Selective CW Laser Synthesis of MoS2 and Mixture of MoS2 and MoO2 from (NH4)2MoS4 Film
Abstract
:1. Introduction
2. Sample Preparation and Measurement Methods
3. Results
3.1. Conversion of (NH4)2MoS4 to MoS2 by Thermal Annealing
3.2. Laser Thermolysis of (NH4)2MoS4 Crystals
3.3. Thermal Annealing and Laser Thermal Effects on Exfoliated MoS2
3.4. Laser Synthesis of MoS2 from (NH4)2MoS4 Film Using CW 532 nm Laser
3.5. Laser Direct Writing of MoS2 Line Pattern from (NH4)2MoS4 Film Using CW 532 nm Laser
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, A.; Choi, K.-H.; Hyeong, S.-K.; Bae, S.; Hong, J.-M.; Kim, T.-W.; Hong, B.H.; Lee, S.-K. Layer-Selective Synthesis of MoS2 and WS2 Structures under Ambient Conditions for Customized Electronics. ACS Nano 2020, 14, 8485–8494. [Google Scholar] [CrossRef] [PubMed]
- Aftab, S.; Hegazy, H.H. Emerging Trends in 2D TMDs Photodetectors and Piezo-Phototronic Devices. Small 2023, 19, 2205778. [Google Scholar] [CrossRef]
- Wang, M.; Cai, S.; Pan, C.; Wang, C.; Lian, X.; Zhuo, Y.; Xu, K.; Cao, T.; Pan, X.; Wang, B.; et al. Robust Memristors Based on Layered Two-Dimensional Materials. Nat. Electron. 2018, 1, 130–136. [Google Scholar] [CrossRef]
- Hus, S.M.; Ge, R.; Chen, P.-A.; Liang, L.; Donnelly, G.E.; Ko, W.; Huang, F.; Chiang, M.-H.; Li, A.-P.; Akinwande, D. Observation of Single-Defect Memristor in an MoS2 Atomic Sheet. Nat. Nanotechnol. 2021, 16, 58–62. [Google Scholar] [CrossRef]
- Mao, J.; Wu, S.; Ding, G.; Wang, Z.; Qian, F.; Yang, J.; Zhou, Y.; Han, S. A van Der Waals Integrated Damage-Free Memristor Based on Layered 2D Hexagonal Boron Nitride. Small 2022, 18, 2106253. [Google Scholar] [CrossRef]
- Wang, K.; Li, L.; Zhao, R.; Zhao, J.; Zhou, Z.; Wang, J.; Wang, H.; Tang, B.; Lu, C.; Lou, J.; et al. A Pure 2H-MoS2 Nanosheet-Based Memristor with Low Power Consumption and Linear Multilevel Storage for Artificial Synapse Emulator. Adv. Electron. Mater. 2020, 6, 1901342. [Google Scholar] [CrossRef]
- Tonndorf, P.; Schwarz, S.; Kern, J.; Niehues, I.; Del Pozo-Zamudio, O.; Dmitriev, A.I.; Bakhtinov, A.P.; Borisenko, D.N.; Kolesnikov, N.N.; Tartakovskii, A.I.; et al. Single-Photon Emitters in GaSe. 2D Mater. 2017, 4, 021010. [Google Scholar] [CrossRef]
- Aharonovich, I.; Englund, D.; Toth, M. Solid-State Single-Photon Emitters. Nat. Photonics 2016, 10, 631–641. [Google Scholar] [CrossRef]
- Klein, J.; Sigl, L.; Gyger, S.; Barthelmi, K.; Florian, M.; Rey, S.; Taniguchi, T.; Watanabe, K.; Jahnke, F.; Kastl, C.; et al. Scalable Single-Photon Sources in Atomically Thin MoS2. ACS Photonics 2021, 8, 669–677. [Google Scholar] [CrossRef]
- Desai, S.B.; Madhvapathy, S.R.; Sachid, A.B.; Llinas, J.P.; Wang, Q.; Ahn, G.H.; Pitner, G.; Kim, M.J.; Bokor, J.; Hu, C.; et al. MoS2 Transistors with 1-Nanometer Gate Lengths. Science 2016, 354, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Withers, F.; Del Pozo-Zamudio, O.; Schwarz, S.; Dufferwiel, S.; Walker, P.M.; Godde, T.; Rooney, A.P.; Gholinia, A.; Woods, C.R.; Blake, P.; et al. WSe2 Light-Emitting Tunneling Transistors with Enhanced Brightness at Room Temperature. Nano Lett. 2015, 15, 8223–8228. [Google Scholar] [CrossRef] [PubMed]
- Bessonov, A.A.; Kirikova, M.N.; Petukhov, D.I.; Allen, M.; Ryhänen, T.; Bailey, M.J.A. Layered Memristive and Memcapacitive Switches for Printable Electronics. Nat. Mater. 2015, 14, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y.I.; et al. Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Greben, K.; Arora, S.; Harats, M.G.; Bolotin, K.I. Intrinsic and Extrinsic Defect-Related Excitons in TMDCs. Nano Lett. 2020, 20, 2544–2550. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D Materials and van Der Waals Heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef]
- Choudhary, N.; Park, J.; Hwang, J.Y.; Chung, H.-S.; Dumas, K.H.; Khondaker, S.I.; Choi, W.; Jung, Y. Centimeter Scale Patterned Growth of Vertically Stacked Few Layer Only 2D MoS2/WS2 van Der Waals Heterostructure. Sci. Rep. 2016, 6, 25456. [Google Scholar] [CrossRef]
- Lin, Y.; Hathaway, E.; Habis, F.; Wang, Y.; Rodriguez, R.G.; Alnasser, K.; Hurley, N.; Cui, J. Enhanced Emission from Defect Levels in Multilayer MoS2. Adv. Opt. Mater. 2022, 10, 2201059. [Google Scholar] [CrossRef]
- Yang, J.; Gu, Y.; Lee, E.; Lee, H.; Park, S.H.; Cho, M.-H.; Kim, Y.H.; Kim, Y.-H.; Kim, H. Wafer-Scale Synthesis of Thickness-Controllable MoS2 Films via Solution-Processing Using a Dimethylformamide/n-Butylamine/2-Aminoethanol Solvent System. Nanoscale 2015, 7, 9311–9319. [Google Scholar] [CrossRef]
- Samadi, M.; Sarikhani, N.; Zirak, M.; Zhang, H.; Zhang, H.-L.; Moshfegh, A.Z. Group 6 Transition Metal Dichalcogenide Nanomaterials: Synthesis, Applications and Future Perspectives. Nanoscale Horiz. 2018, 3, 90–204. [Google Scholar] [CrossRef]
- Abbas, O.A.; Zeimpekis, I.; Wang, H.; Lewis, A.H.; Sessions, N.P.; Ebert, M.; Aspiotis, N.; Huang, C.-C.; Hewak, D.; Mailis, S.; et al. Solution-Based Synthesis of Few-Layer WS2 Large Area Continuous Films for Electronic Applications. Sci. Rep. 2020, 10, 1696. [Google Scholar] [CrossRef] [PubMed]
- Vinoba, M.; Navvamani, R.; Al-Sheeha, H. Controllable Thermal Conversion of Thiomolybdate to Active Few-Layer MoS2 on Alumina for Efficient Hydrodesulfurization. SN Appl. Sci. 2019, 1, 340. [Google Scholar] [CrossRef]
- Park, S.-W.; Jo, Y.J.; Bae, S.; Hong, B.H.; Lee, S.-K. Synthesis of Large-Scale Transition Metal Dichalcogenides for Their Commercialization. Appl. Sci. Converg. Technol. 2020, 29, 133–142. [Google Scholar] [CrossRef]
- Yang, H.; Giri, A.; Moon, S.; Shin, S.; Myoung, J.-M.; Jeong, U. Highly Scalable Synthesis of MoS2 Thin Films with Precise Thickness Control via Polymer-Assisted Deposition. Chem. Mater. 2017, 29, 5772–5776. [Google Scholar] [CrossRef]
- Park, S.; Park, J.; Kim, Y.; Bae, S.; Kim, T.-W.; Park, K.-I.; Hong, B.H.; Jeong, C.K.; Lee, S.-K. Laser-Directed Synthesis of Strain-Induced Crumpled MoS2 Structure for Enhanced Triboelectrification toward Haptic Sensors. Nano Energy 2020, 78, 105266. [Google Scholar] [CrossRef]
- Xiong, W.; Zhou, Y.S.; Hou, W.J.; Jiang, L.J.; Gao, Y.; Fan, L.S.; Jiang, L.; Silvain, J.F.; Lu, Y.F. Direct Writing of Graphene Patterns on Insulating Substrates under Ambient Conditions. Sci. Rep. 2014, 4, 4892. [Google Scholar] [CrossRef]
- Xiong, W.; Zhou, Y.S.; Jiang, L.J.; Sarkar, A.; Mahjouri-Samani, M.; Xie, Z.Q.; Gao, Y.; Ianno, N.J.; Jiang, L.; Lu, Y.F. Single-Step Formation of Graphene on Dielectric Surfaces. Adv. Mater. 2013, 25, 630–634. [Google Scholar] [CrossRef]
- Wang, A.; Jiang, L.; Li, X.; Liu, Y.; Dong, X.; Qu, L.; Duan, X.; Lu, Y. Mask-Free Patterning of High-Conductivity Metal Nanowires in Open Air by Spatially Modulated Femtosecond Laser Pulses. Adv. Mater. 2015, 27, 6238–6243. [Google Scholar] [CrossRef]
- Zuo, P.; Jiang, L.; Li, X.; Tian, M.; Xu, C.; Yuan, Y.; Ran, P.; Li, B.; Lu, Y. Maskless Micro/Nanopatterning and Bipolar Electrical Rectification of MoS2 Flakes Through Femtosecond Laser Direct Writing. ACS Appl. Mater. Interfaces 2019, 11, 39334–39341. [Google Scholar] [CrossRef]
- Lin, Y.; Rivera, D.; Chen, K.P. Woodpile-Type Photonic Crystals with Orthorhombic or Tetragonal Symmetry Formed through Phase Mask Techniques. Opt. Express 2006, 14, 887. [Google Scholar] [CrossRef]
- Hurley, N.; Kamau, S.; Cui, J.; Lin, Y. Holographic Fabrication of 3D Moiré Photonic Crystals Using Circularly Polarized Laser Beams and a Spatial Light Modulator. Micromachines 2023, 14, 1217. [Google Scholar] [CrossRef] [PubMed]
- Lutkenhaus, J.; Lowell, D.; George, D.; Zhang, H.; Lin, Y. Holographic Fabrication of Designed Functional Defect Lines in Photonic Crystal Lattice Using a Spatial Light Modulator. Micromachines 2016, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, J.; Singh, J.; Rana, K.; Ahn, J. Drying-Mediated Self-Assembled Growth of Transition Metal Dichalcogenide Wires and Their Heterostructures. Adv. Mater. 2015, 27, 4142–4149. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.N.R.; Maitra, U.; Waghmare, U.V. Extraordinary Attributes of 2-Dimensional MoS2 Nanosheets. Chem. Phys. Lett. 2014, 609, 172–183. [Google Scholar] [CrossRef]
- Late, D.J.; Liu, B.; Matte, H.S.S.R.; Rao, C.N.R.; Dravid, V.P. Rapid Characterization of Ultrathin Layers of Chalcogenides on SiO2/Si Substrates. Adv. Funct. Mater. 2012, 22, 1894–1905. [Google Scholar] [CrossRef]
- Lv, R.; Robinson, J.A.; Schaak, R.E.; Sun, D.; Sun, Y.; Mallouk, T.E.; Terrones, M. Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Acc. Chem. Res. 2015, 48, 56–64. [Google Scholar] [CrossRef]
- Yang, L.; Cui, X.; Zhang, J.; Wang, K.; Shen, M.; Zeng, S.; Dayeh, S.A.; Feng, L.; Xiang, B. Lattice Strain Effects on the Optical Properties of MoS2 Nanosheets. Sci. Rep. 2014, 4, 5649. [Google Scholar] [CrossRef]
- Wang, T.; Li, J.; Zhao, G. Synthesis of MoS2 and MoO3 Hierarchical Nanostructures Using a Single-Source Molecular Precursor. Powder Technol. 2014, 253, 347–351. [Google Scholar] [CrossRef]
- de Melo, O.; González, Y.; Climent-Font, A.; Galán, P.; Ruediger, A.; Sánchez, M.; Calvo-Mola, C.; Santana, G.; Torres-Costa, V. Optical and Electrical Properties of MoO2 and MoO3 Thin Films Prepared from the Chemically Driven Isothermal Close Space Vapor Transport Technique. J. Phys. Condens. Matter 2019, 31, 295703. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef]
- Tian, H.; Roberts, C.A.; Wachs, I.E. Molecular Structural Determination of Molybdena in Different Environments: Aqueous Solutions, Bulk Mixed Oxides, and Supported MoO3 Catalysts. J. Phys. Chem. C 2010, 114, 14110–14120. [Google Scholar] [CrossRef]
- Jagminas, A.; Niaura, G.; Žalnėravičius, R.; Trusovas, R.; Račiukaitis, G.; Jasulaitiene, V. Laser Light Induced Transformation of Molybdenum Disulphide-Based Nanoplatelet Arrays. Sci. Rep. 2016, 6, 37514. [Google Scholar] [CrossRef]
- Ou, J.Z.; Campbell, J.L.; Yao, D.; Wlodarski, W.; Kalantar-Zadeh, K. In Situ Raman Spectroscopy of H2 Gas Interaction with Layered MoO3. J. Phys. Chem. C 2011, 115, 10757–10763. [Google Scholar] [CrossRef]
- Seguin, L.; Figlarz, M.; Cavagnat, R.; Lassègues, J.-C. Infrared and Raman Spectra of MoO3 Molybdenum Trioxides and MoO3·xH2O Molybdenum Trioxide Hydrates. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1995, 51, 1323–1344. [Google Scholar] [CrossRef]
- Oumahi, C.; De Barros-Bouchet, M.I.; Le Mogne, T.; Charrin, C.; Loridant, S.; Geantet, C.; Afanasiev, P.; Thiebaut, B. MoS2 Formation Induced by Amorphous MoS3 Species under Lubricated Friction. RSC Adv. 2018, 8, 25867–25872. [Google Scholar] [CrossRef] [PubMed]
- Spevack, P.A.; McIntyre, N.S. Thermal Reduction of Molybdenum Trioxide. J. Phys. Chem. 1992, 96, 9029–9035. [Google Scholar] [CrossRef]
- Lin, Y.; Hurley, N.; Kamau, S.; Hathaway, E.; Jian, Y.; Rodriguez, R.G.; Varghese, S.; Krylyuk, S.; Da-vydov, A.V.; Wang, Y.; et al. Strain-activated stimulated emission from multilayer MoSe2 in a narrow operation window. Phys. Status Solidi (RRL) Rapid Res. Lett. 2024; in press. [Google Scholar] [CrossRef]
- Hu, L.; Shan, X.; Wu, Y.; Zhao, J.; Lu, X. Laser Thinning and Patterning of MoS2 with Layer-by-Layer Precision. Sci. Rep. 2017, 7, 15538. [Google Scholar] [CrossRef] [PubMed]
- Quagraine, E.; Georgakaki, I.; Coucouvanis, D. Reactivity and Kinetic Studies of (NH4)2(MoS4) in Acidic Aqueous Solution: Possible Relevance to the Angiostatic Function of the MoS42− Ligand. J. Inorg. Biochem. 2009, 103, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Hossain, R.F.; Bandyopadhyay, A.S.; Kaul, A.B. Vibrational Spectroscopy on Solution-Dispersed MoS2 for Inkjet-Printed Photodetectors. Emergent Mater. 2022, 5, 477–487. [Google Scholar] [CrossRef]
- Deubel, M.; von Freymann, G.; Wegener, M.; Pereira, S.; Busch, K.; Soukoulis, C.M. Direct Laser Writing of Three-Dimensional Photonic-Crystal Templates for Telecommunications. Nat. Mater. 2004, 3, 444–447. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurley, N.; Bhandari, B.; Kamau, S.; Gonzalez Rodriguez, R.; Squires, B.; Kaul, A.B.; Cui, J.; Lin, Y. Selective CW Laser Synthesis of MoS2 and Mixture of MoS2 and MoO2 from (NH4)2MoS4 Film. Micromachines 2024, 15, 258. https://doi.org/10.3390/mi15020258
Hurley N, Bhandari B, Kamau S, Gonzalez Rodriguez R, Squires B, Kaul AB, Cui J, Lin Y. Selective CW Laser Synthesis of MoS2 and Mixture of MoS2 and MoO2 from (NH4)2MoS4 Film. Micromachines. 2024; 15(2):258. https://doi.org/10.3390/mi15020258
Chicago/Turabian StyleHurley, Noah, Bhojraj Bhandari, Steve Kamau, Roberto Gonzalez Rodriguez, Brian Squires, Anupama B. Kaul, Jingbiao Cui, and Yuankun Lin. 2024. "Selective CW Laser Synthesis of MoS2 and Mixture of MoS2 and MoO2 from (NH4)2MoS4 Film" Micromachines 15, no. 2: 258. https://doi.org/10.3390/mi15020258
APA StyleHurley, N., Bhandari, B., Kamau, S., Gonzalez Rodriguez, R., Squires, B., Kaul, A. B., Cui, J., & Lin, Y. (2024). Selective CW Laser Synthesis of MoS2 and Mixture of MoS2 and MoO2 from (NH4)2MoS4 Film. Micromachines, 15(2), 258. https://doi.org/10.3390/mi15020258