A Flexible Wearable Strain Sensor Based on Nano-Silver-Modified Laser-Induced Graphene for Monitoring Hand Movements
Abstract
:1. Introduction
- We propose a nano-Ag-modified LIG flexible wearable strain sensor, which offers a novel approach for the in situ, single-step preparation of LIG and the fabrication of high-performance flexible sensors.
- The nano-Ag-modified LIG flexible strain sensor exhibits exceptional characteristics, including low resistance, superior sensitivity, excellent stability, and remarkable repeatability.
- The high-performance flexible wearable strain sensor can accurately characterize finger-bend angles. Additionally, based on its exceptional electric heating performance, it can be further expanded to the field of hand heating and insulation for pilots in cold environments, providing a more comfortable and safe flight experience for pilots.
2. Materials and Methods
2.1. Preparation of LIG
2.2. Characterization of LIG
3. Results and Discussion
3.1. Surface Morphology of LIG
3.2. Characterization of LIG
3.3. Performance Testing of Doping Ag-LIG Sensor
3.4. Application of Ag-LIG Sensor
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Zhuo, F.; Zhou, J.; Liu, Y.; Zhang, J.; Dong, S.; Liu, X.; Elmarakbi, A.; Duan, H.; Fu, Y.; et al. Advances in graphene-based flexible and wearable strain sensors. Chem. Eng. J. 2023, 464, 142576. [Google Scholar] [CrossRef]
- Yang, R.; Song, H.; Zhou, Z.; Yang, S.; Tang, X.; He, J.; Liu, S.; Zeng, Z.; Yang, B.-R.; Gui, X. Ultra-sensitive, multi-directional flexible strain sensors based on an MXene film with periodic wrinkles. ACS Appl. Mater. Interfaces 2023, 15, 8345–8354. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Niu, L.; Ma, P.; Li, X.; Feng, J.; Liu, Z. Rapid preparation of antifreezing conductive hydrogels for flexible strain sensors and supercapacitors. ACS Appl. Mater. Interfaces 2023, 15, 10006–10017. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Gao, X.; Kang, R.; Zhang, X.; Meng, X.; Li, X.; Li, X. Flexible strain sensors based on an interlayer synergistic effect of nanomaterials for continuous and noninvasive blood pressure monitoring. ACS Appl. Mater. Interfaces 2024, 16, 26943–26953. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wu, J.; Liu, S.; Wei, Q.; Liu, S.; Su, B.; Wang, Y. A fully integrated multifunctional flexible sensor based on nitrile rubber/carbon nanotubes/graphene composites for smart tire. Chem. Eng. J. 2024, 486, 150104. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Y. Interplay of graphene–DNA interactions: Unveiling sensing potential of graphene materials. Appl. Phys. Rev. 2024, 11, 011306. [Google Scholar] [CrossRef] [PubMed]
- Pirabul, K.; Zhao, Q.; Sunahiro, S.; Pan, Z.-Z.; Yoshii, T.; Hayasaka, Y.; Pang, E.H.-S.; Crespo-Otero, R.; Di Tommaso, D.; Kyotani, T.; et al. A thermodynamically favorable route to the synthesis of nanoporous graphene templated on CaO via chemical vapor deposition. Green Chem. 2024, 26, 6051–6062. [Google Scholar] [CrossRef]
- Zong, H.; Gao, M.; Mohsan, A.U.H.; Lin, Y.; Zhou, Y.; Yu, L.; Zhao, S.; Li, Y.; Zhang, J. Effect of static pressure on ultrasonic liquid phase exfoliation of few-layer graphene. Ultrason. Sonochem. 2024, 105, 106863. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Oh, Y.; Yang, M.; Jeon, H.; Shekhar, S.; Park, J.; Hong, S. Nanoscale mapping of relativistic photocarrier transports in epitaxial graphene surface and edge states. Carbon 2024, 226, 119162. [Google Scholar] [CrossRef]
- Li, Z.; Huang, L.; Cheng, L.; Guo, W.; Ye, R. Laser-induced graphene-based sensors in health monitoring: Progress, sensing mechanisms, and applications. Small Methods 2024, 2400118. [Google Scholar] [CrossRef]
- Cheng, J.; Tang, S.; Wang, Z.; Fan, X.; Wu, D.; Wang, D.; Liu, C.; Cao, Z. Design of high-performance bilayer solar evaporator using graphene-coated bamboo prepared by near-infrared laser-induced carbonization of polystyrene. Adv. Mater. Technol. 2023, 9, 2301211. [Google Scholar] [CrossRef]
- Luo, Y.; Zhu, B.; Zhang, S.; Zhang, P.; Li, X.; Wang, L.; Lu, B.; Travas-Sejdic, J. Stretchable and flexible non-enzymatic glucose sensor based on poly(ether sulfone)-derived laser-induced graphene for wearable skin diagnostics. Adv. Mater. Technol. 2022, 7, 2101571. [Google Scholar] [CrossRef]
- Zhang, Q.; Qu, M.; Liu, X.; Cui, Y.; Hu, H.; Li, Q.; Jin, M.; Xian, J.; Nie, Z.; Zhang, C. Three-in-one portable electronic sensory system based on low-impedance laser-induced graphene on-skin electrode sensors for electrophysiological signal monitoring. Adv. Mater. Interfaces 2022, 10, 2201735. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, Y.; Moon, K.-S.; Chen, Y.; Shi, D.; Chen, X.; Wong, C.-P. Ambient-air in situ fabrication of high-surface-area, superhydrophilic, and microporous few-layer activated graphene films by ultrafast ultraviolet laser for enhanced energy storage. Nano Energy 2021, 94, 106902. [Google Scholar] [CrossRef]
- Deshmukh, S.; Ghosh, K.; Pykal, M.; Otyepka, M.; Pumera, M. Laser-induced MXene-functionalized graphene nanoarchitectonics-based microsupercapacitor for health monitoring application. ACS Nano 2023, 17, 20537–20550. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, K.; Wu, R.; Pan, S.; Zhang, C. Laser-induced graphene-based flexible substrate with photothermal conversion and photoresponse performance on polyimide film. ACS Appl. Mater. Interfaces 2023, 15, 46550–46558. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chen, Q.; Huang, Y.; Wang, D.; Li, L.; Liu, Z. In situ laser synthesis of Pt nanoparticles embedded in graphene films for wearable strain sensors with ultra-high sensitivity and stability. Carbon 2022, 190, 245–254. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, F.; Liu, X.; Yue, Z.; Chen, X.; Wan, Z. Doping of laser-induced graphene and its applications. Adv. Mater. Technol. 2023, 8, 2300244. [Google Scholar] [CrossRef]
- Roche, J.D.L.; López-Cifuentes, I.; Jaramillo-Botero, A. Influence of lasing parameters on the morphology and electrical resistance of polyimide-based laser-induced graphene(LIG). Carbon Lett. 2022, 33, 587–595. [Google Scholar] [CrossRef]
- Karimi, G.; Lau, I.; Fowler, M.; Pope, M. Parametric study of laser-induced graphene conductive traces and their application as flexible heaters. Int. J. Energy Res. 2021, 45, 13712–13725. [Google Scholar] [CrossRef]
- Hjort, R.G.; Pola, C.C.; Soares, R.R.A.; Opare-Addo, J.; Smith, E.A.; Claussen, J.C.; Gomes, C.L. Laser-induced graphene decorated with platinum nanoparticles for electrochemical analysis of saliva. ACS Appl. Nano Mater. 2023, 6, 20801–20811. [Google Scholar] [CrossRef]
- Thuy, N.T.D.; Zhao, G.; Wang, X.; Awuah, E.; Zhang, L. Potassium ion-selective electrode with a sensitive ion-to-electron transducer composed of porous laser-induced graphene and MoS2 fabricated by one-step direct laser writing. Electroanalysis 2022, 35, e202200194. [Google Scholar] [CrossRef]
- Chen, J.; Ling, Y.; Yuan, X.; He, Y.; Li, S.; Wang, G.; Zhang, Z.; Wang, G. Highly sensitive detection of formaldehyde by laser-induced graphene-coated silver nanoparticles electrochemical sensing electrodes. Langmuir 2023, 39, 12762–12773. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zhong, M.; Li, S.; Qing, Z.; Xing, X.; Gong, G.; Yan, R.; Qin, W.; Shen, J.; Zhang, H.; et al. Flexible wearable strain sensors based on laser-induced graphene for monitoring human physiological signals. Polymers 2023, 15, 3553. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Zou, Y.; Zhong, M.; Li, S.; Fan, H.; Lei, X.; Yin, J.; Shen, J.; Liu, X.; Xu, M.; et al. A Flexible wearable sensor based on laser-induced graphene for high-precision fine motion capture for pilots. Sensors 2024, 24, 1349. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Tao, L.Q.; Wang, Y.; Zheng, K.; Yu, J.; Xiandong, L.; Chen, X.; Huang, Y. Graphene oxide humidity sensor with laser-induced graphene porous electrodes. Sens. Actuat. B-Chem. 2020, 325, 128790. [Google Scholar] [CrossRef]
- He, M.; Wang, G.; Zhu, Y.; Wang, Y.; Liu, F.; Luo, S. In-situ joule heating-triggered nanopores generation in laser-induced graphene papers for capacitive enhancement. Carbon 2021, 186, 215–226. [Google Scholar] [CrossRef]
- Qin, W.; Geng, J.; Lin, C.; Xue, Y.; Zhong, M.; Zou, Y.; Liu, G.; Zhang, T. A flexible strain sensor based on MXene/AgNW composite film with extremely high sensitivity and low strain range for real-time health monitoring and thermal management. J. Phys. D Appl. Phys. 2023, 56, 195401. [Google Scholar] [CrossRef]
- Carvalho, A.F.; Fernandes, A.J.S.; Leitão, C.; Deuermeier, J.; Marques, A.C.; Martins, R.; Fortunato, E.; Costa, F.M. Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv. Funct. Mater. 2018, 28, 1805271. [Google Scholar] [CrossRef]
- Yang, H.; Wang, S.; Huang, Q.; Tan, C.; Gao, C.; Xu, S.; Ye, H.; Zhang, G. Stretchable strain sensor based on HfSe2/LIG composite with high sensitivity and good linearity within a wide range. Appl. Surf. Sci. 2023, 636, 157772. [Google Scholar] [CrossRef]
- Tang, L.; Zhou, J.; Zhang, D.; Sheng, B. Laser-induced graphene electrodes on poly(ether–ether–ketone)/PDMS composite films for flexible strain and humidity sensors. ACS Appl. Nano Mater. 2023, 6, 17802–17813. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Z.; Liu, P.; Guo, X. A soft and stretchable electronics using laser-induced graphene on polyimide/PDMS composite substrate. NPJ Flex. Electron. 2022, 6, 26. [Google Scholar] [CrossRef]
- Cheng, X.; Cai, J.; Xu, J.; Gong, D. High-performance strain sensors based on Au/graphene composite films with hierarchical cracks for wide linear-range motion monitoring. ACS Appl. Mater. Interfaces 2022, 14, 39230–39239. [Google Scholar] [CrossRef]
- Wang, W.; Lu, L.; Lu, X.; Liang, Z.; Lin, H.; Li, Z.; Wu, X.; Lin, L.; Xie, Y. Scorpion-inspired dual-bionic, microcrack-assisted wrinkle based laser induced graphene-silver strain sensor with high sensitivity and broad working range for wireless health monitoring system. Nano Res. 2022, 16, 1228–1241. [Google Scholar] [CrossRef]
- Dallinger, A.; Keller, K.; Fitzek, H.; Greco, F. Stretchable and skin-conformable conductors based on polyurethane/laser-induced graphene. ACS Appl. Mater. Interfaces 2020, 12, 19855–19865. [Google Scholar] [CrossRef]
- Liu, F.; Wang, G.; Ding, X.; Luo, S. Multifunctional laser-induced graphene enabled polymeric composites. Compos. Commun. 2021, 25, 100714. [Google Scholar] [CrossRef]
- Yang, X.; Gui, J.; Dong, C.; Zhao, J.; Xu, R. Laser-induced graphene for screen-printed strain sensors. ACS Appl. Nano Mater. 2023, 6, 21679–21687. [Google Scholar] [CrossRef]
- Kulyk, B.; Silva, B.F.R.; Carvalho, A.F.; Silvestre, S.; Fernandes, A.J.S.; Martins, R.; Fortunato, E.; Costa, F.M. Laser-induced graphene from paper for mechanical sensing. ACS Appl. Mater. Interfaces 2021, 13, 10210–10221. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, M.; Zou, Y.; Fan, H.; Li, S.; Zhao, Y.; Li, B.; Li, B.; Jiang, Y.; Xing, X.; Shen, J.; et al. A Flexible Wearable Strain Sensor Based on Nano-Silver-Modified Laser-Induced Graphene for Monitoring Hand Movements. Micromachines 2024, 15, 989. https://doi.org/10.3390/mi15080989
Zhong M, Zou Y, Fan H, Li S, Zhao Y, Li B, Li B, Jiang Y, Xing X, Shen J, et al. A Flexible Wearable Strain Sensor Based on Nano-Silver-Modified Laser-Induced Graphene for Monitoring Hand Movements. Micromachines. 2024; 15(8):989. https://doi.org/10.3390/mi15080989
Chicago/Turabian StyleZhong, Mian, Yao Zou, Hongyun Fan, Shichen Li, Yilin Zhao, Bin Li, Bo Li, Yong Jiang, Xiaoqing Xing, Jiaqing Shen, and et al. 2024. "A Flexible Wearable Strain Sensor Based on Nano-Silver-Modified Laser-Induced Graphene for Monitoring Hand Movements" Micromachines 15, no. 8: 989. https://doi.org/10.3390/mi15080989
APA StyleZhong, M., Zou, Y., Fan, H., Li, S., Zhao, Y., Li, B., Li, B., Jiang, Y., Xing, X., Shen, J., & Zhou, C. (2024). A Flexible Wearable Strain Sensor Based on Nano-Silver-Modified Laser-Induced Graphene for Monitoring Hand Movements. Micromachines, 15(8), 989. https://doi.org/10.3390/mi15080989