Advancing Lithium-Ion Batteries’ Electrochemical Performance: Ultrathin Alumina Coating on Li(Ni0.8Co0.1Mn0.1)O2 Cathode Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Material Characterizations
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. X-ray Diffraction Analysis
3.2. Morphology
3.3. Electrochemical Properties
3.4. EIS Measurements
3.5. Cyclic Voltammetry Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Levartovsky, Y.; Wu, X.; Erk, C.; Maiti, S.; Grinblat, J.; Talianker, M.; Aurbach, D. Enhancement of structural, electrochemical, and thermal properties of Ni-rich LiNi0.85Co0.1Mn0.05O2 cathode materials for Li-ion batteries by Al and Ti doping. Batter. Supercaps 2021, 4, 221–231. [Google Scholar] [CrossRef]
- Yang, J.; Xia, Y. Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3. ACS Appl. Mater. Interfaces 2016, 8, 1297–1308. [Google Scholar] [CrossRef]
- Xiao, W.; Nie, Y.; Miao, C.; Wang, J.; Tan, Y.; Wen, M. Structural design of high-performance Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode materials enhanced by Mg2+ doping and Li3PO4 coating for lithium ion battery. J. Colloid Interface Sci. 2022, 607, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fan, X.; Luo, B.; Zhao, Z.; Shen, J.; Liu, Z.; Xiao, Z.; Zhang, B.; Zhang, J.; Ming, L.; et al. Understanding the enhancement effect of boron doping on the electrochemical performance of single-crystalline Ni-rich cathode materials. J. Colloid Interface Sci. 2021, 604, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Heenan, T.M.M.; Wade, A.; Tan, C.; Parker, J.E.; Matras, D.; Leach, A.S.; Robinson, J.B.; Llewellyn, A.; Dimitrijevic, A.; Jervis, R.; et al. Identifying the origins of microstructural defects such as cracking within Ni-rich NMC811 cathode particles for lithium-ion batteries. Adv. Energy Mater. 2020, 10, 2002655. [Google Scholar] [CrossRef]
- Negi, R.S.; Culver, S.P.; Wiche, M.; Ahmed, S.; Volz, K.; Elm, M.T. Optimized atomic layer deposition of homogeneous, conductive Al2O3 coatings for high-nickel NCM containing ready-to-use electrodes. Phys. Chem. Chem. Phys. 2021, 23, 6725–6737. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.B.; Hoang, T.D.; Byeon, Y.S.; Jung, H.; Moon, J.; Park, M.-S. Surface stabilization of Ni-rich layered cathode materials via surface engineering with LiTaO3 for lithium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 2731–2741. [Google Scholar] [CrossRef]
- Wu, F.; Tian, J.; Su, Y.; Wang, J.; Zhang, C.; Bao, L.; He, T.; Li, J.; Chen, S. Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials. ACS Appl. Mater. Interfaces 2015, 7, 7702–7708. [Google Scholar] [CrossRef]
- She, S.; Zhou, Y.; Hong, Z.; Huang, Y.; Wu, Y. Surface coating of NCM-811 cathode materials with g-C3N4 for enhanced electrochemical performance. ACS Omega 2022, 7, 24851–24857. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tan, C.; Wei, S.; Cui, L.; Fan, X.; Pan, Q.; Lai, F.; Zheng, F.; Wang, H.; Li, Q. Stable surface construction of the Ni-rich LiNi0.8Mn0.1Co0.1O2 cathode material for high-performance lithium-ion batteries. J. Mater. Chem. A 2020, 8, 21649–21660. [Google Scholar] [CrossRef]
- Dose, W.M.; Temprano, I.; Allen, J.P.; Björklund, E.; O’Keefe, C.A.; Li, W.; Mehdi, B.L.; Weatherup, R.S.; De Volder, M.F.L.; Grey, C.P. Electrolyte reactivity at the charged Ni-rich cathode interface and degradation in Li-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 13206–13222. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Gao, R.-M.; Zhang, X.-D.; Liang, J.-Y.; Meng, X.-H.; Lu, Z.-Y.; Cao, F.-F.; Ye, H. Building a Self-Adaptive Protective Layer on Ni-Rich Layered Cathodes to Enhance the Cycle Stability of Lithium-Ion Batteries. Adv. Mater. 2022, 34, 2204835. [Google Scholar] [CrossRef]
- Gu, M.; Belharouak, I.; Zheng, J.; Wu, H.; Xiao, J.; Genc, A.; Amine, K.; Thevuthasan, S.; Baer, D.R.; Zhang, J.-G.; et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 2013, 7, 760–767. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, Z.; Yue, P.; Guo, H.; Wu, F.; Wang, J.; Li, X. Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. J. Power Sources 2013, 222, 318–325. [Google Scholar] [CrossRef]
- Ryu, H.-H.; Park, K.-J.; Yoon, C.S.; Sun, Y.-K. Capacity fading of Ni-rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation? Chem. Mater. 2018, 30, 1155–1163. [Google Scholar] [CrossRef]
- Li, T.; Yuan, X.-Z.; Zhang, L.; Song, D.; Shi, K.; Bock, C. Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries. Electrochem. Energy Rev. 2020, 3, 43–80. [Google Scholar] [CrossRef]
- Chen, T.; Wang, F.; Li, X.; Yan, X.; Wang, H.; Deng, B.; Xie, Z.; Qu, M. Dual functional MgHPO4 surface modifier used to repair deteriorated Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material. Appl. Surf. Sci. 2019, 465, 863–870. [Google Scholar] [CrossRef]
- Feng, Z.; Rajagopalan, R.; Sun, D.; Tang, Y.; Wang, H. In-situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0.8Co0.1Mn0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery. Chem. Eng. J. 2020, 382, 122959. [Google Scholar] [CrossRef]
- Xiong, L.; Sun, M.; Xu, Y.; Du, X.; Xiao, X. Synthesis of carbon-coated Li2MnO3 cathode material with enhanced rate capability for lithium-ion batteries. Solid State Ion. 2018, 325, 170–175. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Chen, B.; Wang, Z.; Lu, C. An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. J. Power Sources 2014, 256, 20–27. [Google Scholar] [CrossRef]
- Tao, T.; Chen, C.; Yao, Y.; Liang, B.; Lu, S.; Chen, Y. Enhanced electrochemical performance of ZrO2 modified LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries. Ceram. Int. 2017, 43, 15173–15178. [Google Scholar] [CrossRef]
- Cheng, R.; Zhou, M.; Zhang, K.; Xu, F.; Sun, L.; Lin, Q.; Li, H. Enhanced electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathode material by Al2O3 surface coating derived via NH2-MIL-53(Al) MOF. J. Alloys Compd. 2021, 875, 159956. [Google Scholar] [CrossRef]
- Ma, F.; Wu, Y.; Wei, G.; Qiu, S.; Qu, J. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via wet-chemical coating of MgO. J. Solid State Electrochem. 2019, 23, 2213–2224. [Google Scholar] [CrossRef]
- Neudeck, S.; Mazilkin, A.; Reitz, C.; Hartmann, P.; Janek, J.; Brezesinski, T. Effect of low-temperature Al2O3 ALD coating on Ni-rich layered oxide composite cathode on the long-term cycling performance of lithium-ion batteries. Sci. Rep. 2019, 9, 5328. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Sun, H.; Young, M.J.; George, S.M. Atomic layer deposition of metal fluorides using HF–pyridine as the fluorine precursor. Chem. Mater. 2016, 28, 2022–2032. [Google Scholar] [CrossRef]
- Kong, J.-Z.; Wang, S.-S.; Tai, G.-A.; Zhu, L.; Wang, L.-G.; Zhai, H.-F.; Wu, D.; Li, A.-D.; Li, H. Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material by ultrathin ZrO2 coating. J. Alloys Compd. 2016, 657, 593–600. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Meng, X.; Tang, Y.; Banis, M.N.; Yang, J.; Hu, Y.; Li, R.; Cai, M.; Sun, X. Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide nanocoatings via atomic layer deposition. J. Power Sources 2014, 247, 57–69. [Google Scholar] [CrossRef]
- Kraytsberg, A.; Drezner, H.; Auinat, M.; Shapira, A.; Solomatin, N.; Axmann, P.; Wohlfahrt-Mehrens, M.; Ein-Eli, Y. Atomic Layer Deposition of a Particularized Protective MgF2 Film on a Li-ion Battery LiMn1.5Ni0.5O4 Cathode Powder Material. ChemNanoMat 2015, 1, 577–585. [Google Scholar] [CrossRef]
- Lee, S.M.; Oh, S.H.; Ahn, J.P.; Cho, W.I.; Jang, H. Electrochemical properties of ZrO2-coated LiNi0.8Co0.2O2 cathode materials. J. Power Sources 2006, 159, 1334–1339. [Google Scholar] [CrossRef]
- Yang, G.; Pan, K.; Yan, Z.; Yang, S.; Peng, F.; Liang, J.; Lai, F.; Wang, H.; Zhang, X.; Li, Q. Fully coating of Mg3B2O6 in nonaqueous solution on Ni-rich LiNi0.8Co0.1Mn0.1O2 secondary particles to improve cycling stability of lithium-ion batteries. Chem. Eng. J. 2023, 452, 139405. [Google Scholar] [CrossRef]
- Zhang, B.; Dong, P.; Tong, H.; Yao, Y.; Zheng, J.; Yu, W.; Zhang, J.; Chu, D. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 with lithium-reactive Li3VO4 coating. J. Alloys Compd. 2017, 706, 198–204. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, W.; Yao, J.; Bu, L.; Li, X.; Tian, K.; Lu, H.; Quan, C.; Xu, S.; Xu, K.; et al. Suppressing structural degradation of Ni-rich cathode materials towards improved cycling stability enabled by a Li2MnO3 coating. J. Mater. Chem. A 2020, 8, 17429–17441. [Google Scholar] [CrossRef]
- Li, L.; Chen, Z.; Zhang, Q.; Xu, M.; Zhou, X.; Zhu, H.; Zhang, K. A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 894–904. [Google Scholar] [CrossRef]
- Fan, Q.; Lin, K.; Yang, S.; Guan, S.; Chen, J.; Feng, S.; Liu, J.; Liu, L.; Li, J.; Shi, Z. Constructing effective TiO2 nano-coating for high-voltage Ni-rich cathode materials for lithium-ion batteries by precise kinetic control. J. Power Sources 2020, 477, 228745. [Google Scholar] [CrossRef]
- Du, M.; Yang, P.; He, W.; Bie, S.; Zhao, H.; Yin, J.; Zou, Z.G.; Liu, J. Enhanced high-voltage cycling stability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode coated with Li2O–2B2O3. J. Alloys Compd. 2019, 805, 991–998. [Google Scholar] [CrossRef]
- Kong, J.-Z.; Chen, Y.; Cao, Y.-Q.; Wang, Q.-Z.; Li, A.-D.; Li, H.; Zhou, F. Enhanced electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 coated by molecular layer deposition derived dual-functional C-Al2O3 composite coating. J. Alloys Compd. 2019, 799, 89–98. [Google Scholar] [CrossRef]
- Yao, W.; Liu, Y.; Li, D.; Zhang, Q.; Zhong, S.; Cheng, H.; Yan, Z. Synergistically enhanced electrochemical performance of Ni-rich cathode materials for lithium-ion batteries by K and Ti Co-modification. J. Phys. Chem. C 2020, 124, 2346–2356. [Google Scholar] [CrossRef]
- Sim, S.-J.; Lee, S.-H.; Jin, B.-S.; Kim, H.-S. Effects of lithium tungsten oxide coating on LiNi0.90Co0.05Mn0.05O2 cathode material for lithium-ion batteries. J. Power Sources 2021, 481, 229037. [Google Scholar] [CrossRef]
Sample | 1st Discharge Capacity (mAh g−1) | 150th Discharge Capacity (mAh g−1) | Capacity Retention (%) | Voltage Fading (V) | Upper Cutoff Voltage (V) |
---|---|---|---|---|---|
Pristine NCM811 | 179.46 | 147.51 | 82.00 | 0.0986 | 4.3 |
189.62 | 144.52 | 75.68 | 0.1559 | 4.4 | |
200.66 | 127.69 | 63.64 | 0.3522 | 4.5 | |
Al2O3-Coated NCM811 | 179.61 | 152.25 | 87.00 | 0.0710 | 4.3 |
187.23 | 158.74 | 84.79 | 0.1413 | 4.4 | |
198.93 | 149.04 | 74.92 | 0.2930 | 4.5 |
Sample | Rct before Cycling (Ω) | Rct after 150 Cycles (Ω) | Upper Cutoff Voltage (V) |
---|---|---|---|
Pristine NCM811 | 34.18 | 114.8 | 4.3 |
75.88 | 164.00 | 4.4 | |
91.34 | 307.10 | 4.5 | |
Al2O3-Coated NCM811 | 62.59 | 75.58 | 4.3 |
92.97 | 126.53 | 4.4 | |
72.42 | 205.8 | 4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahangari, M.; Xia, F.; Szalai, B.; Zhou, M.; Luo, H. Advancing Lithium-Ion Batteries’ Electrochemical Performance: Ultrathin Alumina Coating on Li(Ni0.8Co0.1Mn0.1)O2 Cathode Materials. Micromachines 2024, 15, 894. https://doi.org/10.3390/mi15070894
Ahangari M, Xia F, Szalai B, Zhou M, Luo H. Advancing Lithium-Ion Batteries’ Electrochemical Performance: Ultrathin Alumina Coating on Li(Ni0.8Co0.1Mn0.1)O2 Cathode Materials. Micromachines. 2024; 15(7):894. https://doi.org/10.3390/mi15070894
Chicago/Turabian StyleAhangari, Mehdi, Fan Xia, Benedek Szalai, Meng Zhou, and Hongmei Luo. 2024. "Advancing Lithium-Ion Batteries’ Electrochemical Performance: Ultrathin Alumina Coating on Li(Ni0.8Co0.1Mn0.1)O2 Cathode Materials" Micromachines 15, no. 7: 894. https://doi.org/10.3390/mi15070894
APA StyleAhangari, M., Xia, F., Szalai, B., Zhou, M., & Luo, H. (2024). Advancing Lithium-Ion Batteries’ Electrochemical Performance: Ultrathin Alumina Coating on Li(Ni0.8Co0.1Mn0.1)O2 Cathode Materials. Micromachines, 15(7), 894. https://doi.org/10.3390/mi15070894