Rao-Blackwellized Particle Filter Algorithm Integrated with Neural Network Sensor Model Using Laser Distance Sensor
Abstract
:1. Introduction
- The improvement of the measurement accuracy of a low-end laser distance sensor (LDS) using ANN.
- The improvement of the performance of the SLAM algorithm by integrating the RBPF algorithm with the ANN sensor model.
2. Methodology
2.1. Data Collection
2.2. Training the ANN Sensor Model
2.3. SLAM Algorithm Integrated with ANN Sensor Model
- Sampling: A proposal distribution, π is used to sample next-generation particles at time t, from the previous set of weighted particles . A common practice is to use odometry motion model distribution to approximate the proposal distribution, π.
- Importance weighting: Calculate the importance weight, , by using the difference between actual observation and predicted observation in (6):
- 3.
- Resampling: Particles are resampled according to their weight. Particles with higher weight are the most likely to be resampled for the next generation. All particles have the same weight after resampling. A selective resampling phase is suggested in which the so-called effective number of particles is described as:
- 4.
- Map update: Update the particles’ map estimate conditioned on the robot’s state and current observation by using:
2.4. Evaluation Method of the SLAM Algorithm Integrated with ANN Sensor Model
3. Results and Discussion
3.1. Analysis of the ANN Sensor Model after the Training
3.2. Experimental Environment
3.3. RBPF Integrated with ANN Sensor Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makarenko, A.A.; Williams, S.B.; Bourgault, F.; Durrant-Whyte, H.F. An experiment in integrated exploration. IEEE Int. Conf. Intell. Robot. Syst. 2002, 1, 534–539. [Google Scholar] [CrossRef]
- Yatim, N.M.; Buniyamin, N. Development of Rao-Blackwellized Particle Filter (RBPF) SLAM Algorithm Using Low Proximity Infrared Sensors. In Proceedings of the 9th International Conference on Robotic, Vision, Signal Processing and Power Applications (ROVISP 2016), Penang, Malaysia, 2–3 February 2016; pp. 395–405. [Google Scholar] [CrossRef]
- Yatim, N.M.; Jamaludin, A.; Noh, Z.M. Comparison of Sampling Methods for Rao-blackwellized Particle Filter with Neural Network. In Proceedings of the Symposium on Intelligent Manufacturing and Mechatronics, Melaka, Malaysia, 8 November 2021; pp. 60–75. [Google Scholar] [CrossRef]
- Kim, H.-h.H.; Jin, Y.-S. A Study on the Environmental Map Building for a Mobile Robot Using Infrared Range-finder Sensors. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, USA, 27–31 October 2003; Volume 1, pp. 711–716. [Google Scholar] [CrossRef]
- Martins, G.S.; Portugal, D.; Rocha, R.P. mrgs: A Multi-Robot SLAM Framework for ROS with Efficient Information Sharing. Robot Oper. Syst. ROS Stud. Comput. Intell. 2021, 895, 45–75. [Google Scholar] [CrossRef]
- Demim, F.; Nemra, A.; Louadj, K.; Hamerlain, M.; Bazoula, A. Cooperative SLAM for multiple UGVs navigation using SVSF filter. Automatika 2017, 58, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Saeedi, S.; Paull, L.; Trentini, M.; Seto, M.; Li, H. Map merging for multiple robots using Hough peak matching. Rob. Auton. Syst. 2014, 62, 1408–1424. [Google Scholar] [CrossRef]
- Thrun, S.; Liu, Y. Multi-robot SLAM with sparse extended information filers. Springer Tracts Adv. Robot. 2005, 15, 254–265. [Google Scholar] [CrossRef]
- Li, H.; Tsukada, M.; Nashashibi, F.; Parent, M. Multivehicle cooperative local mapping: A methodology based on occupancy grid map merging. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2089–2100. [Google Scholar] [CrossRef] [Green Version]
- Andre, T.; Neuhold, D.; Bettstetter, C. Coordinated multi-robot exploration: Out of the box packages for ROS. In Proceedings of the 2014 IEEE Globecom Workshops, GC Wkshps 2014, Austin, TX, USA, 8–12 December 2014; pp. 1457–1462. [Google Scholar]
- Waniek, N.; Ieee, S.M.; Biedermann, J. Cooperative SLAM on Small Mobile Robots. In Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; pp. 1810–1815. [Google Scholar] [CrossRef]
- Shaik, N.; Liebig, T.; Kirsch, C.; Heinrich, M. Dynamic Map Update of Non-static Facility Logistics Environment with a Multi-robot System. Jt. Ger. Conf. Artif. Intell. Künstliche Intell. 2017, 10505, 249–261. [Google Scholar] [CrossRef]
- Moshiri, B.; Reza Asharif, M.; HoseinNezhad, R. Pseudo information measure: A new concept for extension of Bayesian fusion in robotic map building. Inf. Fusion 2002, 3, 51–68. [Google Scholar] [CrossRef]
- Yatim, N.M.; Buniyamin, N. Particle filter in simultaneous localization and mapping (Slam) using differential drive mobile robot. J. Teknol. 2015, 77, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Thrun, S. Learning Occupancy Grids with Forward Sensor Models. Auton. Robot. 2002, 15, 111–128. [Google Scholar] [CrossRef]
- Hampton, B.; Al-hourani, A.; Ristic, B.; Moran, B. RFS-SLAM Robot: An Experimental Platform for RFS Based Occupancy-Grid SLAM. In Proceedings of the 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 10–13 July 2017. [Google Scholar] [CrossRef]
- Martins, G.S. A Cooperative SLAM Framework with Efficient Information Sharing over Mobile Ad Hoc Networks. Master’s Thesis, Universidade de Coimbra, Coimbra, Portugal, 2014. [Google Scholar]
- Gadsden, S.A.; Habibi, S.; Kirubarajan, T. Kalman and smooth variable structure filters for robust estimation. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1038–1050. [Google Scholar] [CrossRef]
- Ullah, I.; Su, X.; Zhang, X.; Choi, D. Simultaneous Localization and Mapping Based on Kalman Filter and Extended Kalman Filter. Wirel. Commun. Mob. Comput. 2020, 2020, 2138643. [Google Scholar] [CrossRef]
- Ullah, I.; Su, X.; Zhu, J.; Zhang, X.; Choi, D.; Hou, Z. Evaluation of localization by extended kalman filter, unscented kalman filter, and particle filter-based techniques. Wirel. Commun. Mob. Comput. 2020, 2020, 8898672. [Google Scholar] [CrossRef]
- Yap, T.N.; Shelton, C.R. SLAM in Large Indoor Environments with Low-Cost, Noisy, and Sparse Sonars. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 1395–1401. [Google Scholar] [CrossRef]
- Brand, C.; Schuster, M.J.; Hirschmuller, H.; Suppa, M. Submap matching for stereo-vision based indoor/outdoor SLAM. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 5670–5677. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Yang, C.; Li, D.; Zhou, G. Intelligent Filter-Based SLAM for Mobile Robots with Improved Localization Performance. IEEE Access 2019, 7, 113284–113297. [Google Scholar] [CrossRef]
- Zhao, Z.S.; Feng, X.; Lin, Y.Y.; Wei, F.; Wang, S.K.; Xiao, T.L.; Cao, M.Y.; Hou, Z.G.; Tan, M. Improved rao-blackwellized particle filter by particle swarm optimization. J. Appl. Math. 2013, 2013, 302170. [Google Scholar] [CrossRef] [Green Version]
- Schr, C. Memory-Efficient Gridmaps in Rao-Blackwellized Particle Filters for SLAM using Sonar Range Sensors. In Proceedings of the 3rd European Conference on Mobile Robots EMCR 2007, Freiburg, Germany, 19–21 September 2007; pp. 138–143. [Google Scholar]
- Seong, S.; Lee, C.; Kim, J. Multi-robot SLAM: An Overview and Quantitative Evaluation of MRGS ROS Framework for MR-SLAM. Int. Conf. Robot. Technol. Appl. 2019, 751, 165–183. [Google Scholar] [CrossRef]
- Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Trans. Robot. 2007, 23, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Nie, F.; Zhang, W.; Yao, Z.; Shi, Y.; Li, F.; Huang, Q. LCPF: A Particle Filter Lidar SLAM System with Loop Detection and Correction. IEEE Access 2020, 8, 20401–20412. [Google Scholar] [CrossRef]
- Stachniss, C.; Grisetti, G.; Burgard, W. Recovering particle diversity in a Rao-Blackwellized particle filter for SLAM after actively closing loops. Proc.-IEEE Int. Conf. Robot. Autom. 2005, 2005, 655–660. [Google Scholar] [CrossRef] [Green Version]
- Mammadli, S. Financial time series prediction using artificial neural network based on Levenberg-Marquardt algorithm. Procedia Comput. Sci. 2017, 120, 602–607. [Google Scholar] [CrossRef]
- Ibrahimy, M.I.; Ahsan, M.R.; Khalifa, O.O. Design and optimization of levenberg-marquardt based neural network classifier for EMG signals to identify hand motions. Meas. Sci. Rev. 2013, 13, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Kamarudin, K.; Mamduh, S.M.; Md Shakaff, A.Y.; Zakaria, A. Performance analysis of the microsoft kinect sensor for 2D simultaneous localization and mapping (SLAM) techniques. Sensors 2014, 14, 23365–23387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yagfarov, R.; Ivanou, M.; Afanasyev, I. Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; pp. 1979–1983. [Google Scholar] [CrossRef]
- Rojas-Fernandez, M.; Mujica-Vargas, D.; Matuz-Cruz, M.; Lopez-Borreguero, D. Performance comparison of 2D SLAM techniques available in ROS using a differential drive robot. In Proceedings of the 2018 International Conference on Electronics, Communications and Computers (CONIELECOMP), Cholula, Mexico, 21–23 February 2018; pp. 50–58. [Google Scholar] [CrossRef]
- Cretu-Sircu, A.L.; Sircu, I. Assistive Localization and Autonomous Navigation for a Multi-Robot System. Master’s Thesis, Aalborg University, Denmark, 2020. [Google Scholar]
- Bultmann, S.; Matignon, L.; Simonin, O.; Bultmann, S.; Matignon, L.; Navigation, O.S.M. Multi-Robot Navigation and Cooperative Mapping in a Circular Topology. Ph.D. Thesis, hal-01526089, version 1; INSA Lyon, Villeurbanne, France, 22 May 2017; pp. 1–81. [Google Scholar]
- Demski, P.; Mikulski, M.; Koteras, R. Characterization of Hokuyo UTM-30LX laser range finder for an autonomous mobile robot. Stud. Comput. Intell. 2013, 440, 143–153. [Google Scholar] [CrossRef]
Overall Cells | Free Cells | Occupied Cells | |
---|---|---|---|
Without ANN | 0.9915 | 0.9959 | 0.9522 |
With ANN | 0.9924 | 0.9964 | 0.9569 |
Overall Cells | Free Cells | Occupied Cells | |
---|---|---|---|
Without ANN | 0.7929 | 0.8912 | 0.1661 |
With ANN | 0.8390 | 0.9074 | 0.3448 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamaludin, A.; Mohamad Yatim, N.; Mohd Noh, Z.; Buniyamin, N. Rao-Blackwellized Particle Filter Algorithm Integrated with Neural Network Sensor Model Using Laser Distance Sensor. Micromachines 2023, 14, 560. https://doi.org/10.3390/mi14030560
Jamaludin A, Mohamad Yatim N, Mohd Noh Z, Buniyamin N. Rao-Blackwellized Particle Filter Algorithm Integrated with Neural Network Sensor Model Using Laser Distance Sensor. Micromachines. 2023; 14(3):560. https://doi.org/10.3390/mi14030560
Chicago/Turabian StyleJamaludin, Amirul, Norhidayah Mohamad Yatim, Zarina Mohd Noh, and Norlida Buniyamin. 2023. "Rao-Blackwellized Particle Filter Algorithm Integrated with Neural Network Sensor Model Using Laser Distance Sensor" Micromachines 14, no. 3: 560. https://doi.org/10.3390/mi14030560
APA StyleJamaludin, A., Mohamad Yatim, N., Mohd Noh, Z., & Buniyamin, N. (2023). Rao-Blackwellized Particle Filter Algorithm Integrated with Neural Network Sensor Model Using Laser Distance Sensor. Micromachines, 14(3), 560. https://doi.org/10.3390/mi14030560