scholar] [CrossRef]
- Morel, A. A Shock-Optimized SECE Integrated Circuit. IEEE J. Solid-State Circuits 2018, 53, 3420–3433. [Google Scholar] [CrossRef] [Green Version]
- Meng, M. 27.4 Multi-Beam Shared-Inductor Reconfigurable Voltage/SECE-Mode Piezoelectric Energy Harvesting of Multi-Axial Human Motion. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 426–428. [Google Scholar] [CrossRef]
- Lu, Y.; Ki, W. A 13.56 MHz CMOS Active Rectifier With Switched-Offset and Compensated Biasing for Biomedical Wireless Power Transfer Systems. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 334–344. [Google Scholar] [CrossRef]
- Chang, R.C.-H.; Chen, W.-C.; Liu, L.; Cheng, S.-H. An AC–DC Rectifier With Active and Non-Overlapping Control for Piezoelectric Vibration Energy Harvesting. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 969–973. [Google Scholar] [CrossRef]
- Wu, L.; Do, X.-D.; Lee, S.-G.; Ha, D.S. A Self-Powered and Optimal SSHI Circuit Integrated With an Active Rectifier for Piezoelectric Energy Harvesting. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 537–549. [Google Scholar] [CrossRef]
- Lu, C.; Tsui, C.; Ki, W. Vibration Energy Scavenging System With Maximum Power Tracking for Micropower Applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2011, 19, 2109–2119. [Google Scholar] [CrossRef]
- Shim, M.; Kim, J.; Jeong, J.; Park, S.; Kim, C. Self-Powered 30 µW to 10 mW Piezoelectric Energy Harvesting System With 9.09 ms/V Maximum Power Point Tracking Time. IEEE J. Solid-State Circuits 2015, 50, 2367–2379. [Google Scholar] [CrossRef]
- Guyomar, A.; Badel, E.; Richard, C. Toward energy harvesting using active materials and conversion improvement by non-linear processing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 584–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, N.; Ha, D.S. Low-Power Design of a Self-powered Piezoelectric Energy Harvesting System With Maximum Power Point Tracking. IEEE Trans. Power Electron. 2012, 27, 2298–2308. [Google Scholar] [CrossRef]
- Hehn, T. A Fully Autonomous Integrated Interface Circuit for Piezoelectric Harvesters. IEEE J. Solid-State Circuits 2012, 47, 2185–2198. [Google Scholar] [CrossRef]
- Gasnier, P. An Autonomous Piezoelectric Energy Harvesting IC Based on a Synchronous Multi-Shot Technique. IEEE J. Solid-State Circuits 2014, 49, 1561–1570. [Google Scholar] [CrossRef]
- Kwon, D.; Rincón-Mora, G.A. A Single-Inductor 0.35 µm CMOS Energy-Investing Piezoelectric Harvester. IEEE J. Solid-State Circuits 2014, 49, 2277–2291. [Google Scholar] [CrossRef]
- Teng, L.; Liang, J.; Chen, Z. Multiple Charge Extractions with Bias-Flip Interface Circuit for Piezoelectric Energy Harvesting. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Sevilla, Spain, 10–21 October 2020. [Google Scholar]
- Yang, Y.; Chen, Z. A Multiple Charge Extractions and Multiple Precharge Interface Circuit for Piezoelectric Energy Harvesting. In Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 28 May–1 June 2022. [Google Scholar]
- Lefeuvre, E. Power and Frequency Bandwidth Improvement of Piezoelectric Energy Harvesting Devices using Phase-Shifted Synchronous Electric Charge Extraction Interface Circuit. J. Intell. Mater. Syst. Struct. 2017, 28, 2988–2995. [Google Scholar] [CrossRef]
- Cai, Y.; Manoli, Y. A Piezoelectric Energy-Harvesting Interface Circuit with Fully Autonomous Conjugate Impedance Matching, 156% Extended Bandwidth, and 0.38 μW Power Consumption. In Proceedings of the 2018 IEEE International Solid—State Circuits Conference—(ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 148–149. [Google Scholar]
- Morel, A. 32.2 Self-Tunable Phase-Shifted SECE Piezoelectric Energy-Harvesting IC with a 30 nW MPPT Achieving 446% Ener-gy-Bandwidth Improvement and 94% Efficiency. In Proceedings of the 2020 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, USA, 16–20 February 2020; pp. 488–490. [Google Scholar]
- Du, S.; Seshia, A.A. An Inductorless Bias-Flip Rectifier for Piezoelectric Energy Harvesting. IEEE J. Solid-State Circuits 2017, 52, 2746–2757. [Google Scholar] [CrossRef] [Green Version]
- Du, S.; Jia, Y.; Zhao, C.; Amaratunga, G.A.J.; Seshia, A.A. A Fully Integrated Split-Electrode SSHC Rectifier for Piezoelectric Energy Harvesting. IEEE J. Solid-State Circuits 2019, 54, 1733–1743. [Google Scholar] [CrossRef]
- Chen, Z.; Law, M.-K.; Mak, P.-I.; Zeng, X.; Martins, R.P. Piezoelectric Energy-Harvesting Interface Using Split-Phase Flipping-Capacitor Rectifier With Capacitor Reuse for Input Power Adaptation. IEEE J. Solid-State Circuits 2020, 55, 2106–2117. [Google Scholar] [CrossRef]
- Çiftci, B. Low-Cost Fully Autonomous Piezoelectric Energy Harvesting Interface Circuit with up to 6.14x Power Capacity Gain. In Proceedings of the 2019 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 14–17 April 2019; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, S.H.; Richardson, H.; Amirtharajah, R. A Bias-Flip Interface and Dual-Input DC-DC Converter for Piezoelectric and RF Energy Harvesting. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 22–28 May 2021; pp. 1–5. [Google Scholar]
- Fang, S. An Efficient Piezoelectric Energy Harvesting Circuit With Series-SSHI Rectifier and FNOV-MPPT Control Technique. IEEE Trans. Ind. Electron. 2021, 68, 7146–7155. [Google Scholar] [CrossRef]
- Hsieh, P. Improving the Scavenged Power of Nonlinear Piezoelectric Energy Harvesting Interface at Off-Resonance by Introducing Switching Delay. IEEE Trans. Power Electron. 2015, 30, 3142–3155. [Google Scholar] [CrossRef]
- Stanzione, S.; van Liempd, C.; van Schaijk, R.; Naito, Y.; Yazicioglu, R.F.; van Hoof, C. A self-biased 5-to-60 V input voltage and 25-to-1600 µW integrated DC-DC buck converter with fully analog MPPT algorithm reaching up to 88% end-to-end efficiency. In Proceedings of the 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 17–21 February 2013; pp. 74–75. [Google Scholar] [CrossRef]
- Li, S.; Roy, A.; Calhoun, B.H. A Piezoelectric Energy-Harvesting System With Parallel-SSHI Rectifier and Integrated Maximum-Power-Point Tracking. IEEE Solid-State Circuits Lett. 2019, 2, 301–304. [Google Scholar] [CrossRef]
- Chew, Z.J.; Zhu, M. Adaptive Maximum Power Point Finding Using Direct VOC/2 Tracking Method With Micro-watt Power Consumption for Energy Harvesting. IEEE Trans. Power Electron. 2018, 33, 8164–8173. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.L.; Zhu, S. Enhancing the performance of electromagnetic damper cum energy harvester using microcontroller: Concept and experiment validation. Mech. Syst. Sig. Process. 2019, 134, 106339.1–106339.17. [Google Scholar] [CrossRef]
- Elvin, N.G.; Elvin, A.A. A General Equivalent Circuit Model for Piezoelectric Generators. J. Intell. Mater. Syst. Struct. 2009, 20, 3–9. [Google Scholar] [CrossRef]
- Kong, N.; Ha, D.S.; Erturk, A.; Inman, D.J. Resistive impedance matching circuit for piezoelectric energy harvesting. J. Intell. Mater. Syst. Struct. 2010, 21, 1293–1302. [Google Scholar] [CrossRef]
- Ottman, G.; Hofmann, H.; Bhatt, A.; Lesieutre, G. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans. Power Electron. 2002, 17, 669–676. [Google Scholar] [CrossRef] [Green Version]
- Jeon, Y.; Sood, R.; Jeong, J.H.; Kim, S.-G. MEMS power generator with transverse mode thin film PZT. Sens. Actuators A Phys. 2005, 122, 16–22. [Google Scholar] [CrossRef]
- Le, T.; Han, J.; von Jouanne, A.; Mayaram, K.; Fiez, T. Piezoelectric micro-power generation interface circuits. IEEE J. Solid-State Circuits 2006, 41, 1411–1420. [Google Scholar] [CrossRef]
- Dallago, E.; Frattini, G.; Miatton, D.; Ricotti, G.; Venchi, G. Integrable high-efficiency AC-DC converter for piezoelectric energy scavenging system. In Proceedings of the IEEE International Conference on Portable Information Devices, Orlando, FL, USA, 25–29 May 2007; pp. 1–5. [Google Scholar]
- Bandyopadhyay, S.; Chandrakasan, A.P. Platform Architecture for Solar, Thermal, and Vibration Energy Combin-ing With MPPT and Single Inductor. IEEE J. Solid-State Circuits 2012, 47, 2199–2215. [Google Scholar] [CrossRef]
- Chowdary, G.; Singh, A.; Chatterjee, S. An 18 nA, 87% Efficient Solar, Vibration and RF Energy-Harvesting Power Management System with a Single Shared Inductor. IEEE J. Solid-State Circuits 2016, 51, 2501–2513. [Google Scholar] [CrossRef]
- Li, S.; Liu, X.; Calhoun, B.H. A 32 nA Fully Autonomous Multi-Input Single-Inductor Multi-Output Energy-Harvesting and Power-Management Platform with 1.2 × 105 Dynamic Range, Integrated MPPT, and Multi-Modal Cold Start-Up. In Proceedings of the 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 20–24 February 2022; pp. 1–3. [Google Scholar] [CrossRef]
RM | LM | CM | CP | n |
---|---|---|---|---|
15.51 Ω | 1 H | 12.13 μF | 41.24 nF | −0.0196 |
Voltage Drop | Power Efficiency | VRECT/VP | Self-Start | |
---|---|---|---|---|
Diode-connected rectifier [10] | 2 VTH | 3 VDS | 55% (1.1/2.2) | √ |
NVC [11] | 3 VDS | 86% | 98.3% (1.77/1.8) | |
Comparator-controlled [12] | 2 VDS | 87%, RL = 100 Ω | 95% (1.9/2), RL = 2 kΩ | |
Operational amplifier controlled [13] | 2 VDS | 90%, RL = 95 kΩ | 99% (2.78/2.8) | |
Fully comparator controlled [21] | 2 VDS | 95%, RL = 20 kΩ | 99% (4.88/4.9), RL = 200 kΩ | |
Dual-mode rectifier [24] | 3 VDS/3 VDS | 90% | 98.8% (1.66/1.68) | √ |
Method | POUT | Components | MOPIR | Pros | Cons | |
---|---|---|---|---|---|---|
[14] | SSHI | 408 μW | L = 3.3 mH | 4.93× | High output power, high MOPIR | Large high Q inductor is required |
[1] | FCR | 50.2 μW | * Ctotal = 1.44 nF (4 cap) | 4.83× | High MOPIR, fully integrated | High control complexity |
[38] | SSHCI | 19 μW | L = 68 μH, * Ctotal = 453 nF (1 cap) | 3.52× | Potential for higher output power than SSHI with the same inductor | Both extra inductor and capacitors needed |
[27] | SECE | 477 μW | L = 10 mH | 1.23× | load independent output power | Relatively Low MOPIR |
[17] | MCE | 78 μW | L = 1 mH | 2.1× | Lower conduction losses | High control complexity |
Method | Features | Efficiency | Pros | Cons | |
---|---|---|---|---|---|
[26] | P&O | Independent from the PEH characteristics | 94% | High power level (8.4 mW), MCU based computer | High power consumption and long detection time (110 μA, 120 s) |
[42] | P&O | 99.9% | High efficiency, fully analog computer (900 nA < I < 1.3 µA) | Relatively long detection time (<1 s) | |
[43] | P&O | 97% | P&O for SSHI with 4.17x MOPIR (I = 430 nA) | Fixed step size | |
[37] | FOCV | Short time and low power consumption (0 to several cycles, dozens of nA) | 95.7% | Detecting high VOC below withstand voltage | Stop harvesting during detection |
[24] | FOCV | 99% | Short detection time (one-cycle), 9.09 ms/V tracking | Stop harvesting during detection, additional peak detector required | |
[44] | FOCV | 72–99% | Adaptive adjustment without disconnection | Relatively low accuracy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Chen, Z.; Kuai, Q.; Liang, J.; Liu, J.; Zeng, X. Circuit Techniques for High Efficiency Piezoelectric Energy Harvesting. Micromachines 2022, 13, 1044. https://doi.org/10.3390/mi13071044
Yang Y, Chen Z, Kuai Q, Liang J, Liu J, Zeng X. Circuit Techniques for High Efficiency Piezoelectric Energy Harvesting. Micromachines. 2022; 13(7):1044. https://doi.org/10.3390/mi13071044
Chicago/Turabian StyleYang, Yi, Zhiyuan Chen, Qin Kuai, Junrui Liang, Jingjing Liu, and Xiaoyang Zeng. 2022. "Circuit Techniques for High Efficiency Piezoelectric Energy Harvesting" Micromachines 13, no. 7: 1044. https://doi.org/10.3390/mi13071044
APA StyleYang, Y., Chen, Z., Kuai, Q., Liang, J., Liu, J., & Zeng, X. (2022). Circuit Techniques for High Efficiency Piezoelectric Energy Harvesting. Micromachines, 13(7), 1044. https://doi.org/10.3390/mi13071044