Free-Space Applications of Silicon Photonics: A Review
Abstract
:1. Introduction
2. Beam Steering Technologies
2.1. Optical Phased Arrays
2.2. Focal Plane Arrays
2.3. Dispersive Grating Diffraction
3. Integrated LiDAR, Single-Pixel Imaging, and FSO System
4. Beam Shaping
4.1. Beam Expansion and Focusing
4.2. Bessel Beams and Orbital Angular Momentom Beams
5. Other Emerging Free-Space Applications
6. Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Subbaraman, H.; Xu, X.; Hosseini, A.; Zhang, X.; Zhang, Y.; Kwong, D.; Chen, R.T. Recent Advances in Silicon-Based Passive and Active Optical Interconnects. Opt. Express 2015, 23, 2487–2511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Q.; Bahadori, M.; Glick, M.; Rumley, S.; Bergman, K. Recent Advances in Optical Technologies for Data Centers: A Review. Optica 2018, 5, 1354–1370. [Google Scholar] [CrossRef]
- Chang, Y.C.; Lipson, M. Nanophotonic Devices for Power-Efficient Communications. In Optical Fiber Telecommunications VII; Elsevier: London, UK, 2020; pp. 103–141. [Google Scholar]
- Mekis, A.; Gloeckner, S.; Masini, G.; Narasimha, A.; Pinguet, T.; Sahni, S.; De Dobbelaere, P. A Grating-Coupler-Enabled CMOS Photonics Platform. IEEE J. Select. Top. Quantum Electron. 2011, 17, 597–608. [Google Scholar] [CrossRef]
- Kim, I.; Martins, R.J.; Jang, J.; Badloe, T.; Khadir, S.; Jung, H.Y.; Kim, H.; Kim, J.; Genevet, P.; Rho, J. Nanophotonics for Light Detection and Ranging Technology. Nat. Nanotechnol. 2021, 16, 508–524. [Google Scholar] [CrossRef]
- Poulton, C.V.; Yaacobi, A.; Cole, D.B.; Byrd, M.J.; Raval, M.; Vermeulen, D.; Watts, M.R. Coherent Solid-State LIDAR with Silicon Photonic Optical Phased Arrays. Opt. Lett. 2017, 42, 4091–4094. [Google Scholar] [CrossRef]
- Rogers, C.; Piggott, A.Y.; Thomson, D.J.; Wiser, R.F.; Opris, I.E.; Fortune, S.A.; Compston, A.J.; Gondarenko, A.; Meng, F.; Chen, X.; et al. A Universal 3D Imaging Sensor on a Silicon Photonics Platform. Nature 2021, 590, 256–261. [Google Scholar] [CrossRef]
- Suyama, S.; Ito, H.; Kurahashi, R.; Abe, H.; Baba, T. Doppler Velocimeter and Vibrometer FMCW LiDAR with Si Photonic Crystal Beam Scanner. Opt. Express 2021, 29, 30727–30734. [Google Scholar] [CrossRef]
- Poulton, C.V.; Byrd, M.J.; Russo, P.; Timurdogan, E.; Khandaker, M.; Vermeulen, D.; Watts, M.R. Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays. IEEE J. Select. Top. Quantum Electron. 2019, 25, 1–8. [Google Scholar] [CrossRef]
- Su, T.; Scott, R.P.; Djordjevic, S.S.; Fontaine, N.K.; Geisler, D.J.; Cai, X.; Yoo, S.J.B. Demonstration of Free Space Coherent Optical Communication Using Integrated Silicon Photonic Orbital Angular Momentum Devices. Opt. Express 2012, 20, 9396–9402. [Google Scholar] [CrossRef] [Green Version]
- Rhee, H.W.; You, J.B.; Yoon, H.; Han, K.; Kim, M.; Lee, B.G.; Kim, S.C.; Park, H.H. 32 Gbps Data Transmission With 2D Beam-Steering Using a Silicon Optical Phased Array. IEEE Photonics Technol. Lett. 2020, 32, 803–806. [Google Scholar] [CrossRef]
- Miller, S.A.; Chang, Y.C.; Phare, C.T.; Shin, M.C.; Zadka, M.; Roberts, S.P.; Stern, B.; Ji, X.; Mohanty, A.; Jimenez Gordillo, O.A.; et al. Large-Scale Optical Phased Array Using a Low-Power Multi-Pass Silicon Photonic Platform. Optica 2020, 7, 3–6. [Google Scholar] [CrossRef]
- Poulton, C.V.; Byrd, M.J.; Moss, B.; Timurdogan, E.; Millman, R.; Watts, M.R. 8192-Element Optical Phased Array with 100° Steering Range and Flip-Chip CMOS. In Proceedings of the Conference on Lasers and Electro-Optics, OSA, Virtual, 10–15 May 2020. [Google Scholar]
- Chung, S.; Abediasl, H.; Hashemi, H. A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS. IEEE J. Solid-State Circuits 2018, 53, 275–296. [Google Scholar] [CrossRef]
- Hulme, J.C.; Doylend, J.K.; Heck, M.J.R.; Peters, J.D.; Davenport, M.L.; Bovington, J.T.; Coldren, L.A.; Bowers, J.E. Fully Integrated Hybrid Silicon Two Dimensional Beam Scanner. Opt. Express 2015, 23, 5861–5874. [Google Scholar] [CrossRef]
- Acoleyen, K.V.; Bogaerts, W.; Jágerská, J.; Thomas, N.L.; Houdré, R.; Baets, R. Off-Chip Beam Steering with a One-Dimensional Optical Phased Array on Silicon-on-Insulator. Opt. Lett. OL 2009, 34, 1477–1479. [Google Scholar] [CrossRef]
- Mohanty, A.; Li, Q.; Tadayon, M.A.; Roberts, S.P.; Bhatt, G.R.; Shim, E.; Ji, X.; Cardenas, J.; Miller, S.A.; Kepecs, A.; et al. Reconfigurable Nanophotonic Silicon Probes for Sub-Millisecond Deep-Brain Optical Stimulation. Nat. Biomed. Eng. 2020, 4, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Mehta, K.K.; Bruzewicz, C.D.; McConnell, R.; Ram, R.J.; Sage, J.M.; Chiaverini, J. Integrated Optical Addressing of an Ion Qubit. Nat. Nanotechnol. 2016, 11, 1066–1070. [Google Scholar] [CrossRef]
- Giewont, K.; Hu, S.; Peng, B.; Rakowski, M.; Rauch, S.; Rosenberg, J.C.; Sahin, A.; Stobert, I.; Stricker, A.; Nummy, K.; et al. 300-mm Monolithic Silicon Photonics Foundry Technology. IEEE J. Select. Top. Quantum Electron. 2019, 25, 1–11. [Google Scholar] [CrossRef]
- Soref, R.A.; Bennett, B. Electrooptical Effects in Silicon. IEEE J. Quantum Electron. 1987, 23, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Reed, G.T.; Mashanovich, G.; Gardes, F.Y.; Thomson, D.J. Silicon Optical Modulators. Nat. Photonics 2010, 4, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Cocorullo, G.; Rendina, I. Thermo-Optical Modulation at 1.5 μm in Silicon Etalon. Electron. Lett. 1992, 28, 83–85. [Google Scholar] [CrossRef]
- Watts, M.R.; Sun, J.; DeRose, C.; Trotter, D.C.; Young, R.W.; Nielson, G.N. Adiabatic Thermo-Optic Mach–Zehnder Switch. Opt. Lett. 2013, 38, 733–735. [Google Scholar] [CrossRef]
- Baets, R.; Bogaerts, W.; Kuyken, B.; Rahim, A.; Roelkens, G.; Spuesens, T.; Campenhout, J.V.; Thourhout, D.V. Silicon Photonic Integrated Circuits. In Fibre Optic Communication; Venghaus, H., Grote, N., Eds.; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 2017; pp. 673–737. Volume 161. [Google Scholar]
- Smalley, D.E.; Nygaard, E.; Squire, K.; Van Wagoner, J.; Rasmussen, J.; Gneiting, S.; Qaderi, K.; Goodsell, J.; Rogers, W.; Lindsey, M.; et al. A Photophoretic-Trap Volumetric Display. Nature 2018, 553, 486–490. [Google Scholar] [CrossRef]
- Chun, B.S.; Kim, K.; Gweon, D. Three-Dimensional Surface Profile Measurement Using a Beam Scanning Chromatic Confocal Microscope. Rev. Sci. Instrum. 2009, 80, 073706. [Google Scholar] [CrossRef] [Green Version]
- Fenn, A.J.; Temme, D.H.; Delaney, W.P.; Courtney, W.E. The Development of Phased-Array Radar Technology. Linc. Lab. J. 2000, 12, 20. [Google Scholar]
- Sun, J.; Timurdogan, E.; Yaacobi, A.; Su, Z.; Hosseini, E.S.; Cole, D.B.; Watts, M.R. Large-Scale Silicon Photonic Circuits for Optical Phased Arrays. IEEE J. Select. Top. Quantum Electron. 2014, 20, 264–278. [Google Scholar] [CrossRef]
- Sun, J.; Timurdogan, E.; Yaacobi, A.; Hosseini, E.S.; Watts, M.R. Large-Scale Nanophotonic Phased Array. Nature 2013, 493, 195–199. [Google Scholar] [CrossRef]
- Shin, M.C.; Mohanty, A.; Watson, K.; Bhatt, G.R.; Phare, C.T.; Miller, S.A.; Zadka, M.; Lee, B.S.; Ji, X.; Datta, I.; et al. Chip-Scale Blue Light Phased Array. Opt. Lett. 2020, 45, 1934–1937. [Google Scholar] [CrossRef]
- Zhang, Y.; Ling, Y.C.; Zhang, K.; Gentry, C.; Sadighi, D.; Whaley, G.; Colosimo, J.; Suni, P.; Yoo, S.J.B. Sub-Wavelength-Pitch Silicon-Photonic Optical Phased Array for Large Field-of-Regard Coherent Optical Beam Steering. Opt. Express 2019, 27, 1929–1940. [Google Scholar] [CrossRef]
- Fukui, T.; Tanomura, R.; Komatsu, K.; Yamashita, D.; Takahashi, S.; Nakano, Y.; Tanemura, T.; Tanemura, T. Non-Redundant Optical Phased Array. Optica 2021, 8, 1350–1358. [Google Scholar] [CrossRef]
- Hutchison, D.N.; Sun, J.; Doylend, J.K.; Kumar, R.; Heck, J.; Kim, W.; Phare, C.T.; Feshali, A.; Rong, H. High-Resolution Aliasing-Free Optical Beam Steering. Optica 2016, 3, 887–890. [Google Scholar] [CrossRef]
- Kwong, D.; Hosseini, A.; Covey, J.; Zhang, Y.; Xu, X.; Subbaraman, H.; Chen, R.T. On-Chip Silicon Optical Phased Array for Two-Dimensional Beam Steering. Opt. Lett. 2014, 39, 941–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatemi, R.; Khachaturian, A.; Hajimiri, A. A Nonuniform Sparse 2-D Large-FOV Optical Phased Array With a Low-Power PWM Drive. IEEE J. Solid-State Circuits 2019, 54, 1200–1215. [Google Scholar] [CrossRef]
- Chung, S.; Nakai, M.; Hashemi, H. Low-Power Thermo-Optic Silicon Modulator for Large-Scale Photonic Integrated Systems. Opt. Express 2019, 27, 13430–13459. [Google Scholar] [CrossRef] [PubMed]
- Timurdogan, E.; Poulton, C.V.; Byrd, M.J.; Watts, M.R. Electric Field-Induced Second-Order Nonlinear Optical Effects in Silicon Waveguides. Nat. Photonics 2017, 11, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yu, H.; Huang, Q.; Zhou, Z.; Chen, B.; Dai, T.; Qiu, H.; Wang, Y.; Yang, J. High-Speed and Low-Power Silicon Optical Phased Array Based on the Carrier-Depletion Mechanism. IEEE Photonics Technol. Lett. 2022, 34, 271–274. [Google Scholar] [CrossRef]
- Xie, W.; Komljenovic, T.; Huang, J.; Tran, M.; Davenport, M.; Torres, A.; Pintus, P.; Bowers, J. Heterogeneous Silicon Photonics Sensing for Autonomous Cars [Invited]. Opt. Express 2019, 27, 3642–3663. [Google Scholar] [CrossRef]
- Kang, G.; Youn, C.H.; Yu, K.; Park, H.H.; Kim, S.H.; You, J.B.; Lee, D.S.; Yoon, H.; Ha, Y.G.; Kim, J.H.; et al. Silicon-Based Optical Phased Array Using Electro-Optic p-i-n Phase Shifters. IEEE Photonics Technol. Lett. 2019, 31, 1685–1688. [Google Scholar] [CrossRef]
- Phare, C.T.; Shin, M.C.; Miller, S.A.; Stern, B.; Lipson, M. Silicon Optical Phased Array with High-Efficiency Beam Formation over 180 Degree Field of View. arXiv 2018, arXiv:1802.04624. [Google Scholar]
- Jahani, S.; Kim, S.; Atkinson, J.; Wirth, J.C.; Kalhor, F.; Noman, A.A.; Newman, W.D.; Shekhar, P.; Han, K.; Van, V.; et al. Controlling Evanescent Waves Using Silicon Photonic All-Dielectric Metamaterials for Dense Integration. Nat. Commun. 2018, 9, 1893. [Google Scholar] [CrossRef]
- Inoue, D.; Ichikawa, T.; Kawasaki, A.; Yamashita, T. Demonstration of a New Optical Scanner Using Silicon Photonics Integrated Circuit. Opt. Express 2019, 27, 2499–2508. [Google Scholar] [CrossRef]
- Chang, Y.C.; Shin, M.C.; Phare, C.T.; Miller, S.A.; Shim, E.; Lipson, M. 2D Beam Steerer Based on Metalens on Silicon Photonics. Opt. Express 2021, 29, 854–864. [Google Scholar] [CrossRef]
- López, J.J.; Skirlo, S.A.; Kharas, D.; Sloan, J.; Herd, J.; Juodawlkis, P.; Soljačić, M.; Sorace-Agaskar, C. Planar-Lens Enabled Beam Steering for Chip-Scale LIDAR. In Proceedings of the Conference on Lasers and Electro-Optics, OSA, San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Li, C.; Cao, X.; Wu, K.; Li, X.; Chen, J. Lens-Based Integrated 2D Beam-Steering Device with Defocusing Approach and Broadband Pulse Operation for Lidar Application. Opt. Express 2019, 27, 32970–32983. [Google Scholar] [CrossRef]
- Kim, S.; Sloan, J.; López, J.J.; Kharas, D.; Herd, J.; Bramhavar, S.; Juodawlkis, P.; Barbastathis, G.; Johnson, S.; Sorace-Agaskar, C.; et al. Luneburg Lens for Wide-Angle Chip-Scale Optical Beam Steering. In Proceedings of the Conference on Lasers and Electro-Optics, OSA, San Jose, CA, USA, 5–10 May 2019. [Google Scholar]
- Komljenovic, T.; Pintus, P. On-Chip Calibration and Control of Optical Phased Arrays. Opt. Express 2018, 26, 3199–3210. [Google Scholar] [CrossRef]
- Li, L.J.; Chen, W.; Zhao, X.Y.; Sun, M.J. Fast Optical Phased Array Calibration Technique for Random Phase Modulation LiDAR. IEEE Photonics J. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Peng, C.; Hu, W. Phase Calibration of On-Chip Optical Phased Arrays via Interference Technique. IEEE Photonics J. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Chrostowski, L.; Hochberg, M. Silicon Photonics Design; Cambridge University Press: Cambridge, UK, 2015; ISBN 978-1-107-08545-9. [Google Scholar]
- Ito, H.; Kusunoki, Y.; Maeda, J.; Akiyama, D.; Kodama, N.; Abe, H.; Tetsuya, R.; Baba, T. Wide Beam Steering by Slow-Light Waveguide Gratings and a Prism Lens. Optica 2020, 7, 47–52. [Google Scholar] [CrossRef]
- Miller, S.A.; Phare, C.T.; Chang, Y.C.; Ji, X.; Gordillo, O.A.J.; Mohanty, A.; Roberts, S.P.; Shin, M.C.; Stern, B.; Zadka, M.; et al. 512-Element Actively Steered Silicon Phased Array for Low-Power LIDAR. In Proceedings of the CLEO, Optical Society of America, San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Zadka, M.; Chang, Y.C.; Mohanty, A.; Phare, C.T.; Roberts, S.P.; Lipson, M. On-Chip Platform for a Phased Array with Minimal Beam Divergence and Wide Field-of-View. Opt. Express 2018, 26, 2528–2534. [Google Scholar] [CrossRef]
- Dostart, N.; Zhang, B.; Khilo, A.; Brand, M.; Al Qubaisi, K.; Onural, D.; Feldkhun, D.; Wagner, K.H.; Popović, M.A. Serpentine Optical Phased Arrays for Scalable Integrated Photonic Lidar Beam Steering. Optica 2020, 7, 726–733. [Google Scholar] [CrossRef]
- Ito, H.; Kusunoki, Y.; Akiyama, D.; Tetsuya, R.; Abe, H.; Baba, T. Enhanced Light Emission from a Si Photonics Beam Steering Device Consisting of Asymmetric Photonic Crystal Waveguide. In Proceedings of the Silicon Photonics XIV, San Francisco, CA, USA, 4–6 February 2019; Reed, G.T., Knights, A.P., Eds.; SPIE: San Francisco, CA, USA, 2019; p. 37. [Google Scholar]
- Kondo, K.; Tatebe, T.; Hachuda, S.; Abe, H.; Koyama, F.; Baba, T. Fan-Beam Steering Device Using a Photonic Crystal Slow-Light Waveguide with Surface Diffraction Grating. Opt. Lett. 2017, 42, 4990–4993. [Google Scholar] [CrossRef]
- Ito, H.; Tatebe, T.; Abe, H.; Baba, T. Wavelength-Division Multiplexing Si Photonic Crystal Beam Steering Device for High-Throughput Parallel Sensing. Opt. Express 2018, 26, 26145–26155. [Google Scholar] [CrossRef] [Green Version]
- Riemensberger, J.; Lukashchuk, A.; Karpov, M.; Weng, W.; Lucas, E.; Liu, J.; Kippenberg, T.J. Massively Parallel Coherent Laser Ranging Using a Soliton Microcomb. Nature 2020, 581, 164–170. [Google Scholar] [CrossRef]
- Absil, P.P.; De Heyn, P.; Chen, H.; Verheyen, P.; Lepage, G.; Pantouvaki, M.; De Coster, J.; Khanna, A.; Drissi, Y.; Van Thourhout, D.; et al. Imec ISiPP25G Silicon Photonics: A Robust CMOS-Based Photonics Technology Platform. In Proceedings of the SPIE, San Francisco, CA, USA, 27 February 2015; Reed, G.T., Watts, M.R., Eds.; Volume 9367, p. 93670V. [Google Scholar]
- Aflatouni, F.; Abiri, B.; Rekhi, A.; Hajimiri, A. Nanophotonic Coherent Imager. Opt. Express 2015, 23, 5117–5125. [Google Scholar] [CrossRef] [Green Version]
- Fukui, T.; Kohno, Y.; Tang, R.; Nakano, Y.; Tanemura, T. Single-Pixel Imaging Using Multimode Fiber and Silicon Photonic Phased Array. J. Lightwave Technol. 2021, 39, 839–844. [Google Scholar] [CrossRef]
- Kohno, Y.; Komatsu, K.; Tang, R.; Ozeki, Y.; Nakano, Y.; Tanemura, T. Ghost Imaging Using a Large-Scale Silicon Photonic Phased Array Chip. Opt. Express 2019, 27, 3817–3823. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.C.; Kuo, S.I.; Wang, J.W.; Jian, Y.H.; Ahmad, Z.; Fu, P.H.; Chang, C.; Shi, J.W.; Huang, D.W.; Liu, Y.; et al. Actively Steerable Integrated Optical Phased Array (OPA) for Optical Wireless Communication (OWC). In Proceedings of the 2022 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 6–10 March 2022. [Google Scholar]
- Sun, X.; Zhang, L.; Zhang, Q.; Zhang, W. Si Photonics for Practical LiDAR Solutions. Appl. Sci. 2019, 9, 4225. [Google Scholar] [CrossRef] [Green Version]
- Heck, M.J.R. Highly Integrated Optical Phased Arrays: Photonic Integrated Circuits for Optical Beam Shaping and Beam Steering. Nanophotonics 2017, 6, 93–107. [Google Scholar] [CrossRef]
- Raj, T.; Hashim, F.H.; Huddin, A.B.; Ibrahim, M.F.; Hussain, A. A Survey on LiDAR Scanning Mechanisms. Electronics 2020, 9, 741. [Google Scholar] [CrossRef]
- Royo, S.; Ballesta-Garcia, M. An Overview of Lidar Imaging Systems for Autonomous Vehicles. Appl. Sci. 2019, 9, 4093. [Google Scholar] [CrossRef] [Green Version]
- Haus, H.A. Waves and Fields in Optoelectronics; Prentice-Hall: Englewood Cliffs, NJ, USA, 1984; ISBN 978-0-13-946053-1. [Google Scholar]
- Kim, S.; Westly, D.A.; Roxworthy, B.J.; Li, Q.; Yulaev, A.; Srinivasan, K.; Aksyuk, V.A. Photonic Waveguide to Free-Space Gaussian Beam Extreme Mode Converter. Light Sci. Appl. 2018, 7, 72. [Google Scholar] [CrossRef]
- Ginel-Moreno, P.; Sánchez-Postigo, A.; de-Oliva-Rubio, J.; Hadij-ElHouati, A.; Ye, W.N.; Wangüemert-Pérez, J.G.; Molina-Fernández, Í.; Schmid, J.H.; Cheben, P.; Ortega-Moñux, A. Millimeter-Long Metamaterial Surface-Emitting Antenna in the Silicon Photonics Platform. Opt. Lett. 2021, 46, 3733–3736. [Google Scholar] [CrossRef]
- Raval, M.; Poulton, C.V.; Watts, M.R. Unidirectional Waveguide Grating Antennas with Uniform Emission for Optical Phased Arrays. Opt. Lett. 2017, 42, 2563–2566. [Google Scholar] [CrossRef]
- Yulaev, A.; Zhu, W.; Zhang, C.; Westly, D.A.; Lezec, H.J.; Agrawal, A.; Aksyuk, V. Metasurface-Integrated Photonic Platform for Versatile Free-Space Beam Projection with Polarization Control. ACS Photonics 2019, 6, 2902–2909. [Google Scholar] [CrossRef]
- Hsieh, P.Y.; Zhao, Y.; Hsu, C.Y.; Shin, M.C.; Phare, C.T.; Miller, S.A.; Shim, E.; Lipson, M.; Chang, Y.C. Metasurface on Silicon Photonics for Beam Steering and Focusing. In Proceedings of the 26th Optoelectronics and Communications Conference, OSA, Hong Kong, 3–7 July 2021. [Google Scholar]
- Ding, Y.; Chen, X.; Duan, Y.; Huang, H.; Zhang, L.; Chang, S.; Guo, X.; Ni, X. Metasurface-Dressed Two-Dimensional on-Chip Waveguide for Free-Space Light Field Manipulation. ACS Photonics 2022, 9, 398–404. [Google Scholar] [CrossRef]
- Notaros, J.; Poulton, C.V.; Raval, M.; Watts, M.R. Near-Field-Focusing Integrated Optical Phased Arrays. J. Lightwave Technol. 2018, 36, 5912–5920. [Google Scholar] [CrossRef]
- Guo, X.; Ding, Y.; Chen, X.; Duan, Y.; Ni, X. Molding Free-Space Light with Guided Wave–Driven Metasurfaces. Sci. Adv. 2020, 6, eabb4142. [Google Scholar] [CrossRef]
- Yu, S.; Lu, J.; Ginis, V.; Kheifets, S.; Lim, S.W.D.; Qiu, M.; Gu, T.; Hu, J.; Capasso, F. On-Chip Optical Tweezers Based on Freeform Optics. Optica 2021, 8, 409–414. [Google Scholar] [CrossRef]
- Mehta, K.K.; Ram, R.J. Precise and Diffraction-Limited Waveguide-to-Free-Space Focusing Gratings. Sci Rep. 2017, 7, 2019. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Fan, S. Design Principles of Apodized Grating Couplers. J. Lightwave Technol. 2020, 38, 4435–4446. [Google Scholar] [CrossRef]
- Planchon, T.A.; Gao, L.; Milkie, D.E.; Davidson, M.W.; Galbraith, J.A.; Galbraith, C.G.; Betzig, E. Rapid Three-Dimensional Isotropic Imaging of Living Cells Using Bessel Beam Plane Illumination. Nat. Methods 2011, 8, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Notaros, J.; Poulton, C.V.; Byrd, M.J.; Raval, M.; Watts, M.R. Integrated Optical Phased Arrays for Quasi-Bessel-Beam Generation. Opt. Lett. 2017, 42, 3510–3513. [Google Scholar] [CrossRef]
- Rubinsztein-Dunlop, H.; Forbes, A.; Berry, M.V.; Dennis, M.R.; Andrews, D.L.; Mansuripur, M.; Denz, C.; Alpmann, C.; Banzer, P.; Bauer, T.; et al. Roadmap on Structured Light. J. Opt. 2017, 19, 013001. [Google Scholar] [CrossRef]
- Cai, X.; Wang, J.; Strain, M.J.; Johnson-Morris, B.; Zhu, J.; Sorel, M.; O’Brien, J.L.; Thompson, M.G.; Yu, S. Integrated Compact Optical Vortex Beam Emitters. Science 2012, 338, 363–366. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.M.; Zhu, L.; Wang, A.D.; Chen, S.; Klitis, C.; Du, C.; Mo, Q.; Sorel, M.; Yu, S.Y.; et al. Direct Fiber Vector Eigenmode Multiplexing Transmission Seeded by Integrated Optical Vortex Emitters. Light Sci. Appl. 2018, 7, 17148. [Google Scholar] [CrossRef] [Green Version]
- Schulz, S.A.; Machula, T.; Karimi, E.; Boyd, R.W. Integrated Multi Vector Vortex Beam Generator. Opt. Express 2013, 21, 16130–16141. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Cai, X.; Chen, Y.; Yu, S. Theoretical Model for Angular Grating-Based Integrated Optical Vortex Beam Emitters. Opt. Lett. 2013, 38, 1343–1345. [Google Scholar] [CrossRef]
- Shao, Z.; Zhu, J.; Zhang, Y.; Chen, Y.; Yu, S. On-Chip Switchable Radially and Azimuthally Polarized Vortex Beam Generation. Opt. Lett. 2018, 43, 1263–1266. [Google Scholar] [CrossRef]
- Lin, Y.; Mak, J.C.C.; Chen, H.; Mu, X.; Stalmashonak, A.; Jung, Y.; Luo, X.; Lo, P.G.-Q.; Sacher, W.D.; Poon, J.K.S. Low-Loss Broadband Bi-Layer Edge Couplers for Visible Light. Opt. Express 2021, 29, 34565–34576. [Google Scholar] [CrossRef]
- Yong, Z.; Chen, H.; Luo, X.; Govdeli, A.; Chua, H.; Azadeh, S.S.; Stalmashonak, A.; Lo, G.-Q.; Poon, J.K.S.; Sacher, W.D. Power-Efficient Silicon Nitride Thermo-Optic Phase Shifters for Visible Light. Opt. Express 2022, 30, 7225–7237. [Google Scholar] [CrossRef]
- Turk, N.; Raza, A.; Wuytens, P.; Demol, H.; Van Daele, M.; Detavernier, C.; Skirtach, A.; Gevaert, K.; Baets, R. Comparison of Free-Space and Waveguide-Based SERS Platforms. Nanomaterials 2019, 9, 1401. [Google Scholar] [CrossRef] [Green Version]
- Shim, E.; Chen, Y.; Masmanidis, S.; Li, M. Multisite Silicon Neural Probes with Integrated Silicon Nitride Waveguides and Gratings for Optogenetic Applications. Sci. Rep. 2016, 6, 22693. [Google Scholar] [CrossRef] [Green Version]
- Sacher, W.D.; Chen, F.D.; Moradi-Chameh, H.; Luo, X.; Fomenko, A.; Shah, P.; Lordello, T.; Liu, X.; Almog, I.F.; Straguzzi, J.N.; et al. Implantable Photonic Neural Probes for Light-Sheet Fluorescence Brain Imaging. Neurophotonics 2021, 8, 025003. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.C.; Zhao, X.; Hassan, S.; Raghuram, A.; Veeraraghavan, A.; Robinson, J.T. Implantable Integrated Photonic Probe for Light Sheet Brain Imaging in Vivo. In Proceedings of the Biophotonics Congress 2021, OSA, Washington, DC, USA, 12–16 April 2021; p. BM3B.3. [Google Scholar]
- Mehta, K.K.; Zhang, C.; Malinowski, M.; Nguyen, T.L.; Stadler, M.; Home, J.P. Integrated Optical Multi-Ion Quantum Logic. Nature 2020, 586, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Roberts, S.; Corato-Zanarella, M.; Lipson, M. Methods to Achieve Ultra-High Quality Factor Silicon Nitride Resonators. APL Photonics 2021, 6, 071101. [Google Scholar] [CrossRef]
- Vermeulen, D.; Selvaraja, S.; Verheyen, P.; Lepage, G.; Bogaerts, W.; Absil, P.; Van Thourhout, D.; Roelkens, G. High-Efficiency Fiber-to-Chip Grating Couplers Realized Using an Advanced CMOS-Compatible Silicon-On-Insulator Platform. Opt. Express 2010, 18, 18278–18283. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, J.; Poitras, C.B.; Luke, K.; Luo, L.W.; Morton, P.A.; Lipson, M. High Coupling Efficiency Etched Facet Tapers in Silicon Waveguides. IEEE Photonics Technol. Lett. 2014, 26, 2380–2382. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-Y.; Yiu, G.-Z.; Chang, Y.-C. Free-Space Applications of Silicon Photonics: A Review. Micromachines 2022, 13, 990. https://doi.org/10.3390/mi13070990
Hsu C-Y, Yiu G-Z, Chang Y-C. Free-Space Applications of Silicon Photonics: A Review. Micromachines. 2022; 13(7):990. https://doi.org/10.3390/mi13070990
Chicago/Turabian StyleHsu, Chung-Yu, Gow-Zin Yiu, and You-Chia Chang. 2022. "Free-Space Applications of Silicon Photonics: A Review" Micromachines 13, no. 7: 990. https://doi.org/10.3390/mi13070990
APA StyleHsu, C.-Y., Yiu, G.-Z., & Chang, Y.-C. (2022). Free-Space Applications of Silicon Photonics: A Review. Micromachines, 13(7), 990. https://doi.org/10.3390/mi13070990