A Single-Event-Hardened Scheme for Ring Oscillator Applied to Radiation-Resistant PLL Microsystems
Abstract
:1. Introduction
2. Responses to the SET in the VCO
2.1. Topology of the CPPLL
2.2. Analysis of the SET’s Impact on the VCO
2.2.1. SET Current Pulse Model
2.2.2. SET Response of Different Bombardment Nodes
2.2.3. SET Response of Different Bombardment Times
2.2.4. Response to the SET with Different Bombardment Energies
3. The Proposed SET-Hardened VCO Circuit
4. Simulation and Result Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karthigeyan, K.A.; Chandramani, P.V. Study and Analysis of DR-VCO for rad-hardness in type II third order CPLL. Microelectron. Reliab. 2018, 82, 190–196. [Google Scholar] [CrossRef]
- Junior Rossetto, A.C.; Wirth, G.I.; Dallasen, R.V. Performance analysis of a clock generator PLL under TID effects. In Proceedings of the 2014 15th Latin American Test Workshop—LATW, Fortaleza, Brazil, 12–15 March 2014; pp. 1–5. [Google Scholar]
- Biereigel, S.; Kulis, S.; Leroux, P.; Moreira, P.; Prinzie, J. Radiation-Tolerant Digitally Controlled Ring Oscillator in 65 nm CMOS. IEEE Trans. Nucl. Sci. 2022, 69, 17–25. [Google Scholar] [CrossRef]
- Biereigel, S.; Kulis, S.; Leroux, P.; Moreira, P.; Kölpin, A.; Prinzie, J. Single-Event Effect Responses of Integrated Planar Inductors in 65-nm CMOS. IEEE Trans. Nucl. Sci. 2021, 68, 2587–2597. [Google Scholar] [CrossRef]
- Alaoui, Z.; Alaoui, I.; Ajib, E.W.; Nabki, F.; Gagnon, F. A 0.1–9 GHz Frequency Synthesizer for Avionic SDR Applications in 0.13-μm CMOS Technology. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2021, 29, 2119–2129. [Google Scholar] [CrossRef]
- Boulghassoul, Y.; Massengill, L.W.; Sternberg, A.L.; Bhuva, B.L.; Holman, W.T. Towards SET Mitigation in RF Digital PLLs: From Error Characterization to Radiation Hardening Considerations. IEEE Trans. Nucl. Sci. 2006, 53, 2047–2053. [Google Scholar] [CrossRef]
- Chung, H.H.; Chen, W.; Bakkaloglu, B.; Barnaby, H.J.; Vermeire, B.; Kiaei, S. Analysis of Single Events Effects on Monolithic PLL Frequency Synthesizers. IEEE Trans. Nucl. Sci. 2006, 53, 3539–3543. [Google Scholar] [CrossRef]
- Loveless, T.D.; Massengill, L.W.; Bhuva, B.L.; Holman, W.T.; Casey, M.C.; Reed, R.A.; Nation, S.A.; McMorrow, D.; Melinger, J.S. A Probabilistic Analysis Technique Applied to a Radiation-Hardened-by-Design Voltage-Controlled Oscillator for Mixed-Signal Phase-Locked Loops. IEEE Trans. Nucl. Sci. 2008, 55, 3447–3455. [Google Scholar] [CrossRef]
- Karthigeyan, K.A.; Chandramani, P.V. Study of VCO Delay Cell Topologies in a 3-stage DR-VCO for Radiation Hardening. In Proceedings of the 2018 18th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Goteborg, Sweden, 16–21 September 2018; pp. 1–4. [Google Scholar]
- Adesina, N.O.; Srivastava, A.; Ullah Khan, M.A.; Xu, J. Phase Noise and Jitter Measurements in SEU-Hardened CMOS Phase Locked Loop Design. In Proceedings of the 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 21–24 April 2021; pp. 1–6. [Google Scholar]
- Xiang, Q.; Liu, H.; Zhou, Y. A Single-Event-Hardened Scheme of Phase-Locked Loop Microsystems for Aerospace Applications. Micromachines 2022, 13, 2102. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Sang, H.; Liang, B.; Chen, J.; Chi, Y.; Xu, W.; Guo, Y. A SET-Tolerant High-Frequency Multibiased Multiphase Voltage-Controlled Oscillator for Phase Interpolator-Based Clock and Data Recovery. IEEE Trans. Nucl. Sci. 2022, 69, 1725–1732. [Google Scholar]
- Rajalingam, P.; Jayakumar, S.; Routray, S. Design and analysis of radiation tolerant high frequency voltage controlled oscillator for PLL applications. AEU-Int. J. Electron. Commun. 2021, 131, 153543. [Google Scholar] [CrossRef]
- Kumar, R.; Karkala, V.; Garg, R.; Jindal, T.; Khatri, S.P. A radiation tolerant Phase Locked Loop design for digital electronics. In Proceedings of the 2009 IEEE International Conference on Computer Design, Lake Tahoe, CA, USA, 4–7 October 2009; pp. 505–510. [Google Scholar]
- Chen, Z.; Ding, D.; Dong, Y.; Shan, Y.; Zeng, Y.; Gao, J. Design of a High-Performance Low-Cost Radiation-Hardened Phase-Locked Loop for Space Application. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 3588–3598. [Google Scholar] [CrossRef]
- Jung, S.M.; Roveda, J.M. A Radiation-Hardened-by-Design Phase-Locked Loop using Feedback Voltage Controlled Oscillator. In Proceedings of the Sixteenth International Symposium on Quality Electronic Design, Santa Clara, CA, USA, 2–4 March 2015; pp. 103–106. [Google Scholar]
- Liu, H.; Li, L.; Li, P.; Zhang, J. A novel digital phase interpolation control for clock and data recovery circuit. IEICE Electron. Express 2015, 50, 20150617. [Google Scholar] [CrossRef]
- Liang, B.; Xu, X.; Yuan, H.; Chen, J.; Luo, D.; Chi, Y.; Sun, H. A system-level method for hardening phase-locked loop to single-event effects. Mater. Res. Express 2022, 9, 096301. [Google Scholar] [CrossRef]
- Diez-Acereda, V.; Khemchandan, S.L.; del Pino, J.D.; Mateos-Angulo, S. RHBD Techniques to Mitigate SEU and SET in CMOS Frequency Synthesizers. Electronics 2019, 8, 690. [Google Scholar] [CrossRef]
- Loveless, T.D.; Massengill, L.W.; Bhuva, B.L. A Hardened-by-Design Technique for RF Digital Phase Lock Loops. IEEE Trans. Nucl. Sci. 2006, 53, 3432–3438. [Google Scholar] [CrossRef]
- Messenger, G.C. Collection of charge on junction nodes from ion tracks. IEEE Trans. Nucl. Sci. 1982, 29, 2024–2031. [Google Scholar] [CrossRef]
- Casey, M.C.; Bhuva, B.L.; Black, J.D.; Massengill, L.W. HBD using Cascode-Voltage Switch Logic Gates for SET Tolerant Digital Designs. IEEE Trans. Nucl. Sci. 2005, 52, 2510–2515. [Google Scholar] [CrossRef]
- González Ramírez, D.; Lalchand Khemchandani, S.; Del Pino, J.; Mayor-Duarte, D.; Mateos-Angulo, S. Single event transients mitigation techniques for CMOS integrated VCOs. Microelectron. J. 2018, 73, 37–42. [Google Scholar] [CrossRef]
Performance Parameter | NHPLL | RHPLL | |
---|---|---|---|
Supply voltage | 1.2 V | 1.2 V | |
Output frequency | 0.72 GHz | 0.72 GHz | |
CP working current | 20 μA | 20 μA | |
VCO gain | 668.86 MHz/V | 687.16 MHz/V | |
Phase noise @1 MHz | 99 dBc/Hz | 92 dBc/Hz | |
Control voltage ripple | 0.20 mV | 0.64 mV | |
Lock time @0.72 GHz | 1.5 μs | 2.7 μs | |
Power consumption of the VCO | 716.8 μW | 799.6 μW | |
Area of the VCO | 17.8 μm × 42 μm (1×) | 19.4 μm × 42 μm (1.08×) | |
SET response | Vctrl fluctuation peak | 25 mV | 6.8 mV |
Recovery time | 1154.4 ns | 314.8 ns | |
Maximum phase error | 433.53° | 193.36° |
Parameter | Reference [19] | Reference [23] | This Work |
---|---|---|---|
Technology node | 180 nm CMOS | 65 nm CMOS | 130 nm CMOS |
Frequency | 2.4 GHz | 4.8 GHz | 720 MHz |
Deposited charge or LET | 600 fC (≈60 MeVcm2/mg) | 570 fC (≈57 MeVcm2/mg) | 500 fC (≈50 MeVcm2/mg) |
Circuit area | Increased by 1 time | Increased by 3 times | Increased by 9.0% |
Power consumption | Increased by 14.6% | Declined by 28.3% | Increased by 11.5% |
Circuit | Ring oscillator circuit | LC oscillator circuit | Ring oscillator circuit |
Maximum phase error | Declined by 50% | Declined by 74.2% | Declined by 53.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Q.; Liu, H.; Zhou, Y. A Single-Event-Hardened Scheme for Ring Oscillator Applied to Radiation-Resistant PLL Microsystems. Micromachines 2023, 14, 882. https://doi.org/10.3390/mi14040882
Xiang Q, Liu H, Zhou Y. A Single-Event-Hardened Scheme for Ring Oscillator Applied to Radiation-Resistant PLL Microsystems. Micromachines. 2023; 14(4):882. https://doi.org/10.3390/mi14040882
Chicago/Turabian StyleXiang, Qi, Hongxia Liu, and Yulun Zhou. 2023. "A Single-Event-Hardened Scheme for Ring Oscillator Applied to Radiation-Resistant PLL Microsystems" Micromachines 14, no. 4: 882. https://doi.org/10.3390/mi14040882
APA StyleXiang, Q., Liu, H., & Zhou, Y. (2023). A Single-Event-Hardened Scheme for Ring Oscillator Applied to Radiation-Resistant PLL Microsystems. Micromachines, 14(4), 882. https://doi.org/10.3390/mi14040882