A Soft Robot Tactile Finger Using Oxidation-Reduction Graphene–Polyurethane Conductive Sponge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure and Principle
2.2. Fabrication of Qxidation-Reduction Graphene–Polyurethane Conductive Sponge
2.3. Preparation of Sensors
3. Results
3.1. Pressure-Sensing Properties of the Sensor
3.2. Application Experiments
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zang, Y.; Zhang, F.; Di, C.; Daoben, Z. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2015, 2, 140–156. [Google Scholar] [CrossRef]
- Al-Kahtani, M.S.; Khan, F.; Taekeun, W. Application of internet of things and sensors in healthcare. Sensors 2022, 22, 5738. [Google Scholar] [CrossRef] [PubMed]
- Viry, L.; Levi, A.; Totaro, M.; Mondini, A.; Mattoli, V.; Mazzolai, B.; Beccai, L. Flexible three-axial force sensor for soft and highly sensitive artificial touch. Adv. Mater. 2014, 26, 2659–2664. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhao, W.; Li, Q.; Li, H.; Wang, Y.; Li, Y.; Wang, G. Fabrication of smart components by 3D printing and laser-scribing technologies. ACS Appl. Mater. Interfaces 2019, 12, 3928–3935. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Wang, Y.; Guo, C.F. Recent progresses on flexible tactile sensors. Mater. Today Phys. 2017, 1, 61–73. [Google Scholar] [CrossRef]
- Pyo, S.; Lee, J.; Bae, K.; Sim, S. Recent progress in flexible tactile sensors for human-interactive systems: From sensors to advanced applications. Adv. Mater. 2021, 33, 2005902. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Lee, J.S. Recent development of flexible tactile sensors and their applications. Sensors 2021, 22, 50. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Yang, N.; Xu, Q.; Dai, Y.; Wang, Z. Recent advances in flexible tactile sensors for intelligent systems. Sensors 2021, 21, 5392. [Google Scholar] [CrossRef] [PubMed]
- Ju, M.; Dou, Z.; Li, J.W.; Qiu, X.; Shen, B.; Zhang, D.; Yao, F.Z.; Gong, W.; Wang, K. Piezoelectric Materials and Sensors for Structural Health Monitoring: Fundamental Aspects, Current Status, and Future Perspectives. Sensors 2023, 23, 543. [Google Scholar] [CrossRef]
- Mirjalali, S.; Mahdavi Varposhti, A.; Abrishami, S.; Bagherzadeh, R.; Asadnia, M.; Huang, S.; Peng, S.; Wang, C.; Wu, S. A review on wearable electrospun polymeric piezoelectric sensors and energy harvesters. Macromol. Mater. Eng. 2023, 308, 2200442. [Google Scholar] [CrossRef]
- Qin, L.; Hao, L.; Huang, X.; Zhang, R.; Lu, S.; Wang, Z.; Liu, J.; Ma, Z.; Xia, X.; Dong, G. Fingerprint-inspired biomimetic tactile sensors for the surface texture recognition. Sens. Actuators A Phys. 2024, 371, 115275. [Google Scholar] [CrossRef]
- Chen, K.Y.; Xu, Y.T.; Zhao, Y.; Li, J.K.; Wang, X.P.; Qu, L.T. Recent progress in graphene-based wearable piezoresistive sensors: From 1D to 3D device geometries. Nano Mater. Sci. 2022, 5, 247–262. [Google Scholar] [CrossRef]
- Verma, R.P.; Sahu, P.S.; Mishra, S.; Dabhade, A.; Saha, B. Antibacterial Highly Sensitive Eco-friendly Wearable Piezoresistive Sensor for Monitoring Multiple Physiological Parameters. Sens. Actuators B Chem. 2024, 405, 135288. [Google Scholar] [CrossRef]
- Yang, C.; Sun, B.; Zhou, G.; Guo, T.; Ke, C.; Chen, Y.; Shao, J.; Zhao, Y.; Wang, H. Photoelectric Memristor-Based Machine Vision for Artificial Intelligence Applications. ACS Mater. Lett. 2023, 5, 504–526. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Y.; Du, Y.; Zhang, L.; Wei, J.; Lin, F. Preparation and testing of anisotropic MAPbI3 perovskite photoelectric sensors. ACS Appl. Mater. Interfaces 2020, 12, 44248–44255. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, Y.; Zhang, K.; Deng, H.; Fu, Q. Recent progress in flexible capacitive sensors: Structures and properties. Nano Mater. Sci. 2022, 5, 265–277. [Google Scholar] [CrossRef]
- Ye, X.; Tian, M.; Li, M.; Wang, H.; Shi, Y. All-fabric-based flexible capacitive sensors with pressure detection and non-contact instruction capability. Coatings 2022, 12, 302. [Google Scholar] [CrossRef]
- Ali, S.; Maddipatla, D.; Narakathu, B.B.; Chlaihawi, A.A.; Emamian, S.; Janabi, F.; Bazuin, BJ.; Atashbar, MZ. Flexible capacitive pressure sensor based on PDMS substrate and Ga–In liquid metal. IEEE Sens. J. 2018, 19, 97–104. [Google Scholar] [CrossRef]
- Cassa, M.A.; Maselli, M.; Zoso, A.; Chiono, V.; Fracchia, L.; Ceresa, C.; Ciardelli, G.; Cianchetti, M.; Carmagnola, I. Development of an Innovative Soft Piezoresistive Biomaterial Based on the Interconnection of Elastomeric PDMS Networks and Electrically-Conductive PEDOT: PSS Sponges. J. Funct. Biomater. 2022, 13, 135. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Li, P.; Cheng, S.; Zhou, Q.; Cao, M.; Yi, J.; Zhang, H. Preparation of multi-axial compressible 3D PVDF nanofibre/graphene wearable composites sensor sponge and application of integrated sensor. Sens. Actuators A Phys. 2022, 342, 113648. [Google Scholar] [CrossRef]
- Saxena, P.; Shukla, P. A comprehensive review on fundamental properties and applications of poly (vinylidene fluoride) (PVDF). Adv. Compos. Hybrid Mater. 2021, 4, 8–26. [Google Scholar] [CrossRef]
- Dallaev, R.; Pisarenko, T.; Sobola, D.; Orudzhev, F.; Ramazanov, S.; Trčka, T. Brief review of PVDF properties and applications potential. Polymers 2022, 14, 4793. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Huang, X.; Sun, Z.; Ma, Z.; Mawignon, FJ.; Lv, B.; Shan, L.; Dong, G. Synergistic effect of sharkskin-inspired morphologies and surface chemistry on regulating stick-slip friction. Tribol. Int. 2023, 187, 108765. [Google Scholar] [CrossRef]
- Pagoli, A.; Chapelle, F.; Corrales-Ramon, J.A.; Mezouar, Y.; Lapusta, Y. Large-area and low-cost force/tactile capacitive sensor for soft robotic applications. Sensors 2022, 22, 4083. [Google Scholar] [CrossRef] [PubMed]
- Shintake, J.; Cacucciolo, V.; Floreano, D.; Shea, H. Soft robotic grippers. Adv. Mater. 2018, 30, 1707035. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Huang, X.; Wang, D.; Zhang, W.; Gao, S.; Luo, J.; Guo, Z.; Xue, H.; Gao, J. Lotus leaf inspired superhydrophobic rubber composites for temperature stable piezoresistive sensors with ultrahigh compressibility and linear working range. Chem. Eng. J. 2021, 405, 127025. [Google Scholar] [CrossRef]
- Htwe, Y.Z.N.; Hidayah, I.N.; Mariatti, M. Performance of inkjet-printed strain sensor based on graphene/silver nanoparticles hybrid conductive inks on polyvinyl alcohol substrate. J. Mater. Sci. Mater. Electron. 2020, 31, 15361–15371. [Google Scholar] [CrossRef]
- An, D.; Wang, Z.; Qin, L.; Wu, Y.; Lu, S.; Yang, H.; Ma, Z.; Mawignon, F.; Liu, J.; Hao, L.; et al. Preparation of MXene/EP coating for promising anticorrosion and superlow friction properties. Prog. Org. Coat. 2023, 183, 107779. [Google Scholar] [CrossRef]
- Béraud, A.; Sauvage, M.; Bazán, C.M.; Tie, M.; Bencherif, A.; Bouilly, D. Graphene field-effect transistors as bioanalytical sensors: Design, operation and performance. Analyst 2021, 146, 403–428. [Google Scholar] [CrossRef]
- Yuvaraja, S.; Nawaz, A.; Liu, Q.; Dubal, D.; Surya, SG.; Salama, KN.; Sonar, P. Organic field-effect transistor-based flexible sensors. Chem. Soc. Rev. 2020, 49, 3423–3460. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.; Lee, B.J.; Lee, J. Soft and deformable sensors based on liquid metals. Sensors 2019, 19, 4250. [Google Scholar] [CrossRef]
- Zhou, L.Y.; Gao, Q.; Zhan, J.F.; Xie, C.Q.; Fu, J.Z.; He, Y. Three-dimensional printed wearable sensors with liquid metals for detecting the pose of snakelike soft robots. ACS Appl. Mater. Interfaces 2018, 10, 23208–23217. [Google Scholar] [CrossRef]
- Ge, G.; Lu, Y.; Qu, X.; Zhao, W.; Ren, Y.; Wang, W.; Wang, Q.; Huang, W.; Dong, X. Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano 2019, 14, 218–228. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, M.; Zhang, Z.; Chen, Z.; Shi, Q.; Shan, X.; Yeow, R.C.H.; Lee, C. Artificial Intelligence of Things (AIoT) enabled virtual shop applications using self-powered sensor enhanced soft robotic manipulator. Adv. Sci. 2021, 8, 2100230. [Google Scholar] [CrossRef]
- Wang, L.; Xu, T.; Zhang, X. Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC Trends Anal. Chem. 2021, 134, 116130. [Google Scholar] [CrossRef]
- Rashkovska, A.; Depolli, M.; Tomašić, I.; Avbelj, V.; Trobec, R. Medical-grade ECG sensor for long-term monitoring. Sensors 2020, 20, 1695. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lou, Z.; Jiang, K.; Shen, G. Bio-multifunctional smart wearable sensors for medical devices. Adv. Intell. Syst. 2019, 1, 1900040. [Google Scholar] [CrossRef]
- Li, Y.; Samad, Y.A.; Taha, T.; Cai, G.; Fu, SY.; Liao, K. Highly flexible strain sensor from tissue paper for wearable electronics. ACS Sustain. Chem. Eng. 2016, 4, 4288–4295. [Google Scholar]
- Liu, X.; Miao, J.; Fan, Q.; Zhang, W.; Zuo, X.; Tian, M.; Zhu, S.; Zhang, X.; Qu, L. Recent progress on smart fiber and textile based wearable strain sensors: Materials, fabrications and applications. Adv. Fiber Mater. 2022, 4, 361–389. [Google Scholar] [CrossRef]
- Qiu, J.; Guo, X.; Chu, R.; Wang, S.; Zeng, W.; Qu, L.; Zhao, Y.; Yan, F.; Xing, G. Rapid-response, low detection limit, and high-sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin. ACS Appl. Mater. Interfaces 2019, 11, 40716–40725. [Google Scholar] [CrossRef]
- Li, W.; Zhao, W.; Cheng, S.; Yang, W.; Yi, Z.; Li, G.; Zeng, L.; Li, H.; Wu, P.; Cai, S. Terahertz selective active electromagnetic absorption film based on single-layer graphene. Surf. Interfaces 2023, 40, 103042. [Google Scholar] [CrossRef]
- Li, W.; Liu, M.; Cheng, S.; Zhang, H.; Yang, W.; Yi, Z.; Zeng, Q.; Tang, B.; Ahmad, S.; Sun, T. Polarization independent tunable bandwidth absorber based on single-layer graphene. Diam. Relat. Mater. 2024, 142, 110793. [Google Scholar] [CrossRef]
- Liang, S.; Xu, F.; Li, W.; Yang, W.; Cheng, S.; Yang, H.; Chen, J.; Yi, Z.; Jiang, P. Tunable smart mid infrared thermal control emitter based on phase change material VO2 thin film. Appl. Therm. Eng. 2023, 232, 121074. [Google Scholar] [CrossRef]
- Ma, J.; Wu, P.; Li, W.; Liang, S.; Shangguan, W.; Cheng, S.; Tian, Y.; Fu, J.; Zhang, L. A five-peaks graphene absorber with multiple adjustable and high sensitivity in the far infrared band. Diam. Relat. Mater. 2023, 136, 109960. [Google Scholar] [CrossRef]
- Shangguan, Q.; Zhao, Y.; Song, Z.; Wang, J.; Yang, H.; Chen, J.; Liu, C.; Cheng, S.; Yang, W.; Yi, Z. High sensitivity active adjustable graphene absorber for refractive index sensing applications. Diam. Relat. Mater. 2022, 128, 109273. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Ma, C.; Chen, J.; Wang, H.; Chen, X.; Li, Z.; Zhang, Y. A Soft Robot Tactile Finger Using Oxidation-Reduction Graphene–Polyurethane Conductive Sponge. Micromachines 2024, 15, 628. https://doi.org/10.3390/mi15050628
Li H, Ma C, Chen J, Wang H, Chen X, Li Z, Zhang Y. A Soft Robot Tactile Finger Using Oxidation-Reduction Graphene–Polyurethane Conductive Sponge. Micromachines. 2024; 15(5):628. https://doi.org/10.3390/mi15050628
Chicago/Turabian StyleLi, Hangze, Chaolin Ma, Jinmiao Chen, Haojie Wang, Xiao Chen, Zhijing Li, and Youzhi Zhang. 2024. "A Soft Robot Tactile Finger Using Oxidation-Reduction Graphene–Polyurethane Conductive Sponge" Micromachines 15, no. 5: 628. https://doi.org/10.3390/mi15050628
APA StyleLi, H., Ma, C., Chen, J., Wang, H., Chen, X., Li, Z., & Zhang, Y. (2024). A Soft Robot Tactile Finger Using Oxidation-Reduction Graphene–Polyurethane Conductive Sponge. Micromachines, 15(5), 628. https://doi.org/10.3390/mi15050628