The Effects of a Gate Bias Condition on 1.2 kV SiC MOSFETs during Irradiating Gamma-Radiation
Abstract
:1. Introduction
2. Experimental Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millan, J.; Godignon, P.; Perpina, X.; Pérez-Tomás, A.; Rebollo, J. A survey of wide bandgap power semiconductor devices. IEEE Trans. Power. Electron. 2014, 29, 2155–2163. [Google Scholar] [CrossRef]
- Cooper, J.A. Advances in SiC MOS technology. Phys. Status Solidi A 1997, 162, 305–320. [Google Scholar] [CrossRef]
- Sheridan, D.C.; Chung, G.; Clark, S.; Cressler, J.D. The effects of high-dose gamma irradiation on high-voltage 4H-SiC Schottky diodes and the SiC-SiO2 interface. IEEE Trans. Nucl. Sci. 2001, 48, 2229–2232. [Google Scholar] [CrossRef]
- Sze, S.M. Semiconductor Devices: Physics and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 37–58. [Google Scholar]
- Fleetwood, D.M.; Eisen, H.A. Total-dose radiation hardness assurance. IEEE Trans. Nucl. Sci. 2003, 50, 552–564. [Google Scholar] [CrossRef]
- Galloway, K.F.; Witulski, A.F.; Schrimpf, R.D.; Sternberg, A.L.; Ball, D.R.; Javanainen, A.; Reed, R.A.; Sierawski, B.D.; Lauenstein, J.-M. Failure Estimates for SiC Power MOSFETs in Space Electronics. Aerospace 2018, 5, 67. [Google Scholar] [CrossRef]
- Fleetwood, D.M.; Winokur, P.S.; Schwank, J.R. Using laboratory X-ray and cobalt-60 irradiations to predict CMOS device response in strategic and space environments. IEEE Trans. Nucl. Sci. 1988, 35, 1497–1505. [Google Scholar] [CrossRef]
- Sakai, T.; Yachi, T. Effects of gamma-ray irradiation on thin-gate-oxide VDMOSFET characteristics. IEEE Trans. Electron Devices 1991, 38, 1510–1515. [Google Scholar] [CrossRef]
- Citterio, M.; Rescia, S.; Radeka, V. Radiation effects at cryogenic temperatures in Si-JFET, GaAs MESFET, and MOSFET devices. IEEE Trans. Nucl. Sci. 1995, 42, 2266–2270. [Google Scholar] [CrossRef]
- Trump, B. Radiation Handbook for Electronics; Texas Inst.: Dallas, TX, USA, 2020; pp. 38–46. [Google Scholar]
- Wellmann, P.J. Power Electronic Semiconductor Materials for Automotive and Energy Saving Applications—SiC, GaN, Ga2O3, and Diamond. Z. Anorg. Allg. Chem. 2017, 643, 1312–1322. [Google Scholar] [CrossRef]
- Lauenstein, J.M.; Casey, M.C.; Ladbury, R.L.; Kim, H.S.; Phan, A.M.; Topper, A.D. Space Radiation Effects on SiC Power Device Reliability. In Proceedings of the IEEE International Reliability Physics Symposium, Monterey, CA, USA, 21–25 March 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Elasser, A.; Chow, T.P. Silicon carbide benefits and advantages for power electronics circuits and systems. Proc. IEEE 2002, 90, 969–986. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, J.; Jia, Y.; Wu, Y.; Peng, L.; Tang, Y. Impact of different gate biases on irradiation and annealing responses of SiC MOSFETs. IEEE Trans. Electron Devices 2018, 65, 3719–3724. [Google Scholar] [CrossRef]
- Bourdarie, S.; Xapsos, M. The Near-Earth space radiation environment. IEEE Trans. Nucl. Sci. 2008, 55, 1810–1832. [Google Scholar] [CrossRef]
- Galloway, K.F. A Brief Review of Heavy-Ion Radiation Degradation and Failure of Silicon UMOS Power Transistors. Electronics 2014, 3, 582–593. [Google Scholar] [CrossRef]
- Niskanen, K.; Touboul, A.D.; Germanicus, R.C.; Michez, A.; Javanainen, A.; Wrobel, F.; Boch, J.; Pouget, V.; Saigne, F. Impact of Electrical Stress and Neutron Irradiation on Reliability of Silicon Carbide Power MOSFET. IEEE Trans. Nucl. Sci. 2020, 67, 1365–1373. [Google Scholar] [CrossRef]
- Lelis, A.J.; Green, R.; Habersat, D.B.; El, M. Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs. IEEE Trans. Electron. Devices 2015, 62, 316–323. [Google Scholar] [CrossRef]
- Sharov, F.V.; Moxim, S.J.; Haase, G.S.; Hughart, D.R.; Lenahan, P.M. A Comparison of Radiation-Induced and High-Field Electrically Stress-Induced Interface Defects in Si/SiO2 MOSFETs via Electrically Detected Magnetic Resonance. IEEE Trans. Nucl. Sci. 2022, 69, 208–215. [Google Scholar] [CrossRef]
- Kaushal, G.; Rathod, S.S.; Maheshwaram, S.; Manhas, S.K.; Saxena, A.K.; Dasgupta, S. Radiation Effects in Si-NW GAA FET and CMOS Inverter: A TCAD Simulation Study. IEEE Trans. Electron Devices 2012, 59, 1563–1566. [Google Scholar] [CrossRef]
- Baliga, B.J. Fundamentals of Power Semiconductor Devices; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Akturk, A.; McGarrity, J.M.; Potbhare, S.; Goldsman, N. Radiation Effects in Commercial 1200 V 24 A Silicon Carbide Power MOSFETs. IEEE Trans. Nucl. Sci. 2012, 59, 3258–3264. [Google Scholar] [CrossRef]
- Khanna, V.K. Extreme-Temperature and Harsh-Environment Electronics: Physics, Technology and Applications; IOP Publishing: Bristol, UK, 2023; pp. 1–14. [Google Scholar] [CrossRef]
- Ahyi, A.C.; Wanga, S.R.; Williams, J.R. Gamma irradiation effects on 4H-SiC MOS capacitors and MOSFETs. Mater. Sci. Forum 2006, 527–529, 1063–1066. [Google Scholar] [CrossRef]
- Dienes, G.J. Radiation effects in solids. Annu. Rev. Mater. Sci. 1953, 2, 187–220. [Google Scholar] [CrossRef]
- Schroder, D.K. Semiconductor Material and Device Characterization, 3rd ed.; Wiley: Piscataway, NJ, USA, 2006; pp. 319–374. [Google Scholar] [CrossRef]
- Koudriavtsev, A.B.; Jameson, R.F.; Linert, W. The Law of Mass Action; Springer: Boston, MA, USA, 2011; pp. 149–151. [Google Scholar] [CrossRef]
- Alexakis, P.; Alatise, O.; Hu, J.; Jahdi, S.; Ran, L.; Mawby, P.A. Improved Electrothermal Ruggedness in SiC MOSFETs Compared with Silicon IGBTs. IEEE Trans. Electron Devices 2014, 61, 2278–2286. [Google Scholar] [CrossRef]
- Kimoto, T.; Cooper, J.A. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications; JWS: Singapore, 2014; pp. 21–42. [Google Scholar] [CrossRef]
- Fu, J.; Shang, H.; Li, Z.; Wang, W.; Chen, D. Thermal annealing effects on the stress stability in silicon dioxide films grown by plasma-enhanced chemical vapor deposition. Microsyst. Technol. 2017, 23, 2753–2757. [Google Scholar] [CrossRef]
- Yu, Q.; Ali, W.; Cao, S.; Wang, H.; Lv, H.; Sun, Y.; Mo, R.; Wang, Q.; Mei, B.; Sun, J.; et al. Application of Total Ionizing Dose Radiation Test Standards to SiC MOSFETs. IEEE Trans. Nucl. Sci. 2022, 69, 1127–1133. [Google Scholar] [CrossRef]
- Murata, K.; Mitomo, S.; Matsuda, T.; Yokoseki, T.; Makino, T.; Onoda, S.; Takeyama, A.; Ohshima, T.; Okubo, S.; Tanaka, Y.; et al. Impacts of gate bias and its variation on gamma-ray irradiation resistance of SiC MOSFETs. Phys. Stat. Sol. A 2017, 214, 1600446. [Google Scholar] [CrossRef]
- Pugh, R.D.; Johnston, A.H.; Galloway, K.F. Characteristics of the Breakdown Voltage of Power MOSFETs after Total Dose Irradiation. IEEE Trans. Nucl. Sci. 1986, 33, 1460–1464. [Google Scholar] [CrossRef]
- Ren, M.; He, W.J.; Gao, W.; Cai, S.F.; Li, Z.H.; Zhang, J.P.; Zhang, B. Comparative Study on the Total Ionizing Dose Effects of the Superjunction and the Conventional Power MOSFETs. In Proceedings of the 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, China, 31 October–3 November 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Kim, C.; Yoon, H.; Park, Y.; Kim, D.S.; Seok, O. Analysis of the effects of Gamma-ray irradiation on SiC MOSFETs. In Proceedings of the International Conference on Compound Semiconductor Manufacturing Technology, Orlando, FL, USA, 15–18 May 2023; pp. 1–5. [Google Scholar]
Device Types | Gate Bias | Dose (Gy) | Sample ID |
---|---|---|---|
N-type SiC MOS capacitor | Floating state | 1000 | Sample A |
5000 | Sample B | ||
10,000 | Sample C | ||
1.2 kV N-channel SiC MOSFET | Floating state | 1000 | Sample D |
5000 | Sample E | ||
10,000 | Sample F | ||
+5 V | 1000 | Sample G | |
5000 | Sample H | ||
10,000 | Sample I |
Sample ID | ΔVFB (V) | ΔQF (cm−2) |
---|---|---|
Sample A | 1.806 | 0.59 × 1011 |
Sample B | 2.636 | 1.70 × 1012 |
Sample C | 2.965 | 1.94 × 1012 |
Cell Pitch (µm) | Channel Length (µm) | Concentration of the N-Drift Layer (cm−3) | Thickness of the N-Drift Layer (µm) | Width of the JFET in Half Cell (µm) | Np-well (cm−3) | QF (cm−2) | Sample ID |
---|---|---|---|---|---|---|---|
6 | 0.3 | 1 × 1016 | 10 | 0.7 | 8.66 × 1016 | 6 × 1011 | Device A |
1.08 × 1017 | 6 × 1012 | Device B | |||||
1.52 × 1017 | 6 × 1013 | Device C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.; Yoon, H.; Park, Y.; Kim, S.; Kang, G.; Kim, D.-S.; Seok, O. The Effects of a Gate Bias Condition on 1.2 kV SiC MOSFETs during Irradiating Gamma-Radiation. Micromachines 2024, 15, 496. https://doi.org/10.3390/mi15040496
Kim C, Yoon H, Park Y, Kim S, Kang G, Kim D-S, Seok O. The Effects of a Gate Bias Condition on 1.2 kV SiC MOSFETs during Irradiating Gamma-Radiation. Micromachines. 2024; 15(4):496. https://doi.org/10.3390/mi15040496
Chicago/Turabian StyleKim, Chaeyun, Hyowon Yoon, Yeongeun Park, Sangyeob Kim, Gyuhyeok Kang, Dong-Seok Kim, and Ogyun Seok. 2024. "The Effects of a Gate Bias Condition on 1.2 kV SiC MOSFETs during Irradiating Gamma-Radiation" Micromachines 15, no. 4: 496. https://doi.org/10.3390/mi15040496