A Progressive Search Method for Roundness Evaluation Based on Minimum Zone Criterion
Abstract
:1. Introduction
2. Control Model of Determining MZC with Measured Points
3. Basic Theory of the Progressive Search Method
4. Implementation
4.1. Calculating the Coordinate of the LSC Center and Roundness Error
4.2. Constructing a Search Circle Model
4.3. Obtaining the Quasi-MZC Center
4.4. Determining the Control Points of the Minimum Zone Circles
4.5. Calculating the MZC Roundness Error
5. Performance Verification of Progressive Search Method
5.1. Simulation Experiment Verification by Building Data
5.2. Performance Verification by the Comparison Experiments
6. Analysis of the Algorithm Convergence and Optimal Solutions
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Caja, J.; Maresca, P.; Gómez, E.; Barajas, C.; Berzal, M. Metrological characterization of interior circular features using digital optical machines: Calculation models and application scope. Precis. Eng. 2014, 38, 36–47. [Google Scholar] [CrossRef]
- Takamasu, K. Present problems in coordinate metrology for nano and micro scale measurements. Mapan-J. Metrol. Soc. India 2011, 26, 3–14. [Google Scholar] [CrossRef]
- Sato, H. Influence of index table accuracy on roundness calibration in the multi-step method using Monte Carlo simulation. Mapan-J. Metrol. Soc. India 2011, 26, 37–46. [Google Scholar] [CrossRef]
- ASMEY 14.5M. Dimensioning and Tolerancing; The American Society of Manufacturing Engineers: New York, NY, USA, 1995. [Google Scholar]
- BS ISO 1101; Geometrical Product Specifications. The Standards Policy and Strategy Committee: Milton Keynes, UK, 2004.
- Chernov, N.I.; Ososkov, G.A. Effective algorithms for circle fitting. Comput. Phys. Commun. 1984, 33, 329–333. [Google Scholar] [CrossRef]
- Shunmugam, M.S. Criteria for computer-aided form evaluation. J. Eng. Ind. 1991, 113, 233–240. [Google Scholar] [CrossRef]
- Jywe, W.; Liu, C.; Chen, C. The min-max problem for evaluating the form error of a circle. Measurement 1999, 26, 273–282. [Google Scholar] [CrossRef]
- Chen, M.; Tsai, D.; Tseng, H. A stochastic optimization approach for roundness measurements. Pattern Recognit. Lett. 1999, 20, 707–719. [Google Scholar] [CrossRef]
- Gadelmawla, E.S. Simple and efficient algorithms for roundness evaluation from the coordinate measurement data. Measurement 2010, 43, 223–235. [Google Scholar] [CrossRef]
- Huang, J. An exact solution for the roundness evaluation problems. Precis. Eng. 1999, 23, 2–8. [Google Scholar] [CrossRef]
- Samuel, G.L.; Shunmugam, M.S. Evaluation of circularity from coordinate and form data using computational geometric techniques. Precis. Eng. 2000, 24, 251–263. [Google Scholar] [CrossRef]
- Novaski, O.; Luis, A.; Barczak, C. Utilization of Voronoi diagrams for circularity algorithms. Precis. Eng. 1997, 20, 188–195. [Google Scholar] [CrossRef]
- Venkaiah, N.; Shunmugam, M.S. Evaluation of form data using computational geometric techniques—Part I: Circularity error. Int. J. Mach. Tools Manuf. 2007, 47, 1229–1236. [Google Scholar] [CrossRef]
- Li, X.; Shi, Z. Development and application of convex hull in the assessment of roundness error. Int. J. Mach. Tools Manuf. 2008, 48, 135–139. [Google Scholar]
- Feng, H.Y.; Endrias, D.H.; Taher, M.A.; Song, H. An accurate and efficient algorithm for determining minimum circumscribed circles and spheres from discrete data points. Comput. Aided Design 2013, 45, 105–112. [Google Scholar] [CrossRef]
- Goch, G.; Lubke, K. Tschebyscheff approximation for the calculation of maximum inscribed/minimum circumscribed geometry elements and form deviations. CIRP Ann.-Manuf. Technol. 2008, 57, 517–520. [Google Scholar] [CrossRef]
- Zhu, L.M.; Ding, H.; Xiong, Y.L. A steepest descent algorithm for circularity evaluation. Comput. Aided Design 2003, 35, 255–265. [Google Scholar] [CrossRef]
- Lei, X.; Pan, W.; Tu, X.; Wang, S. Minimum Zone Evaluation for Roundness Error Based on Geometric Approximating Searching Algorithm. Mapan-J. Metrol. Soc. India 2014, 29, 143–149. [Google Scholar] [CrossRef]
- Liu, F.; Xu, G.; Liang, L.; Zhang, Q.; Liu, D. Intersecting chord method for minimum zone evaluation of roundness deviation using Cartesian coordinate data. Precis. Eng. 2015, 42, 242–252. [Google Scholar]
- Jiang, Q.; Feng, H.-Y.; OuYang, D.; Desta, M.T. A roundness evaluation algorithm with reduced fitting uncertainty of CMM measurement data. J. Manuf. Syst. 2006, 25, 184–195. [Google Scholar] [CrossRef]
- Du, C.; Luo, C.; Han, Z.; Zhu, Y. Applying particle swarm optimization algorithm to roundness error evaluation based on minimum zone circle. Measurement 2014, 52, 12–21. [Google Scholar] [CrossRef]
- Sun, T.H. Applying particle swarm optimization algorithm to roundness measurement. Expert Syst. Appl. 2009, 36, 3428–3438. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Chen, R.; Chi, J.; Shi, X.; Lin, H. Evaluation of the minimum circumscribed circle based on the chord and its two corresponding minimum angles. Measurement 2022, 201, 111754. [Google Scholar] [CrossRef]
- Liu, F.; Cao, Y.; Li, T.; Ren, L.; Zhi, J.; Yang, J. An Iterative Minimum Zone Algorithm for assessing cylindricity deviation. Measurement 2023, 213, 112738. [Google Scholar] [CrossRef]
- Lai, H.; Jywe, W.; Chen, C.; Liu, C. Precision modeling of form errors for cylindricity evaluation using genetic algorithms. Precis. Eng. 2000, 24, 310–319. [Google Scholar] [CrossRef]
- Wen, X.; Xia, Q.; Zhao, Y. An effective genetic algorithm for circularity error unified evaluation. Int. J. Mach. Tools Manuf. 2006, 46, 1770–1777. [Google Scholar] [CrossRef]
- Rossi, A.; Antonetti, M.; Barloscio, M.; Lanzetta, M. Fast genetic algorithm for roundness evaluation by the minimum zone tolerance method. Measurement 2011, 44, 1243–1252. [Google Scholar] [CrossRef]
- Rossi, A.; Lanzetta, M. Optimal blind sampling strategy for minimum zone roundness evaluation by metaheuristics. Precis. Eng. 2013, 37, 241–247. [Google Scholar] [CrossRef]
- Huang, J. A new strategy for circularity problems. Precis. Eng. 2001, 25, 301–308. [Google Scholar] [CrossRef]
- Huang, Q.; Mei, J.; Yue, L.; Chen, R.; Zhang, L.; Fang, C.; Li, R.; Chen, L. A simple method for estimating the roundness of minimum zone circle. Mater. Werkst. 2020, 51, 38–46. [Google Scholar] [CrossRef]
- Li, X.; Shi, Z. The relationship between the minimum zone circle and the maximum inscribed circle and the minimum circumscribed circle. Precis. Eng. 2009, 33, 284–290. [Google Scholar] [CrossRef]
- Mei, J. Research on the Sphericity Evaluation Method of Microsphere. Ph.D. Thesis, Hefei University of Technology, Hefei, China, 2020. [Google Scholar]
No. | x | y | No. | x | y | No. | x | y |
---|---|---|---|---|---|---|---|---|
1 | 1.010000 | 0.000000 | 18 | −0.064701 | 1.007773 | 35 | −0.998420 | −0.128732 |
2 | 1.000803 | 0.096546 | 19 | −0.160742 | 0.994247 | 36 | −0.976229 | −0.222818 |
3 | 0.988295 | 0.192470 | 20 | −0.255783 | 0.975410 | 37 | −0.949260 | −0.315176 |
4 | 0.967235 | 0.287070 | 21 | −0.346861 | 0.942534 | 38 | −0.919532 | −0.407049 |
5 | 0.927425 | 0.375473 | 22 | −0.435926 | 0.905209 | 39 | −0.873940 | −0.492194 |
6 | 0.889292 | 0.463943 | 23 | −0.521299 | 0.859938 | 40 | −0.828374 | −0.577838 |
7 | 0.838475 | 0.545787 | 24 | −0.598111 | 0.801414 | 41 | −0.768599 | −0.654318 |
8 | 0.783360 | 0.624709 | 25 | −0.674110 | 0.742270 | 42 | −0.702507 | −0.725396 |
9 | 0.723523 | 0.700693 | 26 | −0.745823 | 0.677337 | 43 | −0.625277 | −0.784072 |
10 | 0.652907 | 0.766942 | 27 | −0.805452 | 0.601124 | 44 | −0.549904 | −0.844800 |
11 | 0.577139 | 0.827372 | 28 | −0.860674 | 0.521746 | 45 | −0.466683 | −0.894544 |
12 | 0.493576 | 0.876394 | 29 | −0.903742 | 0.435219 | 46 | −0.377509 | −0.932455 |
13 | 0.405069 | 0.915059 | 30 | −0.939770 | 0.345844 | 47 | −0.284528 | −0.958668 |
14 | 0.318016 | 0.957813 | 31 | −0.971895 | 0.254861 | 48 | −0.192849 | −0.990236 |
15 | 0.224302 | 0.982731 | 32 | −0.990760 | 0.160178 | 49 | −0.096929 | −1.004773 |
16 | 0.128243 | 0.994626 | 33 | −1.005810 | 0.064575 | 50 | 0.018471 | −1.005492 |
17 | 0.032226 | 1.004920 | 34 | −1.007285 | −0.032302 |
Method | Control Points on the Outer Circle | Control Points on the Inner Circle | Roundness Error | Coordinates of the Center of the Circle | Computation Time | Iterations |
---|---|---|---|---|---|---|
LSC | 40 | 47 | 0.010100 | (0.000254, 0.000027) | ≈0.000 s | \ |
PSO | 40 | 24 | 0.010000 | (0, 0) | 0.467 s | 78 |
Proposed method | 1, 40 | 24, 47 | 0.010000 | (0, 0) | 0.031 s | 5 |
Number | x | y | Number | x | y | Number | x | y |
---|---|---|---|---|---|---|---|---|
1 | 1.0249 | 0.0863 | 14 | −0.9394 | 0.1561 | 27 | −0.4635 | −0.9195 |
2 | 0.9991 | 0.2226 | 15 | −0.2071 | 0.9218 | 28 | 0.4736 | −0.9507 |
3 | 0.5974 | 0.7736 | 16 | −0.3381 | 0.8782 | 29 | 0.5942 | −0.8781 |
4 | 0.4731 | 0.8485 | 17 | −0.4643 | 0.8132 | 30 | −0.2059 | −1.0269 |
5 | 0.8803 | 0.4794 | 18 | −0.5771 | 0.7369 | 31 | 0.9950 | −0.3272 |
6 | 0.8017 | 0.5899 | 19 | −0.7763 | 0.5367 | 32 | 1.0218 | −0.1921 |
7 | 0.9527 | 0.3551 | 20 | −0.6838 | −0.7485 | 33 | −0.0686 | −1.0512 |
8 | 0.7047 | 0.6884 | 21 | −0.5795 | −0.8424 | 34 | 0.0710 | −1.0568 |
9 | 0.2101 | 0.9295 | 22 | −0.9618 | 0.0170 | 35 | 0.2087 | −1.0377 |
10 | 0.0708 | 0.9483 | 23 | −0.9454 | −0.2605 | 36 | 0.3445 | −1.0078 |
11 | −0.0683 | 0.9382 | 24 | −0.9077 | −0.3956 | 37 | 0.7082 | −0.7982 |
12 | −0.8432 | 0.4157 | 25 | −0.8443 | −0.5203 | 38 | 0.8873 | −0.5832 |
13 | −0.9022 | 0.2890 | 26 | −0.7764 | −0.6394 | 39 | 0.9510 | −0.4578 |
Method | Control Points on the Outer Circle | Control Points on the Inner Circle | Roundness Error | Coordinates of the Center of the Circle | Computation Time | Iterations |
---|---|---|---|---|---|---|
Proposed method | 15, 34 | 12, 32 | 0.0085 | (0.0356, −0.0529) | 0.022 s | 5 |
Method | Control Points on the Outer Circle | Control Points on the Inner Circle | Roundness Error | Coordinates of the Center of the Circle | Computation Time | Iterations |
---|---|---|---|---|---|---|
Proposed method | 2, 20 | 10, 26 | 0.007218 | (0.012735, −0.000627) | 0.047 s | 7 |
Reference [20] | 2, 20 | 10, 26 | 0.007218 | (0.012735, −0.000627) | 0.109 s | \ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, J.; Li, B.; Hu, G.; Fang, C.; Zhang, S.; Zheng, J.; Zhang, Q.; Hong, L.; Huang, Q. A Progressive Search Method for Roundness Evaluation Based on Minimum Zone Criterion. Micromachines 2025, 16, 467. https://doi.org/10.3390/mi16040467
Mei J, Li B, Hu G, Fang C, Zhang S, Zheng J, Zhang Q, Hong L, Huang Q. A Progressive Search Method for Roundness Evaluation Based on Minimum Zone Criterion. Micromachines. 2025; 16(4):467. https://doi.org/10.3390/mi16040467
Chicago/Turabian StyleMei, Jian, Binbin Li, Guohua Hu, Chuanzhi Fang, Sheng Zhang, Juan Zheng, Qian Zhang, Lei Hong, and Qiangxian Huang. 2025. "A Progressive Search Method for Roundness Evaluation Based on Minimum Zone Criterion" Micromachines 16, no. 4: 467. https://doi.org/10.3390/mi16040467
APA StyleMei, J., Li, B., Hu, G., Fang, C., Zhang, S., Zheng, J., Zhang, Q., Hong, L., & Huang, Q. (2025). A Progressive Search Method for Roundness Evaluation Based on Minimum Zone Criterion. Micromachines, 16(4), 467. https://doi.org/10.3390/mi16040467