Microwave Dual-Crack Sensor with a High Q-Factor Using the TE20 Resonance of a Complementary Split-Ring Resonator on a Substrate-Integrated Waveguide
Abstract
:1. Introduction
2. Proposed Sensor Design
2.1. Design of the Proposed Dual-Crack Detection Sensor
2.2. Sensing Method
3. Fabrication of a Prototype Sensor and Measurement
3.1. Fabrication and Sensor Measurement Results
3.2. Crack Sensing Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kostromitin, K.I.; Khaliullin, R.S.; Skorobogatov, A.V. Using Destructive Testing Methods, X-ray Diffraction and Logic Analysis to Control Operation of Integral Circuits. In Proceedings of the 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russia, 18–22 May 2020; pp. 1–4. [Google Scholar]
- Malek, J.; Kaouther, M. Destructive and non-destructive testing of concrete structures. Jordan J. Civ. Eng. 2014, 8, 432–441. [Google Scholar]
- Wellander, N.; Elfsberg, M.; Sundberg, H.; Hurtig, T. Destructive testing of electronic components based on absorption cross section RC measurements. In Proceedings of the 2019 International Symposium on Electromagnetic Compatibility—EMC EUROPE, Barcelona, Spain, 2–6 September 2019; pp. 778–783. [Google Scholar]
- Allwood, G.; Wild, G.; Hinckley, S. Optical Fiber Sensors in Physical Intrusion Detection Systems: A Review. IEEE Sens. J. 2016, 16, 5497–5509. [Google Scholar] [CrossRef] [Green Version]
- Caizzone, S.; DiGiampaolo, E. Wireless Passive RFID Crack Width Sensor for Structural Health Monitoring. IEEE Sens. J. 2015, 15, 6767–6774. [Google Scholar] [CrossRef] [Green Version]
- Chady, T.; Enokizono, M.; Sikora, R. Crack detection and recognition using an eddy current differential probe. IEEE Trans. Magn. 1999, 35, 1849–1852. [Google Scholar] [CrossRef]
- Dutta, D.; Sohn, H.; Harries, K.A.; Rizzo, P. A Nonlinear Acoustic Technique for Crack Detection in Metallic Structures. Struct. Health Monit. 2009, 8, 251–262. [Google Scholar] [CrossRef]
- Luo, D.; Yue, Y.; Li, P.; Ma, J.; Zhang, L.I.; Ibrahim, Z.; Ismail, Z. Concrete beam crack detection using tapered polymer optical fiber sensors. Measurement 2016, 88, 96–103. [Google Scholar] [CrossRef]
- Tan, X.; Bao, Y. Measuring crack width using a distributed fiber optic sensor based on optical frequency domain reflectometry. Measurement 2021, 172, 108945. [Google Scholar] [CrossRef]
- Wild, G.; Hinckley, S. Acousto-Ultrasonic Optical Fiber Sensors: Overview and State-of-the-Art. IEEE Sens. J. 2008, 8, 1184–1193. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. In Situ Fatigue Crack Detection using Piezoelectric Paint Sensor. J. Intell. Mater. Syst. Struct. 2006, 17, 843–852. [Google Scholar] [CrossRef]
- Zhao, S.; Sun, L.; Gao, J.; Wang, J.; Shen, Y. Uniaxial ACFM detection system for metal crack size estimation using magnetic signature waveform analysis. Measurement 2020, 164, 108090. [Google Scholar] [CrossRef]
- Ansari, M.A.H.; Jha, A.K.; Akhter, Z.; Akhtar, M.J. Multi-Band RF Planar Sensor Using Complementary Split Ring Resonator for Testing of Dielectric Materials. IEEE Sens. J. 2018, 18, 6596–6606. [Google Scholar] [CrossRef]
- Dong, H.; Kang, W.; Liu, L.; Wei, K.; Xiong, J.; Tan, Q. Wireless passive sensor based on microstrip antenna for metal crack detection and characterization. Meas. Sci. Technol. 2019, 30, 045103. [Google Scholar] [CrossRef]
- Huang, C.; Huang, B.; Zhang, B.; Li, Y.; Zhang, J.; Wang, K. An Electromagnetically Induced Transparency Inspired Antenna Sensor for Crack Monitoring. IEEE Sens. J. 2021, 21, 651–658. [Google Scholar] [CrossRef]
- Javed, N.; Azam, M.A.; Amin, Y. Chipless RFID Multisensor for Temperature Sensing and Crack Monitoring in an IoT Environment. IEEE Sens. Lett. 2021, 5, 1–4. [Google Scholar] [CrossRef]
- Khan, S.; Elbert, T.F. Complementary metaresonators based X-band hollow waveguide filter and crack detection sensor. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 2346–2348. [Google Scholar]
- Li, D.; Wang, Y. Thermally Stable Wireless Patch Antenna Sensor for Strain and Crack Sensing. Sensors 2020, 20, 3835. [Google Scholar] [CrossRef]
- Martínez-Castro, R.E.; Jang, S.; Nicholas, J.; Bansal, R. Experimental assessment of an RFID-based crack sensor for steel structures. Smart Mater. Struct. 2017, 26, 085035. [Google Scholar] [CrossRef]
- Zoughi, R.; Ganchev, S.I.; Huber, C. Measurement parameter optimization for surface crack detection in metals using an open-ended waveguide probe. In Proceedings of the Quality Measurement: The Indispensable Bridge between Theory and Reality (No Measurements? No Science! Joint Conference—1996: IEEE Instrumentation and Measurement Technology Conference and IMEKO Tec), Brussels, Belgium, 4–6 June 1996; pp. 1391–1394. [Google Scholar]
- Bahrami, A.; Khouzani, M.K.; Mokhtari, S.A.; Zareh, S.; Mehr, M.Y. Root Cause Analysis of Surface Cracks in Heavy Steel Plates during the Hot Rolling Process. Metals 2019, 9, 801. [Google Scholar] [CrossRef] [Green Version]
- Seo, D.C.; Lee, J.J.; Kwon, I.B. Monitoring of fatigue crack growth of cracked thick aluminum plate repaired with a bonded composite patch using transmission-type extrinsic Fabry–Perot interferometric optical fiber sensors. Smart Mater. Struct. 2002, 11, 917. [Google Scholar] [CrossRef]
- Sharp, N.; Kuntz, A.; Brubaker, C.; Amos, S.; Gao, W.; Gupta, G. Crack detection sensor layout and bus configuration analysis. Smart Mater. Struct. 2014, 23, 055021. [Google Scholar] [CrossRef]
- Abbasi, Z.; Baghelani, M.; Daneshmand, M. High-Resolution Chipless Tag RF Sensor. IEEE Trans. Microw. Theory Tech. 2020, 68, 4855–4864. [Google Scholar] [CrossRef]
- Abdolrazzaghi, M.; Zarafi, M.H.; Floquet, C.F.A.; Daneshmand, M. Contactless Asphaltene Detection Using an Active Planar Microwave Resonator Sensor. Energy Fuels 2017, 31, 8784–8791. [Google Scholar] [CrossRef]
- Cui, Y.; Ge, A. A Tunable High-Q Microwave Detector for On-Column Capillary Liquid Chromatography. IEEE Trans. Instrum. Meas. 2020, 69, 5978–5980. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Farsinezhad, S.; Shankar, K.; Daneshmand, M. Liquid Sensing Using Active Feedback Assisted Planar Microwave Resonator. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 621–623. [Google Scholar] [CrossRef]
- Mohammadi, S.; Adhikari, K.K.; Jain, M.C.; Zarifi, M.H. High-Resolution, Sensitivity-Enhanced Active Resonator Sensor Using Substrate-Embedded Channel for Characterizing Low-Concentration Liquid Mixtures. IEEE Trans. Microw. Theory Tech. 2022, 70, 576–586. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Thundat, T.; Daneshmand, M. High resolution microwave microstrip resonator for sensing applications. Sens. Actuators A Phys. 2015, 233, 224–230. [Google Scholar] [CrossRef]
- Ahmad, S.; Ghaffar, A.; Hussain, N.; Kim, N. Compact Dual-Band Antenna with Paired L-Shape Slots for On- and Off-Body Wireless Communication. Sensors 2021, 21, 7953. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, A.; Pelegri-Sebastia, J.; Sogorb, T.; Llario, V.; Bou-Escriva, A. A Dual-Band Antenna for RF Energy Harvesting Systems in Wireless Sensor Networks. J. Sens. 2016, 2016, 5725836. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Lim, D.; Lim, S. Dual-Band Band-Pass Filter with Fixed Low Band and Fluidically-Tunable High Band. Sensors 2017, 17, 1884. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Meng, J.; Li, W.; Yan, S.; Vandenbosch, G.A.E. A Wearable Button Antenna Sensor for Dual-Mode Wireless Information and Power Transfer. Sensors 2021, 21, 5678. [Google Scholar] [CrossRef]
- Zhu, L.; Farhat, M.; Chen, Y.C.; Chen, P.Y. A Compact, Passive Frequency-Hopping Harmonic Sensor Based on a Microfluidic Reconfigurable Dual-Band Antenna. IEEE Sens. J. 2020, 20, 12495–12503. [Google Scholar] [CrossRef]
- Albishi, A.M.; Boybay, M.S.; Ramahi, O.M. Complementary Split-Ring Resonator for Crack Detection in Metallic Surfaces. IEEE Microw. Wirel. Compon. Lett. 2012, 22, 330–332. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, X.Q.; Yan, Y.H.; Xiao, F.; Khan, M.T.; Zhang, S. Noncontact Group-Delay-Based Sensor for Metal Deformation and Crack Detection. IEEE Trans. Ind. Electron. 2021, 68, 7613–7619. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Scott, J.; Ghorbani, K. Compact Dual Bandpass Filter Using Dual-Split Ring Resonator for 5G Upper Microwave Flexible Use Services. IEEE Sens. J. 2020, 20, 185–192. [Google Scholar] [CrossRef]
- Sowjanya, A.; Vakula, D. Compact Dual-Mode Wideband Filter Based on Complementary Split-Ring Resonator. J. Electromagn. Eng. Sci. 2022, 22, 434–439. [Google Scholar] [CrossRef]
- Kiani, S.; Rezaei, P.; Navaei, M. Dual-sensing and dual-frequency microwave SRR sensor for liquid samples permittivity detection. Measurement 2020, 160, 107805. [Google Scholar] [CrossRef]
- Marindra, A.M.J.; Sutthaweekul, R.; Tian, G.Y. Depolarizing Chipless RFID Sensor Tag for Characterization of Metal Cracks Based on Dual Resonance Features. In Proceedings of the 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE), Bali, Indonesia, 24–26 July 2018; pp. 73–78. [Google Scholar]
- Jang, S.-Y.; Yang, J.-R. Double Split-Ring Resonator for Dielectric Constant Measurement of Solids and Liquids. J. Electromagn. Eng. Sci. 2022, 22, 122–128. [Google Scholar] [CrossRef]
- Salim, A.; Naqvi, A.H.; Pham, A.D.; Lim, S. Complementary Split-Ring Resonator (CSRR)-Loaded Sensor Array to Detect Multiple Cracks: Shapes, Sizes, and Positions on Metallic Surface. IEEE Access 2020, 8, 151804–151816. [Google Scholar] [CrossRef]
- Samad, A.; Hu, W.D.; Shahzad, W.; Lightart, L.P.; Raza, H. High-Precision Complementary Metamaterial Sensor Using Slotted Microstrip Transmission Line. J. Sens. 2021, 2021, 8888187. [Google Scholar] [CrossRef]
- Su, P.; Yang, X.; Wang, J.; Wang, Z.; Peng, H. Detection of Metal Surface Cracks Based on Liquid Switch Controlled Spoof Surface Plasmon Polaritons. IEEE Sens. J. 2022, 22, 1287–1294. [Google Scholar] [CrossRef]
- Wei, F.; Qin, P.Y.; Guo, Y.J.; Ding, C.; Shi, X.W. Compact Balanced Dual- and Tri-Band BPFs Based on Coupled Complementary Split-Ring Resonators (C-CSRR). IEEE Microw. Wirel. Compon. Lett. 2016, 26, 107–109. [Google Scholar] [CrossRef]
- Mohammadi Shirkolaei, M.; Ghalibafan, J. Unbalanced CRLH Behavior of Ferrite-Loaded Waveguide Operated below Cutoff Frequency. Waves Random Complex Media 2022, 32, 755–770. [Google Scholar] [CrossRef]
- Mohammadi Shirkolaei, M.; Ghalibafan, J. Magnetically Scannable Slotted Waveguide Antenna Based on the Ferrite with Gain Enhancement. Waves Random Complex Media 2021, 1–11. [Google Scholar] [CrossRef]
- Shahzad, W.; Hu, W.; Ali, Q.; Raza, H.; Abbas, S.M.; Ligthart, L.P. A Low-Cost Metamaterial Sensor Based on DS-CSRR for Material Characterization Applications. Sensors 2022, 22, 2000. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Cho, C.; Cooper, J.; Wang, Y.; Tentzeris, M.M.; Leon, R.T. Passive wireless antenna sensor for strain and crack sensing—Electromagnetic modeling, simulation, and testing. Smart Mater. Struct. 2013, 22, 085009. [Google Scholar] [CrossRef]
- Yun, T.; Lim, S. High-Q and miniaturized complementary split ring resonator-loaded substrate integrated waveguide microwave sensor for crack detection in metallic materials. Sens. Actuators A Phys. 2014, 214, 25–30. [Google Scholar] [CrossRef]
- Armghan, A.; Alanazi, T.M.; Altaf, A.; Haq, T. Characterization of Dielectric Substrates Using Dual Band Microwave Sensor. IEEE Access 2021, 9, 62779–62787. [Google Scholar] [CrossRef]
- Falcone, F.; Lopetegi, T.; Laso, M.A.G.; Baena, J.D.; Bonache, J.; Beruete, M.; Marques, R.; Martin, F.; Sorolla, M. Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett. 2004, 93, 197401. [Google Scholar] [CrossRef] [Green Version]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- Albishi, A.M.; Mirjahanmardi, S.H.; Ali, A.M.; Nayyeri, V.; Wasly, S.M.; Ramahi, O.M. Intelligent Sensing Using Multiple Sensors for Material Characterization. Sensors 2019, 19, 4766. [Google Scholar] [CrossRef] [Green Version]
- Albishi, A.M. A Novel Coupling Mechanism for CSRRs as Near-Field Dielectric Sensors. Sensors 2022, 22, 3313. [Google Scholar] [CrossRef]
- Albishi, A.M.; Badawe, M.K.E.; Nayyeri, V.; Ramahi, O.M. Enhancing the Sensitivity of Dielectric Sensors With Multiple Coupled Complementary Split-Ring Resonators. IEEE Trans. Microw. Theory Tech. 2020, 68, 4340–4347. [Google Scholar] [CrossRef]
- Albishi, A.M.; Ramahi, O.M. Surface crack detection in metallic materials using sensitive microwave-based sensors. In Proceedings of the 2016 IEEE 17th Annual Wireless and Microwave Technology Conference (WAMICON), Clearwater, FL, USA, 11–13 April 2016; pp. 1–3. [Google Scholar]
- Haq, T.; Ruan, C.; Ullah, S.; Fahad, A.K. Dual Notch Microwave Sensors Based on Complementary Metamaterial Resonators. IEEE Access 2019, 7, 153489–153498. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Huang, K. Dual-Band Microwave Sensor Based on Planar Rectangular Cavity Loaded With Pairs of Improved Resonator for Differential Sensing Applications. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. [Google Scholar] [CrossRef]
- Nogueira, J.K.A.; Oliveira, J.G.D.; Paiva, S.B.; Neto, V.P.S.; D’Assunção, A.G. A Compact CSRR-Based Sensor for Characterization of the Complex Permittivity of Dielectric Materials. Electronics 2022, 11, 1787. [Google Scholar] [CrossRef]
- Omer, A.E.; Shaker, G.; Safavi-Naeini, S.; Kokabi, H.; Alquié, G.; Deshours, F.; Shubair, R.M. Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: Novel design utilizing a four-cell CSRR hexagonal configuration. Sci. Rep. 2020, 10, 15200. [Google Scholar] [CrossRef]
- Omer, A.E.; Shaker, G.; Safavi-Naeini, S.; Ngo, K.; Shubair, R.M.; Alquié, G.; Deshours, F.; Kokabi, H. Multiple-Cell Microfluidic Dielectric Resonator for Liquid Sensing Applications. IEEE Sens. J. 2021, 21, 6094–6104. [Google Scholar] [CrossRef]
- Wu, W.J.; Zhao, W.S.; Wang, D.W.; Yuan, B.; Wang, G. Ultrahigh-Sensitivity Microwave Microfluidic Sensors Based on Modified Complementary Electric-LC and Split-Ring Resonator Structures. IEEE Sens. J. 2021, 21, 18756–18763. [Google Scholar] [CrossRef]
- Chen, C.M.; Xu, J.; Yao, Y. Fabrication of miniaturized CSRR-loaded HMSIW humidity sensors with high sensitivity and ultra-low humidity hysteresis. Sens. Actuators B Chem. 2018, 256, 1100–1106. [Google Scholar] [CrossRef]
- Zeng, X.; Bi, X.; Cao, Z.; Wan, R.; Xu, Q. High Selectivity Dual-Wideband Balun Filter Utilizing a Multimode T-line Loaded Middle-Shorted CSRR. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 2447–2451. [Google Scholar] [CrossRef]
- Albishi, A.; Ramahi, O. Ultrasensitive microwave near-field based sensors for crack detection in metallic materials. In Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, PR, USA, 26 June–1 July 2016; pp. 1955–1956. [Google Scholar]
- Kiani, S.; Rezaei, P.; Navaei, M.; Abrishamian, M.S. Microwave Sensor for Detection of Solid Material Permittivity in Single/Multilayer Samples With High Quality Factor. IEEE Sens. J. 2018, 18, 9971–9977. [Google Scholar] [CrossRef]
- Hao, H.; Wang, D.; Wang, Z. Design of Substrate-Integrated Waveguide Loading Multiple Complementary Open Resonant Rings (CSRRs) for Dielectric Constant Measurement. Sensors 2020, 20, 857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eom, S.; Memon, M.U.; Lim, S. Frequency-Switchable Microfluidic CSRR-Loaded QMSIW Band-Pass Filter Using a Liquid Metal Alloy. Sensors 2017, 17, 699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kou, H.; Tan, Q.; Wang, Y.; Zhang, G.; Shujing, S.; Xiong, J. A microwave SIW sensor loaded with CSRR for wireless pressure detection in high-temperature environments. J. Phys. D Appl. Phys. 2019, 53, 085101. [Google Scholar] [CrossRef]
- Liu, Z.; Xiao, G.; Zhu, L. Triple-Mode Bandpass Filters on CSRR-Loaded Substrate Integrated Waveguide Cavities. IEEE Trans. Compon. Packag. Manuf. Technol. 2016, 6, 1099–1105. [Google Scholar] [CrossRef]
- Zhang, H.; Kang, W.; Wu, W. Dual-band substrate integrated waveguide bandpass filter utilising complementary split-ring resonators. Electron. Lett. 2018, 54, 85–87. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Yin, W.Y.; He, S.; Wu, L.S. Compact Substrate Integrated Waveguide (SIW) Bandpass Filter with Complementary Split-Ring Resonators (CSRRs). IEEE Microw. Wirel. Compon. Lett. 2010, 20, 426–428. [Google Scholar] [CrossRef]
- Mohammadi, S.M.; Aslinezhad, M. Substrate integrated waveguide filter based on the magnetized ferrite with tunable capability. Microw. Opt. Technol. Lett. 2021, 63, 1120–1125. [Google Scholar]
- Dong, Y.D.; Tao, Y.; Tatsuo, I. Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters. IEEE Trans. Microw. Theory Tech. 2009, 57, 2211–2223. [Google Scholar] [CrossRef]
- Wang, Q.; Bi, K.; Hao, Y.; Guo, L.; Dong, G.; Wu, H.; Lei, M. High-Sensitivity Dielectric Resonator-Based Waveguide Sensor for Crack Detection on Metallic Surfaces. IEEE Sens. J. 2019, 19, 5470–5474. [Google Scholar] [CrossRef]
- Rajni; Kaur, A.; Marwaha, A. Crack Detection on Metal Surfaces with an Array of Complementary Split Ring Resonators. Int. J. Comput. Appl. 2015, 119, 16–19. [Google Scholar]
- Baena, J.D.; Bonache, J.; Martin, F.; Sillero, R.M.; Falcone, F.; Lopetegi, T.; Laso, M.A.G.; Garcia-Garcia, J.; Gil, I.; Portillo, M.F.; et al. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Tech. 2005, 53, 1451–1461. [Google Scholar] [CrossRef]
- Memon, M.U.; Lim, S. Review of Electromagnetic-Based Crack Sensors for Metallic Materials (Recent Research and Future Perspectives). Metals 2016, 6, 172. [Google Scholar] [CrossRef] [Green Version]
- Albishi, A.M.; Ramahi, O.M. Microwaves-Based High Sensitivity Sensors for Crack Detection in Metallic Materials. IEEE Trans. Microw. Theory Tech. 2017, 65, 1864–1872. [Google Scholar] [CrossRef]
- Chuma, E.L.; Iano, Y.; Fontgalland, G.; Roger, L.L.B. Microwave Sensor for Liquid Dielectric Characterization Based on Metamaterial Complementary Split Ring Resonator. IEEE Sens. J. 2018, 18, 9978–9983. [Google Scholar] [CrossRef]
- Cassivi, Y.; Wu, K. Low cost microwave oscillator using substrate integrated waveguide cavity. IEEE Microw. Wirel. Compon. Lett. 2003, 13, 48–50. [Google Scholar] [CrossRef]
- Cui, T.J.; Lin, X.Q.; Cheng, Q.; Ma, H.F.; Yang, X.M. Experiments on evanescent-wave amplification and transmission using metamaterial structures. Phys. Rev. B 2006, 73, 245119. [Google Scholar] [CrossRef]
[Ref] Year | No. of Cracks Detected | Sensing Target | Sensing Techniques | Crack Sensing Resolution (mm) | Sensitivity (MHz/mm) | Measured Q-Factor | ||
---|---|---|---|---|---|---|---|---|
Width | Depth | Width | Depth | |||||
[39] 2020 | 2 | Liquid material permittivity | Power divider + SRRs | N/A | N/A | N/A | N/A | 280 |
[16] 2021 | 2 | Temperature and metal cracks | Antenna + temperature-sensitive substrate | 0.10 | N/A | 16.6 | N/A | 17 |
[18] 2020 | 2 | Metal cracks and strain | Passive and active mode antenna | 0.25 | N/A | 50 | N/A | N/A |
[35] 2012 | 1 | Metal cracks | CSRR | 0.10 | N/A | 200 | N/A | 25 |
[50] 2017 | 1 | Metal cracks | SIW + CSRR | 0.20 | 500 | 50 | 1 | 224* |
[36] 2021 | 4 | Metal cracks | Four SRRs | 0.10−0.50 | N/A | 1300 | N/A | N/A |
[40] 2018 | 2 | Metal cracks | Higher-mode patch antenna | 1.00 | N/A | 140 | N/A | N/A |
[14] 2019 | 2 | Metal cracks | Higher-mode patch antenna | 0.20 | N/A | 45 | N/A | N/A |
[44] 2022 | 4 | Metal cracks | Spoof surface plasmon polariton sensor + liquid switch | 0.10 | N/A | 200 | N/A | N/A |
[42] 2021 | 12 | Metal cracks | CSRRs | 0.40 | 0.2 | N/A (magnitude) | 17 | |
This work | 2 | Metal cracks | CSRRs + higher-mode SIW | 0.10 | 0.2 | 200 * | 130 * | 281 * |
Sheet | Crack Width (mm) | Crack Depth (mm) |
---|---|---|
1 | 0.85 | 0.3/0.5 |
2 | 0.95/1.05 | 0.1 |
3 | 0.95/1.05 | 0.3 |
4 | 0.95/1.05 | 0.5 |
Crack Width Depth (mm) | ||||||||
---|---|---|---|---|---|---|---|---|
0.85 0.5 | 0.85 0.3 | 0.95 0.5 | 1.05 0.5 | 0.95 0.3 | 1.05 0.3 | 0.95 0.1 | 1.05 0.1 | |
CSRR1 * | 5.34 | 5.368 | 5.413 | 5.426 | 5.434 | 5.463 | 5.469 | 5.489 |
CSRR2 * | 4.32 | 4.341 | 4.403 | 4.425 | 4.449 | 4.462 | 4.507 | 4.527 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Park, E.; Salim, A.; Kim, J.; Lim, S. Microwave Dual-Crack Sensor with a High Q-Factor Using the TE20 Resonance of a Complementary Split-Ring Resonator on a Substrate-Integrated Waveguide. Micromachines 2023, 14, 578. https://doi.org/10.3390/mi14030578
Kim Y, Park E, Salim A, Kim J, Lim S. Microwave Dual-Crack Sensor with a High Q-Factor Using the TE20 Resonance of a Complementary Split-Ring Resonator on a Substrate-Integrated Waveguide. Micromachines. 2023; 14(3):578. https://doi.org/10.3390/mi14030578
Chicago/Turabian StyleKim, Yelim, Eiyong Park, Ahmed Salim, Junghyeon Kim, and Sungjoon Lim. 2023. "Microwave Dual-Crack Sensor with a High Q-Factor Using the TE20 Resonance of a Complementary Split-Ring Resonator on a Substrate-Integrated Waveguide" Micromachines 14, no. 3: 578. https://doi.org/10.3390/mi14030578
APA StyleKim, Y., Park, E., Salim, A., Kim, J., & Lim, S. (2023). Microwave Dual-Crack Sensor with a High Q-Factor Using the TE20 Resonance of a Complementary Split-Ring Resonator on a Substrate-Integrated Waveguide. Micromachines, 14(3), 578. https://doi.org/10.3390/mi14030578