Worm-Based Diagnosis Combining Microfluidics toward Early Cancer Screening
Abstract
:1. Introduction
2. Standard Worm-Based Diagnosis Procedure Using Chemotaxis Behavior Assays
2.1. Developmental Stage Synchronization of C. elegans
2.2. Methods Used for Behavior Assays
2.3. Classic Immobilization Methods
2.4. Automatic Worm Detection Systems
3. Microfluidic Systems for High-Throughput Cancer Screening Using C. elegans
3.1. Microfluidics for Sorting C. elegans
3.2. Microfluidic Systems for Behavior Assays of C. elegans
3.3. Microfluidic Approaches for Immobilization
3.4. Worm-Counting Microfluidic Devices
4. Conclusions and Outlook
- 1.
- Microfluidic module for sorting that captures or manipulates large numbers of C. elegans in the L4 stage.
- 2.
- Microchannels for behavior assays that enable precise generation of concentration gradients in small areas.
- 3.
- Immobilized components that achieve high-throughput immobilization without adversely affecting the survival and reproduction of C. elegans.
- 4.
- Smart sensing function that alleviates the burden of manual counting and significantly enhances productivity.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Clarke, C.A.; Hubbell, E.; Kurian, A.W.; Colditz, G.A.; Hartman, A.-R.; Gomez, S.L. Projected Reductions in Absolute Cancer-Related Deaths from Diagnosing Cancers Before Metastasis, 2006–2015. Cancer Epidemiol. Biomarkers Prev. 2020, 29, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Jelski, W.; Mroczko, B. Biochemical Diagnostics of Pancreatic Cancer—Present and Future. Clin. Chim. Acta 2019, 498, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Qu, X. Cancer Biomarker Detection: Recent Achievements and Challenges. Chem. Soc. Rev. 2015, 44, 2963–2997. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.K.O.; Chong, W.W.S.; Jin, H.; Lam, E.K.Y.; Shin, V.Y.; Yu, J.; Poon, T.C.W.; Ng, S.S.M.; Sung, J.J.Y. Differential Expression of microRNAs in Plasma of Patients with Colorectal Cancer: A Potential Marker for Colorectal Cancer Screening. Gut 2009, 58, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Veitch, A.M.; Uedo, N.; Yao, K.; East, J.E. Optimizing Early Upper Gastrointestinal Cancer Detection at Endoscopy. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Ward, P.S.; Thompson, C.B. Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate. Cancer Cell 2012, 21, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Leyten, G.H.J.M.; Hessels, D.; Jannink, S.A.; Smit, F.P.; de Jong, H.; Cornel, E.B.; de Reijke, T.M.; Vergunst, H.; Kil, P.; Knipscheer, B.C.; et al. Prospective Multicentre Evaluation of PCA3 and TMPRSS2-ERG Gene Fusions as Diagnostic and Prognostic Urinary Biomarkers for Prostate Cancer. Eur. Urol. 2014, 65, 534–542. [Google Scholar] [CrossRef]
- Thompson, M.; Sarabia Feria, N.; Yoshioka, A.; Tu, E.; Civitci, F.; Estes, S.; Wagner, J.T. A Caenorhabditis Elegans Behavioral Assay Distinguishes Early Stage Prostate Cancer Patient Urine from Controls. Biol. Open 2021, 10, bio057398. [Google Scholar] [CrossRef]
- Lippi, G.; Cervellin, G. Canine Olfactory Detection of Cancer versus Laboratory Testing: Myth or Opportunity? Clin. Chem. Lab. Med. 2012, 50, 435–439. [Google Scholar] [CrossRef]
- Sato, T.; Katsuoka, Y.; Yoneda, K.; Nonomura, M.; Uchimoto, S.; Kobayakawa, R.; Kobayakawa, K.; Mizutani, Y. Sniffer Mice Discriminate Urine Odours of Patients with Bladder Cancer: A Proof-of-Principle Study for Non-Invasive Diagnosis of Cancer-Induced Odours. Sci. Rep. 2017, 7, 14628. [Google Scholar] [CrossRef] [PubMed]
- Sonoda, H.; Kohnoe, S.; Yamazato, T.; Satoh, Y.; Morizono, G.; Shikata, K.; Morita, M.; Watanabe, A.; Morita, M.; Kakeji, Y.; et al. Colorectal Cancer Screening with Odour Material by Canine Scent Detection. Gut 2011, 60, 814–819. [Google Scholar] [CrossRef]
- Spehr, M.; Munger, S.D. Olfactory Receptors: G Protein-Coupled Receptors and Beyond. J. Neurochem. 2009, 109, 1570–1583. [Google Scholar] [CrossRef] [PubMed]
- Hirotsu, T.; Sonoda, H.; Uozumi, T.; Shinden, Y.; Mimori, K.; Maehara, Y.; Ueda, N.; Hamakawa, M. A Highly Accurate Inclusive Cancer Screening Test Using Caenorhabditis Elegans Scent Detection. PLoS ONE 2015, 10, e0118699. [Google Scholar] [CrossRef]
- Kusumoto, H.; Tashiro, K.; Shimaoka, S.; Tsukasa, K.; Baba, Y.; Furukawa, S.; Furukawa, J.; Suenaga, T.; Kitazono, M.; Tanaka, S.; et al. Behavioural Response Alteration in Caenorhabditis Elegans to Urine After Surgical Removal of Cancer: Nematode-NOSE (N-NOSE) for Postoperative Evaluation. Biomark. Cancer 2019, 11, 1179299X1989655. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chua, S.L.; Khoo, B.L. Worm-Based Microfluidic Biosensor for Real-Time Assessment of the Metastatic Status. Cancers 2021, 13, 873. [Google Scholar] [CrossRef] [PubMed]
- San-Miguel, A.; Lu, H. Microfluidics as a Tool for C. elegans Research. WormBook 2013, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Olivia, M.; Palmer, C.; Chin-Sang, I. C. elegans Chemotaxis Assay. JoVE 2013, 74, e50069. [Google Scholar] [CrossRef]
- Bargmann, C.I.; Hartwieg, E.; Horvitz, H.R. Odorant-Selective Genes and Neurons Mediate Olfaction in C. elegans. Cell 1993, 74, 515–527. [Google Scholar] [CrossRef]
- Kobayashi, M.; Fujita, A.; Ogawa, T.; Tanisaka, Y.; Mizuide, M.; Kondo, N.; Imaizumi, Y.; Hirotsu, T.; Ryozawa, S. Caenorhabditis Elegans as a Diagnostic Aid for Pancreatic Cancer. Pancreas 2021, 50, 673–678. [Google Scholar] [CrossRef]
- Kusumoto, H.; Tashiro, K.; Shimaoka, S.; Tsukasa, K.; Baba, Y.; Furukawa, S.; Furukawa, J.; Niihara, T.; Hirotsu, T.; Uozumi, T. Efficiency of Gastrointestinal Cancer Detection by Nematode-NOSE (N-NOSE). In Vivo 2020, 34, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, K.; Tsuchiya, A.; Takamori, Y.; Harada, Y.; Horibe, T.; Hirotsu, T. A Study on the Detectability of Digestive System Cancers by Nematode-NOSE (N-NOSE). Nihon Shoukaki Gan Kenshin Gakkai zasshi 2021, 59, 237–245. [Google Scholar] [CrossRef]
- Lanza, E.; Di Rocco, M.; Schwartz, S.; Caprini, D.; Milanetti, E.; Ferrarese, G.; Lonardo, M.T.; Pannone, L.; Ruocco, G.; Martinelli, S.; et al. C. elegans-Based Chemosensation Strategy for the Early Detection of Cancer Metabolites in Urine Samples. Sci. Rep. 2021, 11, 17133. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, E.M.; Mango, S.E. The Art and Design of Genetic Screens: Caenorhabditis Elegans. Nat. Rev. Genet. 2002, 3, 356–369. [Google Scholar] [CrossRef] [PubMed]
- Iliff, A.J.; Xu, X.Z.S. C. elegans: A Sensible Model for Sensory Biology. J. Neurogenet. 2020, 34, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Stiernagle, T. Maintenance of C. elegans. WormBook 2006, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Porta-de-la-Riva, M.; Fontrodona, L.; Villanueva, A.; Cerón, J. Basic Caenorhabditis Elegans Methods: Synchronization and Observation. JoVE 2012, 64, e4019. [Google Scholar] [CrossRef]
- Troemel, E.R.; Kimmel, B.E.; Bargmann, C.I. Reprogramming Chemotaxis Responses: Sensory Neurons Define Olfactory Preferences in C. elegans. Cell 1997, 91, 161–169. [Google Scholar] [CrossRef]
- Suzuki, M.; Hattori, Y.; Saito, T.; Harada, Y. Pond Assay for the Sensory Systems of Caenorhabditis Elegans: A Novel Anesthesia-Free Method Enabling Detection of Responses to Extremely Low Chemical Concentrations. Biology 2022, 11, 335. [Google Scholar] [CrossRef]
- Manjarrez, J.R.; Mailler, R. Stress and Timing Associated with Caenorhabditis Elegans Immobilization Methods. Heliyon 2020, 6, e04263. [Google Scholar] [CrossRef]
- Bowler, M.W.; Montgomery, M.G.; Leslie, A.G.W.; Walker, J.E. How Azide Inhibits ATP Hydrolysis by the F-ATPases. Proc. Natl. Acad. Sci. USA 2006, 103, 8646–8649. [Google Scholar] [CrossRef] [PubMed]
- Wyeth, R.C.; Croll, R.P.; Willows, A.O.D.; Spencer, A.N. 1-Phenoxy-2-Propanol Is a Useful Anaesthetic for Gastropods Used in Neurophysiology. J. Neurosci. Methods 2009, 176, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Massie, M.R.; Lapoczka, E.M.; Boggs, K.D.; Stine, K.E.; White, G.E. Exposure to the Metabolic Inhibitor Sodium Azide Induces Stress Protein Expression and Thermotolerance in the Nematode Caenorhabditis Elegans. Cell Stress Chaperones 2003, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.D.; Powell, J.R. Long-Term Recovery from Acute Cold Shock in Caenorhabditis Elegans. BMC Cell Biol. 2016, 17, 2. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Sun, L.; Gabel, C.V.; Fang-Yen, C. Long-Term Imaging of Caenorhabditis Elegans Using Nanoparticle-Mediated Immobilization. PLoS ONE 2013, 8, e53419. [Google Scholar] [CrossRef] [PubMed]
- Kyra, B.; Edsinger, E.; Albrecht, D.R. Rapid and Gentle Hydrogel Encapsulation of Living Organisms Enables Long-Term Microscopy over Multiple Hours. Commun. Biol. 2018, 1, 73. [Google Scholar] [CrossRef]
- Nagy, S.; Goessling, M.; Amit, Y.; Biron, D. A Generative Statistical Algorithm for Automatic Detection of Complex Postures. PLoS Comput. Biol. 2015, 11, e1004517. [Google Scholar] [CrossRef]
- Roussel, N.; Morton, C.A.; Finger, F.P.; Roysam, B. A Computational Model for C. elegans Locomotory Behavior: Application to Multiworm Tracking. IEEE Trans. Biomed. Eng. 2007, 54, 1786–1797. [Google Scholar] [CrossRef] [PubMed]
- Crombie, T.A.; Chikuturudzi, C.; Cook, D.E.; Andersen, E.C. An Automated Approach to Quantify Chemotaxis Index in C. elegans. MicroPubl. Biol. 2022, 2022. [Google Scholar] [CrossRef]
- Mori, S.; Tachibana, Y.; Suzuki, M.; Harada, Y. Automatic Worm Detection to Solve Overlapping Problems Using a Convolutional Neural Network. Sci. Rep. 2022, 12, 8521. [Google Scholar] [CrossRef]
- Reyes, D.R.; Iossifidis, D.; Auroux, P.-A.; Manz, A. Micro Total Analysis Systems. 1. Introduction, Theory, and Technology. Anal. Chem. 2002, 74, 2623–2636. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M. The Origins and the Future of Microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Vilkner, T.; Janasek, D.; Manz, A. Micro Total Analysis Systems. Recent Developments. Anal. Chem. 2004, 76, 3373–3385. [Google Scholar] [CrossRef] [PubMed]
- Sivagnanam, V.; Gijs, M.A.M. Exploring Living Multicellular Organisms, Organs, and Tissues Using Microfluidic Systems. Chem. Rev. 2013, 113, 3214–3247. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.M.; Karow, D.S.; Lu, H.; Chang, A.J.; Chang, J.S.; Ellis, R.E.; Marletta, M.A.; Bargmann, C.I. Oxygen Sensation and Social Feeding Mediated by a C. elegans Guanylate Cyclase Homologue. Nature 2004, 430, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.; Crane, M.M.; Lu, H. Automated On-Chip Rapid Microscopy, Phenotyping and Sorting of C. elegans. Nat. Methods 2008, 5, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, Z.; Ching, P.; Shi, Q.; Li, X. An Integrated Microfluidic Platform for Evaluating in Vivo Antimicrobial Activity of Natural Compounds Using a Whole-Animal Infection Model. Lab Chip 2013, 13, 3373–3382. [Google Scholar] [CrossRef] [PubMed]
- Carr, J.A.; Parashar, A.; Gibson, R.; Robertson, A.P.; Martin, R.J.; Pandey, S. A Microfluidic Platform for High-Sensitivity, Real-Time Drug Screening on C. elegans and Parasitic Nematodes. Lab Chip 2011, 11, 2385–2396. [Google Scholar] [CrossRef] [PubMed]
- Aitlhadj, L.; Stürzenbaum, S.R. The Use of FUdR Can Cause Prolonged Longevity in Mutant Nematodes. Mech. Ageing Dev. 2010, 131, 364–365. [Google Scholar] [CrossRef]
- Dong, L.; Cornaglia, M.; Lehnert, T.; Gijs, M.A.M. Versatile Size-Dependent Sorting of C. elegans Nematodes and Embryos Using a Tunable Microfluidic Filter Structure. Lab Chip 2016, 16, 574–585. [Google Scholar] [CrossRef]
- Yang, L.; Hong, T.; Zhang, Y.; Arriola, J.G.S.; Nelms, B.L.; Mu, R.; Li, D. A Microfluidic Diode for Sorting and Immobilization of Caenorhabditis Elegans. Biomed. Microdevices 2017, 19, 38. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ge, A.; Hu, L.; Feng, X.; Du, W.; Liu, B.-F. A Microfluidic Microfilter Chip Driven by Electrotaxis and Fluid Flow for Size-Dependent C. elegans Sorting with High Purity and Efficiency. Sens. Actuators B Chem. 2018, 260, 311–319. [Google Scholar] [CrossRef]
- Atakan, H.B.; Ayhan, F.; Gijs, M.A.M. PDMS Filter Structures for Size-Dependent Larval Sorting and on-Chip Egg Extraction of C. elegans. Lab Chip 2020, 20, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Solvas, X.C.I.; Geier, F.M.; Leroi, A.M.; Bundy, J.G.; Edel, J.B.; deMello, A.J. High-Throughput Age Synchronisation of Caenorhabditis Elegans. Chem. Commun. 2011, 47, 9801. [Google Scholar] [CrossRef] [PubMed]
- Ai, X.; Zhuo, W.; Liang, Q.; McGrath, P.T.; Lu, H. A High-Throughput Device for Size Based Separation of C. elegans Developmental Stages. Lab Chip 2014, 14, 1746–1752. [Google Scholar] [CrossRef] [PubMed]
- Manière, X.; Lebois, F.; Matic, I.; Ladoux, B.; Di Meglio, J.-M.; Hersen, P. Running Worms: C. elegans Self-Sorting by Electrotaxis. PLoS ONE 2011, 6, e16637. [Google Scholar] [CrossRef] [PubMed]
- Rezai, P.; Salam, S.; Selvaganapathy, P.R.; Gupta, B.P. Electrical Sorting of Caenorhabditis Elegans. Lab Chip 2012, 12, 1831. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, R.; Ge, A.; Hu, L.; Wang, S.; Feng, X.; Du, W.; Liu, B.-F. Highly Efficient Microfluidic Sorting Device for Synchronizing Developmental Stages of C. elegans Based on Deflecting Electrotaxis. Lab Chip 2015, 15, 2513–2521. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Kim, D.; Hyun Ko, U.; Shin, J.H. A Sorting Strategy for C. elegans Based on Size-Dependent Motility and Electrotaxis in a Micro-Structured Channel. Lab Chip 2012, 12, 4128. [Google Scholar] [CrossRef]
- Chen, W.; Tian, B.; Lan, J.; Chen, D.; Zhu, Z. Using Microfluidic Impedance Cytometry to Identify the Life Stages of C. elegans Nematodes. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 1628–1631. [Google Scholar]
- Dong, X.; Song, P.; Liu, X. An Automated Microfluidic System for Morphological Measurement and Size-Based Sorting of C. elegans. IEEE Trans. NanoBioscience 2019, 18, 373–380. [Google Scholar] [CrossRef]
- Hulme, S.E.; Whitesides, G.M. Chemistry and the Worm: Caenorhabditis Elegans as a Platform for Integrating Chemical and Biological Research. Angew. Chem. Int. Ed. Engl. 2011, 50, 4774–4807. [Google Scholar] [CrossRef] [PubMed]
- Sukul, N.C.; Croll, N.A. Influence of Potential Difference and Current on the Electrotaxis of Caenorhaditis Elegans. J. Nematol. 1978, 10, 314–317. [Google Scholar] [PubMed]
- Gabel, C.V.; Gabel, H.; Pavlichin, D.; Kao, A.; Clark, D.A.; Samuel, A.D.T. Neural Circuits Mediate Electrosensory Behavior in Caenorhabditis Elegans. J. Neurosci. 2007, 27, 7586–7596. [Google Scholar] [CrossRef]
- Ben-Yakar, A.; Chronis, N.; Lu, H. Microfluidics for the Analysis of Behavior, Nerve Regeneration, and Neural Cell Biology in C. elegans. Curr. Opin. Neurobiol. 2009, 19, 561–567. [Google Scholar] [CrossRef]
- Queirós, L.; Marques, C.; Pereira, J.L.; Gonçalves, F.J.M.; Aschner, M.; Pereira, P. Overview of Chemotaxis Behavior Assays in Caenorhabditis Elegans. Curr. Protoc. 2021, 1, e120. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, D.R.; Bargmann, C.I. High-Content Behavioral Analysis of Caenorhabditis Elegans in Precise Spatiotemporal Chemical Environments. Nat. Methods 2011, 8, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, Z.; Yang, F.; Wang, S.; Hou, F. A Microfluidic Device for Rapid Screening of Chemotaxis-Defective Caenorhabditis Elegans Mutants. Biomed. Microdevices 2013, 15, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Ye, J.; Tan, H.; Ge, A.; Tang, L.; Feng, X.; Du, W.; Liu, B.-F. Quantitative Analysis of Caenorhabditis Elegans Chemotaxis Using a Microfluidic Device. Anal. Chim. Acta 2015, 887, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Feng, X.; Du, W.; Liu, B.-F. Microfluidic Worm-Chip for in Vivo Analysis of Neuronal Activity upon Dynamic Chemical Stimulations. Anal. Chim. Acta 2011, 701, 23–28. [Google Scholar] [CrossRef]
- Shi, W.; Wen, H.; Lin, B.; Qin, J. Microfluidic Platform for the Study of Caenorhabditis Elegans. Top Curr. Chem. 2011, 304, 323–338. [Google Scholar] [CrossRef]
- Shiga, H.; Takeuchi, M.; Kim, E.; Hisamoto, N.; Ishikawa, T.; Fukuda, T. A Microfluidic Device with Check Valves to Detect Cancer Using Caenorhabditis Elegans. In Proceedings of the 2022 IEEE/SICE International Symposium on System Integration (SII), Narvik, Norway, 9–12 January 2022; pp. 969–970. [Google Scholar]
- Cornaglia, M.; Lehnert, T.; Gijs, M.A.M. Microfluidic Systems for High-Throughput and High-Content Screening Using the Nematode Caenorhabditis Elegans. Lab Chip 2017, 17, 3736–3759. [Google Scholar] [CrossRef] [PubMed]
- Frey, N.; Sönmez, U.M.; Minden, J.; LeDuc, P. Microfluidics for Understanding Model Organisms. Nat. Commun. 2022, 13, 3195. [Google Scholar] [CrossRef] [PubMed]
- Hulme, S.E.; Shevkoplyas, S.S.; Apfeld, J.; Fontana, W.; Whitesides, G.M. A Microfabricated Array of Clamps for Immobilizing and Imaging C. elegans. Lab Chip 2007, 7, 1515. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.; Lattmann, E.; Aegerter-Wilmsen, T.; Hengartner, M.; Hajnal, A.; deMello, A.; Casadevall i Solvas, X. Long-Term C. elegans Immobilization Enables High Resolution Developmental Studies in Vivo. Lab Chip 2018, 18, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Rohde, C.B.; Zeng, F.; Gonzalez-Rubio, R.; Angel, M.; Yanik, M.F. Microfluidic System for On-Chip High-Throughput Whole-Animal Sorting and Screening at Subcellular Resolution. Proc. Natl. Acad. Sci. USA 2007, 104, 13891–13895. [Google Scholar] [CrossRef] [PubMed]
- Gokce, S.K.; Guo, S.X.; Ghorashian, N.; Everett, W.N.; Jarrell, T.; Kottek, A.; Bovik, A.C.; Ben-Yakar, A. A Fully Automated Microfluidic Femtosecond Laser Axotomy Platform for Nerve Regeneration Studies in C. elegans. PLoS ONE 2014, 9, e113917. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Rohde, C.B.; Yanik, M.F. Sub-Cellular Precision on-Chip Small-Animal Immobilization, Multi-Photon Imaging and Femtosecond-Laser Manipulation. Lab Chip 2008, 8, 653. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.X.; Bourgeois, F.; Chokshi, T.; Durr, N.J.; Hilliard, M.A.; Chronis, N.; Ben-Yakar, A. Femtosecond Laser Nanoaxotomy Lab-on-a-Chip for in Vivo Nerve Regeneration Studies. Nat. Methods 2008, 5, 531–533. [Google Scholar] [CrossRef] [PubMed]
- Gilleland, C.L.; Rohde, C.B.; Zeng, F.; Yanik, M.F. Microfluidic Immobilization of Physiologically Active Caenorhabditis Elegans. Nat. Protoc. 2010, 5, 1888–1902. [Google Scholar] [CrossRef]
- Shivers, J.; Uppaluri, S.; Brangwynne, C.P. Microfluidic Immobilization and Subcellular Imaging of Developing Caenorhabditis Elegans. Microfluid. Nanofluid. 2017, 21, 149. [Google Scholar] [CrossRef]
- Keil, W.; Kutscher, L.M.; Shaham, S.; Siggia, E.D. Long-Term High-Resolution Imaging of Developing C. elegans Larvae with Microfluidics. Dev. Cell 2017, 40, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Krajniak, J.; Lu, H. Long-Term High-Resolution Imaging and Culture of C. elegans in Chip-Gel Hybrid Microfluidic Device for Developmental Studies. Lab Chip 2010, 10, 1862. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.; Krajniak, J.; Matsunaga, Y.; Benian, G.M.; Lu, H. On-Demand Optical Immobilization of Caenorhabditis Elegans for High-Resolution Imaging and Microinjection. Lab Chip 2014, 14, 3498. [Google Scholar] [CrossRef] [PubMed]
- Chuang, H.-S.; Chuang, W.-Y. Rapid, Reversible and Addressable Immobilization of Caenorhabditis Elegans in Pluronic F-127 Using an Optoelectric Device. Sens. Actuators B Chem. 2017, 253, 376–383. [Google Scholar] [CrossRef]
- Chokshi, T.V.; Ben-Yakar, A.; Chronis, N. CO2 and Compressive Immobilization of C. elegans on-Chip. Lab Chip 2009, 9, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Chuang, H.-S.; Chen, H.-Y.; Chen, C.-S.; Chiu, W.-T. Immobilization of the Nematode Caenorhabditis Elegans with Addressable Light-Induced Heat Knockdown (ALINK). Lab Chip 2013, 13, 2980. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhao, P.; Wu, J.; Chuang, H.-S.; Wang, W. On-Demand Dielectrophoretic Immobilization and High-Resolution Imaging of C. elegans in Microfluids. Sens. Actuators B Chem. 2018, 259, 703–708. [Google Scholar] [CrossRef]
- Sridhar, N.; Fajrial, A.K.; Doser, R.L.; Hoerndli, F.J.; Ding, X. Surface Acoustic Wave Microfluidics for Repetitive and Reversible Temporary Immobilization of C. elegans. Lab Chip 2022, 22, 4882–4893. [Google Scholar] [CrossRef] [PubMed]
- Yaman, Y.; Şenlik, B.; Özüiçli, M.; Keleş, M.; Aymaz, R.; Bay, V.; Hatipoğlu, E.; Koncagül, S.; Öner, Y.; Ün, C. Detecting Fecal Egg Count (FEC) for Gastrointestinal Nematodes of Adult Turkish Sheep with Different Scrapie Related PRNP Haplotypes. Anim. Biotechnol. 2021, 32, 381–387. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.; He, Q.; Qin, J.; Yu, Y.; Li, X.; Zhang, L.; Yao, M.; Liu, J.; Chen, Z. Microfluidic Platform Integrated with Worm-Counting Setup for Assessing Manganese Toxicity. Biomicrofluidics 2014, 8, 054110. [Google Scholar] [CrossRef]
- Fitzgerald, R.C.; Antoniou, A.C.; Fruk, L.; Rosenfeld, N. The Future of Early Cancer Detection. Nat. Med. 2022, 28, 666–677. [Google Scholar] [CrossRef] [PubMed]
- di Luccio, E.; Morishita, M.; Hirotsu, T. C. elegans as a Powerful Tool for Cancer Screening. Biomedicines 2022, 10, 2371. [Google Scholar] [CrossRef] [PubMed]
- Asai, A.; Konno, M.; Ozaki, M.; Kawamoto, K.; Chijimatsu, R.; Kondo, N.; Hirotsu, T.; Ishii, H. Scent Test Using Caenorhabditis Elegans to Screen for Early-Stage Pancreatic Cancer. Oncotarget 2021, 12, 1687–1696. [Google Scholar] [CrossRef] [PubMed]
- Inaba, S.; Shimozono, N.; Yabuki, H.; Enomoto, M.; Morishita, M.; Hirotsu, T.; di Luccio, E. Accuracy Evaluation of the C. elegans Cancer Test (N-NOSE) Using a New Combined Method. Cancer Treat. Res. Commun. 2021, 27, 100370. [Google Scholar] [CrossRef]
- Yoshida, K.; Hirotsu, T.; Tagawa, T.; Oda, S.; Wakabayashi, T.; Iino, Y.; Ishihara, T. Odour Concentration-Dependent Olfactory Preference Change in C. elegans. Nat. Commun. 2012, 3, 739. [Google Scholar] [CrossRef]
- Luo, L.; Gabel, C.V.; Ha, H.-I.; Zhang, Y.; Samuel, A.D.T. Olfactory Behavior of Swimming C. elegans Analyzed by Measuring Motile Responses to Temporal Variations of Odorants. J. Neurophysiol. 2008, 99, 2617–2625. [Google Scholar] [CrossRef]
- Ning, W.; Qiao, N.; Zhang, X.; Pei, D.; Wang, W. Metabolic Profiling Analysis for Clinical Urine of Colorectal Cancer. Asia-Pac. J. Clin. Oncol. 2021, 17, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-Y.; Juo, B.-R.; Yeh, Y.-H.; Fu, S.-H.; Chen, Y.-T.; Chen, C.-L.; Wu, K.-P. Putative Markers for the Detection of Early-Stage Bladder Cancer Selected by Urine Metabolomics. BMC Bioinform. 2021, 22, 305. [Google Scholar] [CrossRef] [PubMed]
- Struck-Lewicka, W.; Wawrzyniak, R.; Artymowicz, M.; Kordalewska, M.; Markuszewski, M.; Matuszewski, M.; Gutknecht, P.; Siebert, J.; Markuszewski, M.J. GC-MS-Based Untargeted Metabolomics of Plasma and Urine to Evaluate Metabolic Changes in Prostate Cancer. J. Breath Res. 2020, 14, 047103. [Google Scholar] [CrossRef]
- Suzuki, M.; Nishiumi, S.; Matsubara, A.; Azuma, T.; Yoshida, M. Metabolome Analysis for Discovering Biomarkers of Gastroenterological Cancer. J. Chromatogr. B 2014, 966, 59–69. [Google Scholar] [CrossRef]
- Silva, C.L.; Perestrelo, R.; Capelinha, F.; Tomás, H.; Câmara, J.S. An Integrative Approach Based on GC–qMS and NMR Metabolomics Data as a Comprehensive Strategy to Search Potential Breast Cancer Biomarkers. Metabolomics 2021, 17, 72. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Ran, R.; Gao, S.; Shi, M.; Shi, X.; Long, F.; Zhou, Y.; Yang, Y.; Tang, X.; Lin, A.; et al. Complex Metabolic Interactions between Ovary, Plasma, Urine, and Hair in Ovarian Cancer. Front. Oncol. 2022, 12, 916375. [Google Scholar] [CrossRef] [PubMed]
- Eroglu, E.C.; Kucukgoz Gulec, U.; Vardar, M.A.; Paydas, S. GC-MS Based Metabolite Fingerprinting of Serous Ovarian Carcinoma and Benign Ovarian Tumor. Eur. J. Mass Spectrom. 2022, 28, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Bargmann, C. Chemosensation in C. elegans. WormBook 2006, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Chen, D.; Li, X.; Al-Sheikh, U.; Duan, D.; Fan, Y.; Zhu, L.; Zeng, W.; Hu, Z.; Tong, X.; et al. Phasic/Tonic Glial GABA Differentially Transduce for Olfactory Adaptation and Neuronal Aging. Neuron, 2024; online ahead of print. [Google Scholar] [CrossRef]
- Chalasani, S.H.; Chronis, N.; Tsunozaki, M.; Gray, J.M.; Ramot, D.; Goodman, M.B.; Bargmann, C.I. Dissecting a Circuit for Olfactory Behaviour in Caenorhabditis Elegans. Nature 2007, 450, 63–70. [Google Scholar] [CrossRef]
- Midkiff, D.; San-Miguel, A. Microfluidic Technologies for High Throughput Screening Through Sorting and On-Chip Culture of C. elegans. Molecules 2019, 24, 4292. [Google Scholar] [CrossRef]
Author (Year), Reference | Cancer Types (Patient Number) | Sensitivity (%) | Specificity (%) | Accuracy (%) | AUC 1 | Time (min) |
---|---|---|---|---|---|---|
Kobayashi et al., 2021 [20] | pancreatic cancer (104) | 84.62 | 60.00 | 72.86 | NR 2 | 30–60 |
Kusumoto et al., 2020 [21] | pancreatic cancer (24) | NR | NR | NR | 0.862 | 30 |
Kusumoto et al., 2020 [21] | colorectal cancer (67) | NR | NR | NR | 0.837 | 30 |
Nishikawa et al., 2021 [22] | colorectal cancer (25) | 80.00 | NR | NR | NR | 30–60 |
Kusumoto et al., 2020 [21] | gastric cancer (58) | NR | NR | NR | 0.874 | 30 |
Nishikawa et al., 2021 [22] | gastric cancer (16) | 68.80 | NR | NR | NR | 30–60 |
Kusumoto et al., 2020 [21] | esophageal cancer (18) | NR | NR | NR | 0.870 | 30 |
Nishikawa et al., 2021 [22] | esophageal cancer (5) | 80.00 | NR | NR | NR | 30–60 |
Kusumoto et al., 2020 [21] | biliary gallbladder cancer (13) | NR | NR | NR | 0.893 | 30 |
Nishikawa et al., 2021 [22] | biliary tract cancer (7) | 100 | NR | NR | NR | 30–60 |
Nishikawa et al., 2021 [22] | hepatocellular carcinoma (11) | 90.9 | NR | NR | NR | 30–60 |
Lanza et al., 2021 [23] | breast cancer (36) | 75.00 | 97.22 | 86.11 | NR | 60 |
Thompson et al., 2021 [9] | prostate cancer (21) | 76.00 | 67.00 | 70.00 | NR | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Cui, C.; Chen, S.; Chen, S.; Wang, Y.; Xu, Q.; Yang, L.; Ye, J.; Hong, Z.; Hu, H. Worm-Based Diagnosis Combining Microfluidics toward Early Cancer Screening. Micromachines 2024, 15, 484. https://doi.org/10.3390/mi15040484
Shi Y, Cui C, Chen S, Chen S, Wang Y, Xu Q, Yang L, Ye J, Hong Z, Hu H. Worm-Based Diagnosis Combining Microfluidics toward Early Cancer Screening. Micromachines. 2024; 15(4):484. https://doi.org/10.3390/mi15040484
Chicago/Turabian StyleShi, Yutao, Chen Cui, Shengzhi Chen, Siyu Chen, Yiheng Wang, Qingyang Xu, Lan Yang, Jiayi Ye, Zhi Hong, and Huan Hu. 2024. "Worm-Based Diagnosis Combining Microfluidics toward Early Cancer Screening" Micromachines 15, no. 4: 484. https://doi.org/10.3390/mi15040484
APA StyleShi, Y., Cui, C., Chen, S., Chen, S., Wang, Y., Xu, Q., Yang, L., Ye, J., Hong, Z., & Hu, H. (2024). Worm-Based Diagnosis Combining Microfluidics toward Early Cancer Screening. Micromachines, 15(4), 484. https://doi.org/10.3390/mi15040484