EAAUnet-ILT: A Lightweight and Iterative Mask Optimization Resolution with SRAF Constraint Scheme
Abstract
1. Introduction
2. Preliminaries
2.1. Lithography Simulation Model
2.2. ILT Evaluation Metrics
3. Methodology
3.1. EAAUnet Structure
3.2. Hybrid Adaptive Attention Module (HAAM)
3.2.1. Channel Self-Attention Block
3.2.2. Spatial Self-Attention Block
3.3. G-E Module
3.4. Model Pretrain and Iteration
Algorithm 1 EAAUnet-ILT Application Process |
Require: target layout , labeled mask , kernels , dose d, weight , pretrained model EAAUnet_model |
Ensure: SRAF constrain mask |
1: function GMUNet -ILT(, , d, ) 2: load_model(EAAUnet_model) |
3: for i = 1, …, thiter |
4: M ← EAAUnet() |
5: ← litho_sim(M) |
6: ← calculate_loss(, , ) |
7: G ← calculate_gradient(L) |
8: update parameters(EAAUnet_model) |
9: end for |
10: |
11: |
12: return |
13: end function |
3.5. SRAF Constrain Algorithm
Algorithm 2 Mask SRAF Constrain |
Require: Binary mask , target layout , max size , min size , overlap ratio r |
Ensure: Constrained mask |
1: function SRAF_constrain(, , , , r) |
2: |
3: |
4: {, …, } ← findConnectedRegions() |
5: for i = 1, …, n |
6: ← getGrid() |
7: ← generateRectangle() |
8: end for |
9: ← mergeRectangles(, …, ) |
10: ← or |
11: return |
12: end function |
4. Experiments and Discussion
4.1. Experimental Materials
4.2. Results and Analysis
- AAUnet enhanced with an attention gate (AG) (i.e., EAAUnet without the G-E block improvement);
- AAUnet enhanced with a G-E block (i.e., EAAUnet without the attention gate mechanism);
- AAUnet with a modified G-E block where the ghost module was replaced with a standard convolution and the ECA module was removed (denoted as variant0 in Table 1).
4.3. Ablation Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thompson, L.F. An Introduction to Lithography; ACS Publications: Washington, DC, USA, 1983; pp. 1–13. [Google Scholar]
- Schaller, R. Moore’s law: Past, present and future. IEEE Spectr. 2002, 34, 52–59. [Google Scholar] [CrossRef]
- Wong, A.K. Optical Imaging in Projection Microlithography; SPIE Press: Bellingham, WA, USA, 2005; Volume 66. [Google Scholar]
- Hou, Y.; Wu, Q. Optical proximity correction, methodology and limitations. In Proceedings of the 2021 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 14–15 March 2021. [Google Scholar]
- Park, J.-S.; Park, C.-H.; Rhie, S.-U.; Kim, Y.-H.; Yoo, M.-H.; Kong, J.-T.; Kim, H.-W.; Yoo, S.-I. An efficient rule-based OPC approach using a DRC tool for 0.18 μm ASIC. In Proceedings of the IEEE 2000 First International Symposium on Quality Electronic Design (Cat. No. PR00525), San Jose, CA, USA, 20–22 March 2000; pp. 81–85. [Google Scholar]
- Sun, S.; Chen, X.; Yang, F.; Yu, B.; Li, S.; Zeng, X. Efficient model-based OPC via graph neural network. In Proceedings of the 2023 International Symposium of Electronics Design Automation (ISEDA), Nanjing, China, 8–11 May 2023. [Google Scholar]
- Zheng, S.; Xiao, G.; Yan, G.; Dong, M.; Li, Y.; Chen, H.; Ma, Y.; Yu, B.; Wong, M. Model-based OPC Extension in OpenILT. In Proceedings of the 2024 2nd International Symposium of Electronics Design Automation (ISEDA), Xi’an, China, 10–13 May 2024; pp. 568–573. [Google Scholar]
- Kuang, J.; Chow, W.-K.; Young, E.F.Y. A robust approach for process variation aware mask optimization. In Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2015; pp. 1591–1594. [Google Scholar]
- Su, Y.-H.; Huang, Y.-C.; Tsai, L.-C.; Chang, Y.-W.; Banerjee, S. Fast lithographic mask optimization considering process variation. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2016, 35, 1345–1357. [Google Scholar] [CrossRef]
- Pang, L.; Liu, Y.; Abrams, D.; Hoga, M. Inverse Lithography Technology (ILT): What is the Impact to the Photomask Industry; Hoga, M., Ed.; Photomask and Next Generation Lithography Mask Technology XIII: Yokohama, Japan, May 2006; p. 62830X. [Google Scholar]
- Gao, J.-R.; Xu, X.; Yu, B.; Pan, D.Z. MOSAIC: Mask optimizing solution with process window aware inverse correction. In Proceedings of the 51st Annual Design Automation Conference, New York, NY, USA, 1 June 2014. [Google Scholar]
- Sun, S.; Yang, F.; Yu, B.; Shang, L.; Zeng, X. Efficient ILT via multi-level lithography simulation. In Proceedings of the 2023 60th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 9 July 2023; pp. 1–6. [Google Scholar]
- Chen, W.; Ma, X.; Zhang, S. Bandwidth-aware fast inverse lithography technology using Nesterov accelerated gradient. Opt. Express 2024, 32, 42639–42651. [Google Scholar] [CrossRef]
- Ye, W.; Alawieh, M.B.; Lin, Y.; Pan, D.Z. LithoGAN: End-to-end lithography modeling with generative adversarial networks. In Proceedings of the 56th Annual Design Automation Conference, Las Vegas, NV, USA, 2–6 June 2019; pp. 1–6. [Google Scholar]
- Jiang, B.; Liu, L.; Ma, Y.; Zhang, H.; Yu, B.; Young, E.F.Y. Neural-ILT: Migrating ILT to neural networks for mask printability and complexity co-optimization. In Proceedings of the 39th International Conference on Computer-Aided Design, San Diego, CA, USA, 2–5 November 2020; pp. 1–9. [Google Scholar]
- Zhu, B.; Zheng, S.; Yu, Z.; Chen, G.; Ma, Y.; Yang, F.; Yu, B.; Wong, M.D.F. L2O-ILT: Learning to optimize inverse lithography techniques. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2023, 43, 944–955. [Google Scholar] [CrossRef]
- Chen, G.; Li, L.; Dai, Y.; Zhang, J.; Yap, M.H. AAU-net: An adaptive attention U-net for breast lesions segmentation in ultrasound images. IEEE Trans. Med. Imaging 2022, 42, 1289–1300. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, H.H. The concept of partial coherence in optics. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1951, 208, 263–277. [Google Scholar]
- Cobb, N. Sum of coherent systems decomposition by SVD. Available online: https://www-video.eecs.berkeley.edu/papers/ncobb/socs.pdf (accessed on 1 August 2025).
- Zhang, J.; Jiang, Z.; Dong, J.; Hou, Y.; Liu, B. Attention gate resU-Net for automatic MRI brain tumor segmentation. IEEE Access 2020, 8, 58533–58545. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More Features From Cheap Operations. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1577–1586. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 11531–11539. [Google Scholar]
- Banerjee, S.; Li, Z.; Nassif, S.R. ICCAD-2013 CAD contest in mask optimization and benchmark suite. In Proceedings of the 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 18–21 November 2013; pp. 271–274. [Google Scholar]
- Yang, H.; Li, S.; Deng, Z.; Ma, Y.; Yu, B.; Young, E.F.Y. GAN-OPC: Mask Optimization With Lithography-Guided Generative Adversarial Nets. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 2822–2834. [Google Scholar] [CrossRef]
- Jiang, B.; Liu, L.; Ma, Y.; Yu, B.; Young, E.F.Y. Neural-ILT 2.0: Migrating ILT to domain-specific and multitask-enabled neural network. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2021, 41, 2671–2684. [Google Scholar] [CrossRef]
- Lin, Z.; Ren, K.; Gao, D.; Wu, Y.; Xu, S.; Yan, Z. UNeXt-ILT: Fast and global context-aware inverse lithography solution. J. Micro/Nanopatterning Mater. Metrol. 2025, 24, 013201. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, B.; Wong, M.D.F.; Young, E.F.Y. A2-ILT: GPU accelerated ILT with spatial attention mechanism. In Proceedings of the 59th ACM/IEEE Design Automation Conference, New York, NY, USA, 23 August 2022. [Google Scholar]
Resist Threshold | L2 Error (nm2) | PV Band (nm2) | EPE |
---|---|---|---|
0.125 | 97,263 | 30,366 | 107.9 |
0.15 | 53,813 | 32,728 | 31.2 |
0.175 | 42,968 | 35,720 | 23.1 |
0.2 | 31,071 | 38,553 | 8.2 |
0.21 | 28,479 | 39,628 | 8.0 |
0.22 | 27,392 | 40,407 | 7.6 |
0.225 | 27,033 | 40,265 | 7.5 |
0.23 | 27,429 | 41,267 | 7.5 |
0.24 | 28,232 | 42,255 | 7.6 |
0.25 | 29,211 | 43,138 | 8.3 |
0.275 | 43,641 | 48,312 | 10.8 |
0.3 | 62,445 | 45,396 | 22.6 |
0.325 | 113,263 | 39,498 | 54.4 |
ILT Model | L2 Error (nm2) | PV Band (nm2) | TAT (s) | GFLOPs | Model Params (K) |
---|---|---|---|---|---|
) | 42,186 | 51,453 | 3.89 | 770.49 | 31,042 |
net (HAAM) | 37,013 | 45,964 | 2.21 | 282.75 | 10,493 |
net + AG | 36,147 | 45,374 | 2.22 | 284.42 | 10,611 |
0 | 33,911 | 44,276 | 1.73 | 272.89 | 8497 |
net + G-E block w/o AG | 27,569 | 40,837 | 1.51 | 231.37 | 7629 |
27,033 | 40,265 | 1.50 | 224.16 | 7520 |
Bench-Marks | Neutal-ILT [25] | A2-ILT [27] | Multi-ILT [12] | ||||||
---|---|---|---|---|---|---|---|---|---|
ID | L2 | PVB | TAT | L2 | PVB | TAT | L2 | PVB | TAT |
Case 1 | 49,817 | 55,975 | 10.67 | 45,287 | 59,940 | 4.53 | 40,779 | 50,661 | 2.61 |
Case 2 | 38,174 | 37,160 | 12.03 | 34,044 | 51,988 | 4.52 | 34,201 | 44,322 | 2.71 |
Case 3 | 89,411 | 74,387 | 9.76 | 92,505 | 91,261 | 4.56 | 66,486 | 71,527 | 2.68 |
Case 4 | 16,744 | 23,357 | 9.33 | 21,644 | 29,017 | 4.48 | 10,942 | 21,500 | 2.59 |
Case 5 | 45,598 | 48,686 | 6.37 | 38,082 | 61,601 | 4.61 | 30,231 | 51,277 | 2.68 |
Case 6 | 43,836 | 42,673 | 6.44 | 42,068 | 53,620 | 4.50 | 30,741 | 44,982 | 2.72 |
Case 7 | 20,324 | 35,862 | 8.77 | 21,947 | 49,053 | 4.56 | 17,101 | 40,294 | 2.63 |
Case 8 | 13,337 | 18,001 | 8.87 | 15,668 | 23,853 | 4.48 | 11,935 | 20,357 | 2.61 |
Case 9 | 49,401 | 56,867 | 10.32 | 46,973 | 68,442 | 4.55 | 35,805 | 57,930 | 2.62 |
Case 10 | 8511 | 15,305 | 9.40 | 10,450 | 19,950 | 4.50 | 8825 | 18,470 | 2.64 |
Average | 37,515 | 50,964 | 9.20 | 36,867 | 50,873 | 4.53 | 28,705 | 42,132 | 2.65 |
Ratio | 1.39 | 1.27 | 6.13 | 1.36 | 1.26 | 3.02 | 1.06 | 1.05 | 1.77 |
Bench-Marks | EAAUnet-ILT | EAAUnet-ILT+ SRAF Constrain | ||||
---|---|---|---|---|---|---|
ID | L2 | PVB | TAT | L2 | PVB | TAT |
Case 1 | 37,872 | 45,110 | 1.50 | 40,996 | 47,131 | 1.81 |
Case 2 | 28,850 | 38,490 | 1.48 | 31,725 | 41,477 | 1.79 |
Case 3 | 65,601 | 72,100 | 1.50 | 67,616 | 77,111 | 1.82 |
Case 4 | 12,542 | 22,319 | 1.51 | 17,525 | 29,442 | 1.85 |
Case 5 | 27,668 | 49,799 | 1.49 | 31,230 | 52,366 | 1.82 |
Case 6 | 28,918 | 44,730 | 1.52 | 33,038 | 48,606 | 1.81 |
Case 7 | 10,646 | 37,494 | 1.54 | 12,991 | 39,839 | 1.78 |
Case 8 | 13,697 | 20,310 | 1.46 | 17,573 | 24,872 | 1.84 |
Case 9 | 35,237 | 55,033 | 1.56 | 38,236 | 57,908 | 1.83 |
Case 10 | 9295 | 17,266 | 1.44 | 11,745 | 21,390 | 1.85 |
Average | 27,033 | 40,265 | 1.50 | 30,268 | 44,014 | 1.82 |
Ratio | 1 | 1 | 1 | 1.12 | 1.09 | 1.21 |
Bench-Marks | Neutal-ILT [25] | A2-ILT [27] | Multi-ILT [12] | EAAUnet-ILT | EAAUnet-ILT+ SRAF Constrain | |||||
---|---|---|---|---|---|---|---|---|---|---|
ID | EPE | #Shots | EPE | #Shots | EPE | #Shots | EPE | #Shots | EPE | #Shots |
Case 1 | 8 | 428 | — * | 304 | 3 | 385 | 8 | 428 | 4 | 304 |
Case 2 | 3 | 256 | — | 258 | 2 | 284 | 3 | 256 | 1 | 258 |
Case 3 | 52 | 557 | — | 493 | 22 | 316 | 52 | 557 | 41 | 493 |
Case 4 | 2 | 136 | — | 218 | 0 | 241 | 2 | 136 | 2 | 218 |
Case 5 | 3 | 380 | — | 351 | 0 | 411 | 3 | 380 | 0 | 351 |
Case 6 | 5 | 383 | — | 301 | 0 | 415 | 5 | 383 | 0 | 301 |
Case 7 | 0 | 244 | — | 245 | 0 | 382 | 0 | 244 | 0 | 245 |
Case 8 | 0 | 285 | — | 177 | 0 | 271 | 0 | 285 | 0 | 177 |
Case 9 | 2 | 444 | — | 382 | 0 | 490 | 2 | 444 | 0 | 382 |
Case 10 | 0 | 208 | — | 152 | 0 | 164 | 0 | 208 | 0 | 152 |
Average | 7.5 | 332 | — | 288 | 2.7 | 336 | 7.5 | 332 | 4.8 | 288 |
Ratio | 2.34 | 0.20 | — | 0.17 | 0.84 | 0.20 | 2.34 | 0.20 | 1.5 | 0.17 |
Stage | Time Cost(s) |
---|---|
Model inference | 0.102 |
Lithography simulation | 0.00176 |
SRAF constraint | 0.32 |
Regularization Adjust | L2 Error (nm2) | PV Band (nm2) |
---|---|---|
= 0 | 29,564 | 45,244 |
= 0.1 | 28,317 | 41,593 |
= 0.2 | 27,431 | 39,315 |
= 0.3 | 27,033 | 38,965 |
= 0.4 | 27,632 | 39,158 |
Benchmarks | Min_Size = 12, Max_Size = 28 | Min_Size = 16, Max_Size = 32 | Min_Size = 20, Max_Size = 36 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ID | L2 | PVB | #Shots | TAT | L2 | PVB | #Shots | TAT | L2 | PVB | #Shots | TAT |
Case 1 | 37,863 | 45,343 | 544 | 1.85 | 39,005 | 46,950 | 513 | 1.83 | 40,996 | 47,131 | 450 | 1.79 |
Case 2 | 28,557 | 37,517 | 488 | 1.85 | 29,450 | 38,120 | 443 | 1.85 | 31,725 | 41,477 | 425 | 1.80 |
Case 3 | 75,759 | 68,001 | 658 | 1.91 | 76,659 | 73,686 | 627 | 1.87 | 67,616 | 77,111 | 561 | 1.80 |
Case 4 | 12,495 | 25,452 | 334 | 1.89 | 13,329 | 26,323 | 318 | 1.87 | 17,525 | 29,442 | 308 | 1.79 |
Case 5 | 29,034 | 50,212 | 596 | 1.90 | 30,889 | 50,574 | 574 | 1.86 | 31,230 | 52,366 | 537 | 1.86 |
Case 6 | 29,167 | 44,460 | 578 | 1.87 | 30,940 | 45,678 | 553 | 1.90 | 33,038 | 48,606 | 489 | 1.88 |
Case 7 | 13,933 | 39,973 | 583 | 1.89 | 14,493 | 38,376 | 569 | 1.81 | 15,991 | 39,839 | 453 | 1.83 |
Case 8 | 10,867 | 21,274 | 477 | 1.89 | 12,083 | 22,192 | 456 | 1.75 | 14,573 | 24,872 | 402 | 1.82 |
Case 9 | 36,807 | 57,131 | 809 | 1.86 | 38,084 | 57,725 | 796 | 1.77 | 38,236 | 57,908 | 651 | 1.87 |
Case 10 | 10,013 | 18,566 | 434 | 1.84 | 10,039 | 20,087 | 411 | 1.83 | 11,745 | 21,390 | 317 | 1.85 |
Average | 27,853 | 40,502 | 550 | 1.87 | 29,497 | 41,971 | 526 | 1.83 | 30,268 | 44,014 | 459 | 1.82 |
Ratio | 1.03 | 1.04 | 0.33 | 1.25 | 1.09 | 1.08 | 0.32 | 1.22 | 1.12 | 1.13 | 0.28 | 1.21 |
Benchmarks | Min_Size = 24, Max_Size = 40 | Min_Size = 28, Max_Size = 44 | NO SRAF Constrain | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ID | L2 | PVB | #Shots | TAT | L2 | PVB | #Shots | TAT | L2 | PVB | #Shots | TAT |
Case 1 | 41,597 | 48,402 | 400 | 1.82 | 42,754 | 49,727 | 361 | 1.86 | 37,872 | 26,110 | 1934 | 1.50 |
Case 2 | 37,053 | 42,959 | 419 | 1.75 | 38,001 | 45,878 | 351 | 1.85 | 28,850 | 36,490 | 1643 | 1.48 |
Case 3 | 75,930 | 77,676 | 541 | 1.81 | 76,147 | 80,372 | 496 | 1.82 | 65,601 | 75,100 | 1649 | 1.50 |
Case 4 | 17,626 | 31,198 | 301 | 1.80 | 19,378 | 33,850 | 287 | 1.80 | 12,542 | 25,319 | 1452 | 1.51 |
Case 5 | 31,831 | 52,884 | 525 | 1.86 | 33,062 | 54,024 | 490 | 1.78 | 27,668 | 49,799 | 1843 | 1.49 |
Case 6 | 33,639 | 49,523 | 418 | 1.80 | 34,998 | 51,136 | 384 | 1.77 | 28,918 | 44,730 | 1975 | 1.52 |
Case 7 | 25,336 | 42,035 | 413 | 1.77 | 27,569 | 43,503 | 388 | 1.75 | 10,646 | 37,494 | 1610 | 1.54 |
Case 8 | 14,674 | 27,317 | 382 | 1.79 | 15,334 | 29,381 | 355 | 1.75 | 13,697 | 21,310 | 1465 | 1.46 |
Case 9 | 38,837 | 58,092 | 609 | 1.86 | 39,926 | 56,459 | 562 | 1.73 | 35,237 | 55,033 | 1839 | 1.56 |
Case 10 | 12,917 | 23,046 | 303 | 1.78 | 14,928 | 24,707 | 271 | 1.72 | 9295 | 18,266 | 1057 | 1.44 |
Average | 32,444 | 45,313 | 431 | 1.80 | 34,210 | 46,903 | 395 | 1.78 | 27,033 | 38,965 | 1647 | 1.50 |
Ratio | 1.20 | 1.16 | 0.26 | 1.20 | 1.27 | 1.20 | 0.24 | 1.19 | 1 | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Ren, K. EAAUnet-ILT: A Lightweight and Iterative Mask Optimization Resolution with SRAF Constraint Scheme. Micromachines 2025, 16, 1162. https://doi.org/10.3390/mi16101162
Wang K, Ren K. EAAUnet-ILT: A Lightweight and Iterative Mask Optimization Resolution with SRAF Constraint Scheme. Micromachines. 2025; 16(10):1162. https://doi.org/10.3390/mi16101162
Chicago/Turabian StyleWang, Ke, and Kun Ren. 2025. "EAAUnet-ILT: A Lightweight and Iterative Mask Optimization Resolution with SRAF Constraint Scheme" Micromachines 16, no. 10: 1162. https://doi.org/10.3390/mi16101162
APA StyleWang, K., & Ren, K. (2025). EAAUnet-ILT: A Lightweight and Iterative Mask Optimization Resolution with SRAF Constraint Scheme. Micromachines, 16(10), 1162. https://doi.org/10.3390/mi16101162