Exploring the Capability of Cu-MoS2 Catalysts for Use in Electrocatalytic Overall Water Splitting
Abstract
1. Introduction
2. Synthesis Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gautam, A.; Sk, S.; Pal, U. Recent advances in solution assisted synthesis of transition metal chalcogenides for photo-electrocatalytic hydrogen evolution. Phys. Chem. Chem. Phys. 2022, 24, 20638–20673. [Google Scholar] [CrossRef]
- Raveendran, A.; Chandran, M.; Siddiqui, M.R.; Wabaidur, S.M.; Angaiah, S.; Dhanusuraman, R. Binary Ni–Cu nanocomposite-modified MXene-adorned 3D-nickel foam for effective overall water splitting and supercapacitor applications. Sustainable Energy Fuels 2024, 8, 1509–1525. [Google Scholar] [CrossRef]
- Shaikh, N.; Annadata, H.V.; Mishra, A.K.; Urkude, R.R.; Mukhopadhyay, I.; Ray, A. Doping induced mixed polytypic interfaces of MoS2 for superior electrocatalytic hydrogen evolution. Appl. Surf. Sci. 2024, 649, 159195. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, C.; Wang, S.; Lu, K.; Wang, B.; Huang, J.; Peng, H.; Li, N.; Liu, M. Photothermally driven decoupling of gas evolution at the solid-liquid interface for boosted photocatalytic hydrogen production. Nanoscale 2024, 16, 152–162. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Yu, N.; Fan, R.-Y.; Dong, B.; Yan, Z.-F. Design and multilevel regulation of transition metal phosphides for efficient and industrial water electrolysis. Nanoscale 2024, 16, 1080–1101. [Google Scholar] [CrossRef]
- Sharma, S.; Paul, A. One-pot synthesis of CoFe-nanomesh for oxygen evolution reaction. ACS Appl. Nano Mater. 2024, 7, 8567–8857. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Yu, J.; Liu, X.; Zhang, X.; Liu, H.; Zhou, W. Water splitting: From electrode to green energy system. Nano-Micro Lett. 2020, 12, 131. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Janák, M.; Abdala, P.M.; Borca, C.N.; Wach, A.; Kierzkowska, A.; Donat, F.; Huthwelker, T.; Kuznetsov, D.A.; Müller, C.R. Probing surface transformations of lanthanum nickelate electrocatalysts during oxygen evolution reaction. J. Am. Chem. Soc. 2024, 146, 11887–11896. [Google Scholar] [CrossRef]
- Paladugu, S.; Abdullahi, I.M.; Singh, H.; Spinuzzi, S.; Nath, M.; Page, K. Mesoporous Re0.5Ce0.5O2–x fluorite electrocatalysts for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2024, 16, 7014–7025. [Google Scholar] [CrossRef]
- Li, R.; Chen, L.; Zhang, H.; Humayun, M.; Duan, J.; Xu, X.; Fu, Y.; Bououdina, M.; Wang, C. Exceptional green hydrogen production performance of a ruthenium-modulated nickel selenide. Nanoscale 2023, 15, 19604–19616. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, F.; Guo, W.; He, Z.; Yao, L.; Li, J.; Sun, N.; Wang, Y.; Wang, F. Monolayer MoS2 as a sensitive probe: Exploring the resistive switching mechanism of MoS2/NSTO heterostructures. J. Alloys Compd. 2023, 967, 171712. [Google Scholar] [CrossRef]
- Choi, S.; Oh, G.H.; Kim, T.W.; Hong, S.; Kim, A. Radiation induced changes in chemical and electronic properties of few-layer MoS2 and MoTe2 films. Appl. Surf. Sci. 2024, 652, 159282. [Google Scholar] [CrossRef]
- Ahmed, B.; Anjum, D.H.; Hedhili, M.N.; Alshareef, H.N. Mechanistic insight into the stability of HfO2-coated MoS2 nanosheet anodes for sodium ion batteries. Small 2015, 11, 4341–4350. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Luo, F.; Chen, S. Porous MoP2/MoS2 hierarchical nanowires for efficient hydrogen evolution reaction in full pH range. J. Alloys Compd. 2024, 985, 174024. [Google Scholar] [CrossRef]
- Dighole, R.P.; Munde, A.V.; Mulik, B.B.; Dhawale, S.C.; Sathe, B.R. Multiwalled carbon nanotubes decorated with molybdenum sulphide (MoS2@MWCNTs) for highly selective electrochemical picric acid (PA) determination. Appl. Surf. Sci. 2024, 659, 159856. [Google Scholar] [CrossRef]
- Gui, T.; Xia, X.; Wei, B.; Zhang, J.; Zhang, K.; Li, Y.; Chen, W.; Yu, W.; Cui, N.; Mu, H.; et al. In-situ fabrication of PtSe2/MoS2 van der Waals heterojunction for self-powered and broadband photodetector. Mater. Des. 2024, 238, 112722. [Google Scholar] [CrossRef]
- Xiong, H.; Nie, X.; Zhao, L.; Deng, S. Engineering symmetry breaking in twisted MoS2-MoSe2 heterostructures for optimal thermoelectric performance. ACS Appl. Mater. Interfaces 2024, 16, 25124–25135. [Google Scholar] [CrossRef]
- Jacobo, J.-R.; Olea-Mejía, O.F.; Martínez-Hernández, A.L.; Carlos, V.-S. Optimization of the optical response of 2D MoS2 materials obtained through liquid-phase exfoliation using a comprehensive multi-objective approach. FlatChem 2024, 45, 100654. [Google Scholar] [CrossRef]
- Liang, S.; Zheng, L.-J.; Song, L.-N.; Wang, X.-X.; Tu, W.-B.; Xu, J.-J. Accelerated confined mass transfer of MoS2 1D nanotube in photo-assisted metal-air batteries. Adv. Mater. 2024, 36, 2307790. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, T.; Li, R.; Chen, Y.; Luo, W.; Wu, Y.; Xie, Y.; Wang, Y.; Zhang, Y. Layered deposited MoS2 nanosheets on acorn leaf like CdS as an efficient anti-photocorrosion photocatalyst for hydrogen production. Fuel 2024, 368, 131621. [Google Scholar] [CrossRef]
- Kaushik, R.; Nandi, S.; Mandal, M.; Gupta, A.N. Biocompatible L-cysteine-capped MoS2 nanoflowers for antibacterial applications: Mechanistic insights. ACS Appl. Nano Mater. 2024, 7, 7753–7765. [Google Scholar] [CrossRef]
- Park, D.; Kim, H.; Kim, N. Enhancing valley polarization of a MoS2 zigzag nanoribbon using double magnetic barriers. Phys. E 2024, 159, 115910. [Google Scholar] [CrossRef]
- Xu, Y.; Cheng, J.; Ding, L.; Lv, H.; Zhang, K.; Hu, A.; Yang, X.; Sun, W.; Mao, Y. Interfacial engineering for promoting charge transfer in MoS2/CoFeLDH heterostructure electrodes for overall water splitting. Int. J. Hydrogen Energy 2024, 49, 897–906. [Google Scholar] [CrossRef]
- Hai, G.; Xue, X.; Wu, Z.; Zhang, C.; Liu, X.; Huang, X. High-throughput calculation-based rational design of Fe-doped MoS2 nanosheets for electrocatalytic pH-universal overall water splitting. J. Energy Chem. 2024, 91, 194–202. [Google Scholar] [CrossRef]
- Kang, L.; Liu, S.; Zhang, Q.; Zou, J.; Ai, J.; Qiao, D.; Zhong, W.; Liu, Y.; Jun, S.C.; Yamauchi, Y.; et al. Hierarchical spatial confinement unlocking the storage limit of MoS2 for flexible high-energy supercapacitors. ACS Nano 2024, 18, 2149–2161. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Li, P.; Su, C.; Yan, J.; Zhao, H.; Zhang, Z.; You, Z. Flexible high-temperature MoS2 field-effect transistors and logic gates. ACS Nano 2024, 18, 9627–9635. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.J.; Li, Z.; Lampronti, G.I.; Lee, J.-I.; Wang, Y.; Day, J.; Chhowalla, M. Environmental and thermal stability of chemically exfoliated LixMoS2 for lithium-sulfur batteries. Chem. Mater. 2024, 36, 4829–4837. [Google Scholar] [CrossRef]
- Ji, S.; Bae, S.-R.; Hu, L.; Hoang, A.T.; Seol, M.J.; Hong, J.; Katiyar, A.K.; Kim, B.J.; Xu, D.; Kim, S.Y.; et al. Perovskite light-emitting diode display based on MoS2 backplane thin-film transistors. Adv. Mater. 2024, 36, 2309531. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Huang, M. Mechanism of adsorption and gas-sensing of hazardous gases by MoS2 monolayer decorated by Pdn (n = 1–4) clusters. Colloids Surf. A 2024, 695, 134200. [Google Scholar] [CrossRef]
- Chen, P.S.; Hu, Y.; Li, S.-Y.; Mazurkiewicz-Pawlicka, M.; Małolepszy, A. Preparation of a MoS2/carbon nanotube nanocomposite by hydrothermal method for supercapacitor. Int. J. Electrochem. Sci. 2024, 19, 100523. [Google Scholar] [CrossRef]
- Mondal, K.G.; Rakshit, S.; Kar, B.S.; Saha, S.; Jana, P.C. Study of enhancing photocatalytic activity of solvothermal grown MoS2 nanocrystals under visible light irradiation by the influence of hydrogen peroxide. J. Photochem. Photobiol. A 2024, 447, 115239. [Google Scholar] [CrossRef]
- Al-Namshah, K.S. Synthesis of MoS2-loaded Co3O4 nanocrystals for endorsed photocatalytic reduction of mercury (II) ions under visible light. Opt. Mater. 2023, 142, 114114. [Google Scholar] [CrossRef]
- Khorasanipour, N.; Iranmanesh, P.; Saeednia, S.; Yazdi, S.T. Photocatalytic degradation of Naphthol Green in aqueous solution through the reusable ZnS/MoS2/Fe3O4 magnetic nanocomposite. Surf. Interfaces 2023, 36, 102613. [Google Scholar] [CrossRef]
- Midhun, P.S.; Kumar, K.R.; Jayaraj, M.K. Large area synthesis of mono/few-layer MoS2 thin films on thermal oxide silicon substrate by pulsed laser deposition technique. Thin Solid Films 2023, 782, 140030. [Google Scholar] [CrossRef]
- Tonon, A.; Russo, E.D.; Sgarbossa, F.; Bacci, L.; Argiolas, N.; Scian, C.; Ivanov, Y.P.; Divitini, G.; Sheehan, B.; Salvador, D.D.; et al. Laser induced crystallization of sputtered MoS2 thin films. Mater. Sci. Semicond. Process. 2023, 164, 107616. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.K.; Kang, Y.C. Sodium-ion storage performances of MoS2 nanocrystals coated with N-doped carbon synthesized by flame spray pyrolysis. Appl. Surf. Sci. 2020, 523, 146470. [Google Scholar] [CrossRef]
- Duraisamy, S.; Ganguly, A.; Sharma, P.K.; Benson, J.; Davis, J.; Papakonstantinou, P. One-Step hydrothermal synthesis of phase-engineered MoS2/MoO3 electrocatalysts for hydrogen evolution reaction. ACS Appl. Nano Mater. 2021, 4, 2642–2656. [Google Scholar] [CrossRef]
- Abraham, D.S.; Vinoba, M.; Bhagiyalakshmi, M. NiFe-LDH/MoS2/MXene nanocomposites as an electrode material for battery-type supercapacitors. ACS Appl. Nano Mater. 2024, 7, 5791–5801. [Google Scholar] [CrossRef]
- Park, H.; Liu, N.; Kim, B.H.; Kwon, S.H.; Baek, S.; Kim, S.; Lee, H.-K.; Yoon, Y.J.; Kim, S. Exceptionally uniform and scalable multilayer MoS2 phototransistor array based on large-scale MoS2 grown by RF sputtering, electron beam irradiation, and sulfurization. ACS Appl. Mater. Interfaces 2020, 12, 20645–20652. [Google Scholar] [CrossRef]
- Cho, Y.; Sohn, A.; Kim, S.; Hahm, M.G.; Kim, D.-H.; Cho, B.; Kim, D.-W. Influence of gas adsorption and gold nanoparticles on the electrical properties of CVD-grown MoS2 thin films. ACS Appl. Mater. Interfaces 2016, 8, 21612–21617. [Google Scholar] [CrossRef]
- Yu, N.; Ke, H.; Yu, H.; Wu, X.; Li, S.; Chen, G.; Wang, J.; Cai, N.; Xue, Y.; Yu, F. Polysulfide-induced synthesis of coral-like MoS2/NiS2 nanostructures for overall water splitting. ACS Appl. Nano Mater. 2023, 6, 5136–5144. [Google Scholar] [CrossRef]
- Yang, L.; Yuan, X.; Song, R.; Liang, W. Cu doped MoS2 nanosheets/NiS2 nanowires heterogeneous structure for enhanced hydrogen evolution reaction. J. Phys. Chem. Solids 2023, 181, 111540. [Google Scholar] [CrossRef]
- Wang, Z.; Kannan, H.; Su, T.; Swaminathan, J.; Shirodkar, S.N.; Hernandez, F.C.R.; Benavides, H.C.; Vajtai, R.; Yakobson, B.I.; Meiyazhagan, A.; et al. Substitution of copper atoms into defect-rich molybdenum sulfides and their electrocatalytic activity. Nanoscale Adv. 2021, 3, 1747–1757. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Park, Y.; Lim, H.Y.; Son, S.; Cho, Y.; Park, J.B.; Cho, H.-S.; Jang, A.-R.; Lee, Y.-W. Bimetallic metal organic framework-derived Co9S8-MoS2 nanohybrids as an efficient dual functional electrocatalyst towards the hydrogen and oxygen evolution reactions. J. Ind. Eng. Chem. 2024, 130, 317–323. [Google Scholar] [CrossRef]
- Ghanashyam, G.; Kim, H. Co-doped 1T-MoS2 microspheres embedded in N-doped reduced graphene oxide for efficient electrocatalysis toward hydrogen and oxygen evolution reactions. J. Power Sources 2024, 596, 234088. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, H.; Song, M.; Qiu, Z.; Wang, S.; Sun, L. Hierarchical interfaces engineering-driven of the CoS2/MoS2/Ni3S2/NF electrode for high-efficient and stable oxygen evolution and urea oxidation reactions. Appl. Surf. Sci. 2023, 617, 156621. [Google Scholar] [CrossRef]
- Abd-Elrahim, A.G.; Chun, D.-M. Nanosized Co3O4-MoS2 heterostructure electrodes for improving the oxygen evolution reaction in an alkaline medium. J. Alloys Compd. 2021, 853, 156946. [Google Scholar] [CrossRef]
- Rasool, F.; Pirzada, B.M.; Uddin, M.M.; Mohideen, M.I.H.; Yildiz, I.; Elkadi, M.; Qurashi, A. Interfacial engineering of ZnS-ZnO decorated MoS2 supported on 2D Ti3C2Tx MXene sheets for enhanced hydrogen evolution reaction. Int. J. Hydrogen Energy 2024, 59, 63–73. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Z.; Xiang, C.; Zou, Y.; Xu, F.; Sun, L. MoS2-CuCo2S4 nanosheets with a honeycomb structure formed on Ni foam: An efficient electrocatalyst for hydrogen evolution reaction. J. Alloys Compd. 2024, 988, 174300. [Google Scholar] [CrossRef]
- Hanslin, S.Ø.; Jónsson, H.; Akola, J. Is the doped MoS2 basal plane an efficient hydrogen evolution catalyst? Calculations of voltage-dependent activation energy. Phys. Chem. Chem. Phys. 2023, 25, 15162–15172. [Google Scholar] [CrossRef]
- Hu, W.; Liu, H.; Dong, W.; Munir, H.A.; Fan, X.; Tian, X.; Pang, L. Ammonium ions intercalated 1T/2H-MoS2 with increased interlayer spacing for high-efficient electrocatalytic hydrogen evolution reaction. J. Electroanal. Chem. 2023, 949, 117882. [Google Scholar] [CrossRef]
- Liang, J.; Yang, Y.; Zhang, J.; Dong, P.; Lou, J. Ultrasmall CoSe2 Nanoparticles Grown on MoS2 Nanofilms: A New Catalyst for Hydrogen Evolution Reaction. Phys. Status Solidi RRL 2023, 2300169. [Google Scholar] [CrossRef]
- Li, C.; Zhu, L.; Wu, Z.; Chen, Q.; Zheng, R.; Huan, J.; Huang, Y.; Zhu, X.; Sun, Y. Phase engineering of W-doped MoS2 by magneto-hydrothermal synthesis for hydrogen evolution reaction. Small 2023, 19, 2303646. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Tao, T.; Zhang, Y.; Lu, S.; Xie, J.; Ding, Z.; Wu, Z. Amidoximated polyacrylonitrile extended the interlayer spacing of MoS2/graphite for hydrogen evolution reaction. ChemistrySelect 2023, 8, e202204699. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, K.; Lin, H.; Li, X.; Chan, H.C.; Yang, L.; Gao, Q. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017, 7, 2357–2366. [Google Scholar] [CrossRef]
- Hanan, A.; Lakhan, M.N.; Walvekar, R.; Khalid, M.; Prakash, C. Heteroatom-doped MXenes as electrocatalysts for hydrogen evolution reaction: A review on the recent advances, mechanisms and prospects. Chem. Eng. J. 2024, 483, 149107. [Google Scholar] [CrossRef]
- Xiao, C.; Hong, T.; Jia, J.; Jia, H.; Li, J.; Zhu, Y.; Ge, S.; Liu, C.; Zhu, G. Unlocking the potential of hydrogen evolution: Advancements in 3D nanostructured electrocatalysts supported on nickel foam. Appl. Catal. B 2024, 355, 124197. [Google Scholar] [CrossRef]
- Cao, X.; Gao, Y.; Li, Y.; Weragoda, D.M.; Tian, G.; Zhang, W.; Zhang, Z.; Zhao, X.; Chen, B. Research progress on MOFs and their derivatives as promising and efficient electrode materials for electrocatalytic hydrogen production from water. RSC Adv. 2023, 13, 24393–24411. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Fan, K.; Zou, Y.; Fu, H.; Dong, M.; Dou, Y.; Wang, Y.; Chen, S.; Yin, H.; Al-Mamun, M.; et al. Rational design of metal oxide catalysts for electrocatalytic water splitting. Nanoscale 2021, 13, 20324–20353. [Google Scholar] [CrossRef]
- Mohanty, B.; Ghorbani-Asl, M.; Kretschmer, S.; Ghosh, A.; Guha, P.; Panda, S.K.; Jena, B.; Krasheninnikov, A.V.; Jena, B.K. MoS2 quantum dots as efficient catalyst materials for the oxygen evolution reaction. ACS Catal. 2018, 8, 1683–1689. [Google Scholar] [CrossRef]
- Muthurasu, A.; Maruthapandian, V.; Kim, H.Y. Metal-organic framework derived Co3O4/MoS2 heterostructure for efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction. Appl. Catal. B 2019, 248, 202–210. [Google Scholar] [CrossRef]
- Ma, W.; Li, W.; Zhang, H.; Wang, Y. N-doped carbon wrapped CoFe alloy nanoparticles with MoS2 nanosheets as electrocatalyst for hydrogen and oxygen evolution reactions. Int. J. Hydrogen Energy 2023, 48, 22032–22043. [Google Scholar] [CrossRef]
- Rong, J.; Ye, Y.; Cao, J.; Liu, X.; Fan, H.; Yang, S.; Wei, M.; Yang, L.; Yang, J.; Chen, Y. Restructuring electronic structure via W doped 1T MoS2 for enhancing hydrogen evolution reaction. Appl. Surf. Sci. 2022, 579, 152216. [Google Scholar] [CrossRef]
- Younis, A.; Sehar, S.; Guan, X.; Aftab, S.; Manaa, H.; Mahmood, T.; Iqbal, J.; Akram, F.; Ali, N.; Wu, T. Four-in-one strategy to boost the performance of 3-dimensional MoS2 nanostructures for industrial effluent treatment and hydrogen evolution reactions. J. Alloys Compd. 2024, 976, 173104. [Google Scholar] [CrossRef]
- Homayounfard, A.M.; Maleki, M.; Ghanbari, H.; Kahnamouei, M.H.; Safaei, B. Growth of few-layer flower-like MoS2 on heteroatom-doped activated carbon as a hydrogen evolution reaction electrode. Int. J. Hydrogen Energy 2024, 55, 1360–1370. [Google Scholar] [CrossRef]
- Huang, W.-H.; Li, X.-M.; Yang, X.-F.; Zhang, H.-B.; Wang, F.; Zhang, J. Highly efficient electrocatalysts for overall water splitting: Mesoporous CoS/MoS2 with hetero-interfaces. Chem. Commun. 2021, 57, 4847–4850. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Rahman, G.; Chae, S.Y.; Shah, A.U.H.A.; Joo, O.S.; Mian, S.A.; Hussain, A. Boosting electrocatalytic hydrogen generation from water splitting with heterostructured MoS2/NiFe2O4 composite in alkaline media. Int. J. Hydrogen Energy 2024, 69, 261–271. [Google Scholar] [CrossRef]
- Liu, W.; Dong, J.; An, B.; Su, H.; Teng, Z.; Li, N.; Gao, Y.; Ge, L. Synergistic dual built-in electric fields in 1T-MoS2/Ni3S2/LDH for efficient electrocatalytic overall water splitting reactions. J. Colloid Interface Sci. 2024, 673, 228–238. [Google Scholar] [CrossRef]
S. No. | Catalysts | Electrolyte | Overpotential | Stability | Ref. |
---|---|---|---|---|---|
Oxygen Evolution Reaction | |||||
1 | MoS2 quantum dots | 1.0 M KOH | 370 mV (10 mA cm−2) | 2 h (10 mA cm−2) | [60] |
2 | MoS2 nanosheets wrapped MOF-based Co3O4 | 1.0 M KOH | 230 mV (10 mA cm−2) | 13 h (10 mA cm−2) | [61] |
3 | Metal–organic-framework-derived Co9S8-MoS2 | 1.0 M KOH | 270 mV (10 mA cm−2) | 24 h (10 mA cm−2) | [44] |
4 | MoS2-based hybrid with N-doped carbon-wrapped CoFe alloy | 1.0 M KOH | 337 mV (10 mA cm−2) | 24 h (10 mA cm−2) | [62] |
5 | Cu-MoS2 | 1.0 M KOH | 290 mV (10 mA cm−2) | 12 h (10 mA cm−2) | This work |
Hydrogen Evolution Reaction | |||||
6 | Cu-MoS2/NiS2 | 1.0 M KOH | 105 mV (−10 mA cm−2) | -- | [42] |
7 | W-1T MoS2-15 | 0.5 M H2SO4 | 292 mV (−10 mA cm−2) | 14 h (−10 mA cm−2) | [63] |
8 | Mix-phased 1 T/2 H MoS2 | 1.0 M KOH | 145 mV (−10 mA cm−2) | 24 h (−10 mA cm−2) | [64] |
9 | AC/MoS2–F | 0.5 M H2SO4 | 136 mV (−10 mA cm−2) | 24 h (−10 mA cm−2) | [65] |
10 | Cu-MoS2 | 1.0 M KOH | 167.7 mV (−10 mA cm−2) | 12 h (−10 mA cm−2) | This work |
Overall water splitting | |||||
11 | CoS/MoS2||CoS/MoS2 | 1.0 M KOH | 1.61 V (cell potential) (10 mA cm−2) | 12 h (10 mA cm−2) | [66] |
12 | MoS2-CoFeLDH/NF|| MoS2-CoFeLDH/NF | 1.0 M KOH | 1.55 V (cell potential) (10 mA cm−2) | 48 h (10 mA cm−2) | [23] |
13 | MoS2/NiFe2O4|| MoS2/NiFe2O4 | 1.0 M KOH | 1.69 V (cell potential) (10 mA cm−2) | -- | [67] |
14 | 1T-MoS2/Ni3S2/LDH|| 1T-MoS2/Ni3S2/LDH | 1.0 M KOH | 1.55 V (cell potential) (10 mA cm−2) | 20 h (10 mA cm−2) | [68] |
15 | Cu-MoS2||Cu-MoS2 | 1.0 M KOH | 1.69 V (cell potential) (10 mA cm−2) | 18 h (10 mA cm−2) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teli, A.M.; Mishra, R.K.; Shin, J.C.; Jeon, W. Exploring the Capability of Cu-MoS2 Catalysts for Use in Electrocatalytic Overall Water Splitting. Micromachines 2024, 15, 876. https://doi.org/10.3390/mi15070876
Teli AM, Mishra RK, Shin JC, Jeon W. Exploring the Capability of Cu-MoS2 Catalysts for Use in Electrocatalytic Overall Water Splitting. Micromachines. 2024; 15(7):876. https://doi.org/10.3390/mi15070876
Chicago/Turabian StyleTeli, Aviraj M., Rajneesh Kumar Mishra, Jae Cheol Shin, and Wookhee Jeon. 2024. "Exploring the Capability of Cu-MoS2 Catalysts for Use in Electrocatalytic Overall Water Splitting" Micromachines 15, no. 7: 876. https://doi.org/10.3390/mi15070876
APA StyleTeli, A. M., Mishra, R. K., Shin, J. C., & Jeon, W. (2024). Exploring the Capability of Cu-MoS2 Catalysts for Use in Electrocatalytic Overall Water Splitting. Micromachines, 15(7), 876. https://doi.org/10.3390/mi15070876