Low-Temperature and High-Efficiency Solid-Phase Amplification Based on Formamide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Reaction Device
2.3. Synthetic Oligonucleotides
- Primer-P1/P3: 5′-TTTTTTTTTTCAAGCAGAAGACGGCATACG-3′;
- Primer-P2/P4: 5′-TTTTTTTTTTAATGATACGGCGACCACCGAGA-3′;
2.4. Library Preparation
2.5. Attachment of Oligonucleotides to Aminated Surface
2.6. Solid-Phase Amplification on the Automated Device
2.7. Visualization of Clusters and Data Analysis
2.8. Evaluation of the Thermal Stability of the Immobilized Primers
3. Results and Discussion
3.1. Library Validation
3.2. SP-PCR Based on High-Temperature Denaturation
3.3. Optimization of Denaturation Conditions
3.3.1. The Concentration of FA
3.3.2. The Temperature of Denaturation
3.4. Optimization of Hybridization Conditions
3.4.1. The Annealing Temperature of SP-PCR
3.4.2. The Template Concentration of SP-PCR
3.5. Evaluation of the Thermal Stability of Immobilized Primers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hoffmann, J.; Trotter, M.; Stetten, F.V.; Zengerle, R.; Roth, G. Solid-Phase PCR in a Picowell Array for Immobilizing and Arraying 100 000 PCR Products to a Microscope Slide. Lab. Chip 2012, 12, 3049. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.; Hong, K.H.; Jin, C.E.; Kim, J.Y.; Kim, S.-H.; Shin, Y. Arch-Shaped Multiple-Target Sensing for Rapid Diagnosis and Identification of Emerging Infectious Pathogens. Biosens. Bioelectron. 2018, 119, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Chin, W.H.; Sun, Y.; Høgberg, J.; Hung, T.Q.; Wolff, A.; Bang, D.D. Solid-Phase PCR for Rapid Multiplex Detection of Salmonella Spp. at the Subspecies Level, with Amplification Efficiency Comparable to Conventional PCR. Anal. Bioanal. Chem. 2017, 409, 2715–2726. [Google Scholar] [CrossRef] [PubMed]
- Basha, I.; Ho, E.; Yousuff, C.; Hamid, N. Towards Multiplex Molecular Diagnosis—A Review of Microfluidic Genomics Technologies. Micromachines 2017, 8, 266. [Google Scholar] [CrossRef] [PubMed]
- Fedurco, M. BTA, a Novel Reagent for DNA Attachment on Glass and Efficient Generation of Solid-Phase Amplified DNA Colonies. Nucleic Acids Res. 2006, 34, e22. [Google Scholar] [CrossRef] [PubMed]
- Jauset-Rubio, M.; Ortiz, M.; O’Sullivan, C.K. Solid-Phase Primer Elongation Using Biotinylated dNTPs for the Detection of a Single Nucleotide Polymorphism from a Fingerprick Blood Sample. Anal. Chem. 2021, 93, 14578–14585. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Hu, A.; Cui, J.; Yang, K.; Zhu, X.; Liu, Y.; Deng, G.; Zhu, L. A Lab-on-a-Chip Device Integrated DNA Extraction and Solid Phase PCR Array for the Genotyping of High-Risk HPV in Clinical Samples. Micromachines 2019, 10, 537. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.; Hin, S.; Stetten, F.V.; Zengerle, R.; Roth, G. Universal Protocol for Grafting PCR Primers onto Various Lab-on-a-Chip Substrates for Solid-Phase PCR. RSC Adv. 2012, 2, 3885. [Google Scholar] [CrossRef]
- Dodge, A.; Turcatti, G.; Lawrence, I.; De Rooij, N.F.; Verpoorte, E. A Microfluidic Platform Using Molecular Beacon-Based Temperature Calibration for Thermal Dehybridization of Surface-Bound DNA. Anal. Chem. 2004, 76, 1778–1787. [Google Scholar] [CrossRef] [PubMed]
- Adessi, C. Solid Phase DNA Amplification: Characterisation of Primer Attachment and Amplification Mechanisms. Nucleic Acids Res. 2000, 28, 87e–887. [Google Scholar] [CrossRef]
- Chrisey, L. Covalent Attachment of Synthetic DNA to Self-Assembled Monolayer Films. Nucleic Acids Res. 1996, 24, 3031–3039. [Google Scholar] [CrossRef] [PubMed]
- Tibbetts, C.; Johansson, K.; Philipson, L. Hydroxyapatite Chromatography and Formamide Denaturation of Adenovirus DNA. J. Virol. 1973, 12, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Blake, R. Thermodynamic Effects of Formamide on DNA Stability. Nucleic Acids Res. 1996, 24, 2095–2103. [Google Scholar] [CrossRef] [PubMed]
- Haimovich, G.; Gerst, J. Single-Molecule Fluorescence in Situ Hybridization (smFISH) for RNA Detection in Adherent Animal Cells. Bio-protocol 2018, 8, e3070. [Google Scholar] [CrossRef]
- Farack, L.; Itzkovitz, S. Protocol for Single-Molecule Fluorescence In Situ Hybridization for Intact Pancreatic Tissue. STAR Protoc. 2020, 1, 100007. [Google Scholar] [CrossRef] [PubMed]
- Rio, D.C. Northern Blots for Small RNAs and MicroRNAs. Cold Spring Harb. Protoc. 2014, 7, 793–797. [Google Scholar] [CrossRef]
- Golczyk, H. A Simple Non-Toxic Ethylene Carbonate Fluorescence in Situ Hybridization (EC-FISH) for Simultaneous Detection of Repetitive DNA Sequences and Fluorescent Bands in Plants. Protoplasma 2019, 256, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, L.S.; Loy, A.; Wright, E.S.; Wagner, M.; Noguera, D.R. Modeling Formamide Denaturation of Probe-Target Hybrids for Improved Microarray Probe Design in Microbial Diagnostics. PLoS ONE 2012, 7, e43862. [Google Scholar] [CrossRef]
- Fuchs, J.; Dell’Atti, D.; Buhot, A.; Calemczuk, R.; Mascini, M.; Livache, T. Effects of Formamide on the Thermal Stability of DNA Duplexes on Biochips. Anal. Biochem. 2010, 397, 132–134. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Li, H.; Shu, F.; Zhou, W.; Wu, Y.; Wang, Y.; Lv, X.; Gao, M.; Song, Z.; Zhao, S. Low-Temperature and High-Efficiency Solid-Phase Amplification Based on Formamide. Micromachines 2024, 15, 565. https://doi.org/10.3390/mi15050565
Huang J, Li H, Shu F, Zhou W, Wu Y, Wang Y, Lv X, Gao M, Song Z, Zhao S. Low-Temperature and High-Efficiency Solid-Phase Amplification Based on Formamide. Micromachines. 2024; 15(5):565. https://doi.org/10.3390/mi15050565
Chicago/Turabian StyleHuang, Jialing, Huan Li, Fengfeng Shu, Wenchao Zhou, Yihui Wu, Yue Wang, Xiao Lv, Ming Gao, Zihan Song, and Shixun Zhao. 2024. "Low-Temperature and High-Efficiency Solid-Phase Amplification Based on Formamide" Micromachines 15, no. 5: 565. https://doi.org/10.3390/mi15050565
APA StyleHuang, J., Li, H., Shu, F., Zhou, W., Wu, Y., Wang, Y., Lv, X., Gao, M., Song, Z., & Zhao, S. (2024). Low-Temperature and High-Efficiency Solid-Phase Amplification Based on Formamide. Micromachines, 15(5), 565. https://doi.org/10.3390/mi15050565