Bridging Strategies to Allogeneic Transplant for Older AML Patients
Abstract
:1. Introduction
2. Pretreatment Considerations (Patient Identification)
3. Bridging Strategies
3.1. Remission Induction Strategies: Bridging from Diagnosis to CR
3.1.1. Conventional Remission Induction
3.1.2. Anthracycline Dosing Considerations
3.1.3. Cytarabine Dosing Considerations
3.1.4. Targeted Therapies in Combination with Induction Chemotherapy
3.1.5. Novel Alternatives to Conventional Remission Induction Hypomethylating Agents
3.1.6. CPX-351
3.1.7. Venetoclax
3.2. Post-Remission Strategies: Bridging from CR1 to Transplant
Cytarabine Dosing Considerations
3.3. Salvage Strategies: Bridging from Relapse or Refractory AML to Transplant
3.3.1. Achievement of Second Complete Remission (CR2)
3.3.2. Strategies for Transplant in Absence of CR
4. Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Juliusson, G.; Antunovic, P.; Derolf, Å.; Lehmann, S.; Möllgård, L.; Stockelberg, D.; Wahlin, A.; Höglund, M. Age and acute myeloid leukemia: Real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood 2014, 113, 4179–4187. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S.; Fontanillas, P.; Flannick, J.; Manning, A.; Grauman, P.V.; Mar, B.G.; Lindsley, R.C.; Mermel, C.H.; Burtt, N.; Chavez, A.; et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. N. Engl. J. Med. 2014, 371, 2488–2498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, M.; Lu, C.; Wang, J.; McLellan, M.D.; Johnson, K.J.; Wendl, M.C.; McMichael, J.F.; Schmidt, H.K.; Yellapantula, V.; Miller, C.A.; et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 2014, 20, 1472–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genovese, G.; Kähler, A.K.; Handsaker, R.E.; Lindberg, J.; Rose, S.A.; Bakhoum, S.F.; Chambert, K.; Mick, E.; Neale, B.M.; Fromer, M.; et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. N. Engl. J. Med. 2014, 371, 2477–2487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melorose, J.; Perroy, R.; Careas, S. Summary for Policymakers. In Climate Change 2013—The Physical Science Basis; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, UK, 2015; Volume 1, pp. 1–30. ISBN 9788578110796. [Google Scholar]
- Koren-Michowitz, M.; Sato-Otsubo, A.; Nagler, A.; Haferlach, T.; Ogawa, S.; Koeffler, H.P. Older patients with normal karyotype acute myeloid leukemia have a higher rate of genomic changes compared to young patients as determined by SNP array analysis. Leuk. Res. 2012, 36, 467–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimwade, D.; Walker, H.; Harrison, G.; Oliver, F.; Chatters, S.; Harrison, C.J.; Wheatley, K.; Burnett, A.K. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): Analysis of 1065 patients entered into the. Blood 2001, 98, 1312–1321. [Google Scholar] [CrossRef] [PubMed]
- Appelbaum, F.R.; Gundacker, H.; Head, D.R.; Slovak, M.L.; Willman, C.L.; Godwin, J.E.; Anderson, J.E.; Petersdorf, S.H. Age and acute myeloid leukemia. Blood 2015, 107, 3481–3486. [Google Scholar] [CrossRef] [PubMed]
- Majhail, N.S.; Chitphakdithai, P.; Logan, B.; King, R.; Devine, S.; Rossmann, S.N.; Hale, G.; Hartzman, R.J.; Karanes, C.; Laport, G.G.; et al. Significant Improvement in Survival after Unrelated Donor Hematopoietic Cell Transplantation in the Recent Era. Biol. Blood Marrow Transplant. 2015, 21, 142–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gooley, T.A.; Chien, J.W.; Pergam, S.A.; Hingorani, S.; Sorror, M.L.; Boeckh, M.; Martin, P.J.; Sandmaier, B.M.; Marr, K.A.; Appelbaum, F.R.; et al. Reduced Mortality after Allogeneic Hematopoietic-Cell Transplantation. N. Engl. J. Med. 2010, 363, 2091–2101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medeiros, B.C.; Satram-Hoang, S.; Hurst, D.; Hoang, K.Q.; Momin, F.; Reyes, C. Big data analysis of treatment patterns and outcomes among elderly acute myeloid leukemia patients in the United States. Ann. Hematol. 2015, 94, 1127–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estey, E.; Lima, M.D.; Tibes, R.; Pierce, S.; Kantarjian, H.; Champlin, R.; Dc, W.; Estey, E.; Lima, M.D.; Tibes, R.; et al. Prospective feasibility analysis of reduced-intensity conditioning (RIC) regimens for hematopoietic stem cell transplantation (HSCT) in elderly patients with acute myeloid leukemia (AML) and high-risk Prospective feasibility analysis of reduced-inte. Blood 2011, 1395–1400. [Google Scholar] [CrossRef]
- Estey, E. CME Information: Acute myeloid leukemia: 2016 Update on risk-stratification and management. Am. J. Hematol. 2016, 91. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, A.; DiPersio, J.F.; Westervelt, P.; Vij, R.; Abboud, C.N.; Romee, R. Do adults aged 70 years or older with acute myeloid leukemia benefit from allogeneic hematopoietic cell transplantation? Leukemia 2016, 30, 1797–1799. [Google Scholar] [CrossRef] [PubMed]
- Majhail, N.S.; Farnia, S.H.; Carpenter, P.A.; Champlin, R.E.; Crawford, S.; Marks, D.I.; Omel, J.L.; Orchard, P.J.; Palmer, J. Indications for Autologous and Allogeneic Hematopoietic Cell Transplantation: Guidelines from the American Society for Blood and Marrow Transplantation HHS Public Access. Biol. Blood Marrow Transplant. 2015, 21, 1863–1869. [Google Scholar] [CrossRef] [PubMed]
- Mrózek, K.; Marcucci, G.; Nicolet, D.; Maharry, K.S.; Becker, H.; Whitman, S.P.; Metzeler, K.H.; Schwind, S.; Wu, Y.-Z.; Kohlschmidt, J.; et al. Prognostic Significance of the European LeukemiaNet Standardized System for Reporting Cytogenetic and Molecular Alterations in Adults With Acute Myeloid Leukemia. J. Clin. Oncol. 2012, 30, 4515–4523. [Google Scholar] [CrossRef] [PubMed]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metzeler, K.H.; Herold, T.; Rothenberg-Thurley, M.; Amler, S.; Sauerland, M.C.; Gorlich, D.; Schneider, S.; Konstandin, N.P.; Dufour, A.; Braundl, K.; et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood 2016, 128, 686–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancer Genome Atlas Research Network; Ley, T.J.; Miller, C.; Ding, L.; Raphael, B.J.; Mungall, A.J.; Robertson, A.G.; Hoadley, K.; Triche, T.J.; Laird, P.W.; et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 2013, 368, 2059–2074. [Google Scholar] [CrossRef] [PubMed]
- Prassek, V.V.; Rothenberg-Thurley, M.; Sauerland, M.C.; Herold, T.; Janke, H.; Ksienzyk, B.; Konstandin, N.P.; Goerlich, D.; Krug, U.; Faldum, A.; et al. Genetics of acute myeloid leukemia in the elderly: Mutation spectrum and clinical impact in intensively treated patients aged ≥ 75 years. Haematologica 2018. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; Levine, R.L.; Lo-coco, F.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–448. [Google Scholar] [CrossRef] [PubMed]
- Röllig, C.; Thiede, C.; Gramatzki, M.; Aulitzky, W.; Bodenstein, H.; Platzbecker, U.; Stuhlmann, R.; Schuler, U.; Soucek, S.; Kramer, M.; et al. A novel prognostic model in elderly patients with acute myeloid leukemia: Results of 909 patients entered into the prospective AML96 trial. Blood 2013, 116, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Fröhling, S.; Schlenk, R. Cytogenetics and age are major determinants of outcome in intensively treated acute myeloid leukemia patients older than 60 years: Results from AMLSG trial AML. Blood 2006, 108, 3280–3288. [Google Scholar] [CrossRef] [PubMed]
- Sorror, M.L.; Sandmaier, B.M.; Storer, B.E.; Franke, G.N.; Laport, G.G.; Chauncey, T.R.; Agura, E.; Maziarz, R.T.; Langston, A.; Hari, P.; et al. Long-term Outcomes Among Older Patients Following Nonmyeloablative Conditioning and Allogeneic Hematopoietic Cell Transplantation for Advanced Hematologic Malignancies. JAMA 2011, 306, 1874. [Google Scholar] [CrossRef] [PubMed]
- McClune, B.L.; Weisdorf, D.J.; Pedersen, T.L.; Da Silva, G.T.; Tallman, M.S.; Sierra, J.; DiPersio, J.; Keating, A.; Gale, R.P.; George, B.; et al. Effect of age on outcome of reduced-intensity hematopoietic cell transplantation for older patients with acute myeloid leukemia in first complete remission or with myelodysplastic syndrome. J. Clin. Oncol. 2010, 28, 1878–1887. [Google Scholar] [CrossRef] [PubMed]
- Koreth, J.; Aldridge, J.; Kim, H.T.; Iii, E.P.A.; Cutler, C.; Armand, P.; Ritz, J.; Antin, J.H.; Soiffer, R.J.; Ho, V.T. Reduced-intensity conditioning hematopoietic stem cell transplantation in patients over 60 years: Hematologic malignancy outcomes are not impaired in advanced age. Biol. Blood Marrow Transplant. 2010, 16, 617–632. [Google Scholar] [CrossRef] [PubMed]
- Thol, F.; Schlenk, R.F.; Heuser, M.; Ganser, A. How I treat refractory and early relapsed acute myeloid leukemia. Blood 2015, 126, 319–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorror, M.L.; Maris, M.B.; Storb, R.; Baron, F.; Sandmaier, B.M.; Maloney, D.G.; Storer, B. Hematopoietic cell transplantation (HCT)– specific comorbidity index: A new tool for risk assessment before allogeneic HCT. Blood 2005, 106, 2912–2919. [Google Scholar] [CrossRef] [PubMed]
- Gratwohl, A.; Stern, M.; Brand, R.; Apperley, J.; Baldomero, H.; De Witte, T.; Dini, G.; Rocha, V.; Passweg, J.; Sureda, A.; et al. Risk score for outcome after allogeneic hematopoietic stem cell transplantation: A retrospective analysis. Cancer 2009, 115, 4715–4726. [Google Scholar] [CrossRef] [PubMed]
- Armand, P.; Kim, H.; Logan, B. Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation. Blood 2014, 123, 3664–3672. [Google Scholar] [CrossRef] [PubMed]
- Sorror, M.L.; Appelbaum, F.R. Risk assessment before allogeneic hematopoietic cell transplantation for older adults with acute myeloid leukemia. Expert Rev. Hematol. 2013, 6, 547–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorror, M.L.; Sandmaier, B.M.; Storer, B.E.; Maris, M.B.; Baron, F.; Moloney, D.G.; Scott, B.L.; Deeg, H.J.; Appelbaum, F.R.; Storb, R. Comorbidity and disease status-based risk stratification of outcomes among patients with acute myeloid leukemia or myelodysplasia receiving allogeneic hematopoietic cell transplantation. J. Clin. Oncol. 2007, 25, 4246–4254. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, R.; Tosetto, A.; Oneto, R.; Cavazzina, R.; Rodeghiero, F.; Fanin, R.; Rambaldi, A.; Bosi, A.; Dc, W.; Raimondi, R.; et al. Validation of the Hematopoietic Cell Transplantation-Specific Comorbidity Index: A prospective, multicenter GITMO study. Blood 2013, 120, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Sorror, M.L.; Storb, R.F.; Sandmaier, B.M.; Maziarz, R.T.; Pulsipher, M.A.; Maris, M.B.; Bhatia, S.; Ostronoff, F.; Deeg, H.J.; Syrjala, K.L.; et al. Comorbidity-age index: A clinical measure of biologic age before allogeneic hematopoietic cell transplantation. J. Clin. Oncol. 2014, 32, 3249–3256. [Google Scholar] [CrossRef] [PubMed]
- Farag, S.S.; Maharry, K.; Zhang, M.J.; Pérez, W.S.; George, S.L.; Mrózek, K.; DiPersio, J.; Bunjes, D.W.; Marcucci, G.; Baer, M.R.; et al. Comparison of reduced-intensity hematopoietic cell transplantation with chemotherapy in patients age 60–70 years with acute myelogenous leukemia in first remission. Biol. Blood Marrow Transplant. 2011, 17, 1796–1803. [Google Scholar] [CrossRef] [PubMed]
- Von dem Borne, P.A.; de Wreede, L.C.; Halkes, C.J.M.; Marijt, W.A.F.; Falkenburg, J.H.F.; Veelken, H. Effectivity of a strategy in elderly AML patients to reach allogeneic stem cell transplantation using intensive chemotherapy: Long-term survival is dependent on complete remission after first induction therapy. Leuk. Res. 2016, 46, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Burnett, A.K.; Milligan, D.; Goldstone, A.; Prentice, A.; McMullin, M.-F.; Dennis, M.; Sellwood, E.; Pallis, M.; Russell, N.; Hills, R.K.; et al. The impact of dose escalation and resistance modulation in older patients with acute myeloid leukaemia and high risk myelodysplastic syndrome: The results of the LRF AML14 trial. Br. J. Haematol. 2009, 145, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Ustun, C.; Lazarus, H.M.; Weisdorf, D. To transplant or not: A dilemma for treatment of elderly AML patients in the twenty-first century. Bone Marrow Transplant. 2013, 48, 1497–1505. [Google Scholar] [CrossRef] [PubMed]
- Löwenberg, B.; Zittoun, R.; Kerkhofs, H.; Jehn, U.; Abels, J.; Debusscher, L.; Cauchie, C.; Peetermans, M.; Solbu, G.; Suciu, S. On the value of intensive remission-induction chemotherapy in elderly patients of 65+ years with acute myeloid leukemia: A randomized phase III study of the European Organization for Research and Treatment of Cancer Leukemia Group. J. Clin. Oncol. 1989, 7, 1268–1274. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.; O’brien, S.; Cortes, J.; Giles, F.; Faderl, S.; Jabbour, E.; Garcia-Manero, G.; Wierda, W.; Pierce, S.; Shan, J.; et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: Predictive prognostic models for outcome. Cancer 2006, 106, 1090–1098. [Google Scholar] [CrossRef] [PubMed]
- Büchner, T.; Berdel, W.E.; Schoch, C.; Haferlach, T.; Serve, H.L.; Kienast, J.; Schnittger, S.; Kern, W.; Tchinda, J.; Reichle, A.; et al. Double induction containing either two courses or one course of high-dose cytarabine plus mitoxantrone and postremission therapy by either autologous stem-cell transplantation or by prolonged maintenance for acute myeloid leukemia. J. Clin. Oncol. 2006, 24, 2480–2489. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.M.; Neuberg, D.; Friedenberg, W.; Bennett, J.M.; Paietta, E.; Makary, A.Z.; Liesveld, J.L.; Abboud, C.N.; Dewald, G.; Hayes, F.A.; et al. A phase 3 study of three induction regimens and of priming with GM-CSF in older adults with acute myeloid leukemia: A trial by the Eastern Cooperative Oncology Group. Blood 2004, 103, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Goldstone, A.H.; Burnett, A.K.; Wheatley, K.; Smith, A.G.; Hutchinson, R.M.; Clark, R.E.; Medical Research Council Adult Leukemia Working Party. Attempts to improve treatment outcomes in acute myeloid leukemia (AML) in older patients: The results of the United Kingdom Medical Research Council AML11 trial. Blood 2001, 98, 1302–1311. [Google Scholar] [CrossRef] [PubMed]
- Krug, U.; Röllig, C.; Koschmieder, A.; Heinecke, A.; Sauerland, M.C.; Schaich, M.; Thiede, C.; Kramer, M.; Braess, J.; Spiekermann, K.; et al. Complete remission and early death after intensive chemotherapy in patients aged 60 years or older with acute myeloid leukaemia: A web-based application for prediction of outcomes. Lancet 2010, 376, 2000–2008. [Google Scholar] [CrossRef]
- Löwenberg, B.; Ossenkoppele, G.J.; van Putten, W.; Schouten, H.C.; Graux, C.; Ferrant, A.; Sonneveld, P.; Maertens, J.; Jongen-Lavrencic, M.; von Lilienfeld-Toal, M.; et al. High-Dose Daunorubicin in Older Patients with Acute Myeloid Leukemia. N. Engl. J. Med. 2009, 361, 1235–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnett, A.K.; Russell, N.H.; Hills, R.K.; Kell, J.; Cavenagh, J.; Kjeldsen, L.; McMullin, M.-F.; Cahalin, P.; Dennis, M.; Friis, L.; et al. A randomized comparison of daunorubicin 90 mg/m 2 vs. 60 mg/m 2 in AML induction: Results from the UK NCRI AML17 trial in 1206 patients. Blood 2015, 125, 3878–3885. [Google Scholar] [CrossRef] [PubMed]
- Löwenberg, B.; Pabst, T.; Vellenga, E.; van Putten, W.; Schouten, H.C.; Graux, C.; Ferrant, A.; Sonneveld, P.; Biemond, B.J.; Gratwohl, A.; et al. Dutch-Belgian Cooperative Trial Group for Hemato-Oncology (HOVON) and Swiss Group for Clinical Cancer Research (SAKK) Collaborative Group Cytarabine dose for acute myeloid leukemia. N. Engl. J. Med. 2011, 364, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Löwenberg, B. Sense and nonsense of high-dose cytarabine for acute myeloid leukemia. Blood 2013, 121, 26–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G.; et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisfeld, A.K.; Kohlschmidt, J.; Mrózek, K.; Blachly, J.S.; Walker, C.J.; Nicolet, D.; Orwick, S.; Maharry, S.E.; Carroll, A.J.; Stone, R.M.; et al. Mutation patterns identify adult patients with de novo acute myeloid leukemia aged 60 years or older who respond favorably to standard chemotherapy: An analysis of Alliance studies. Leukemia 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Quintás-Cardama, A.; Ravandi, F.; Liu-Dumlao, T.; Brandt, M.; Faderl, S.; Pierce, S.; Borthakur, G.; Garcia-Manero, G.; Cortes, J.; Kantarjian, H. Epigenetic therapy is associated with similar survival compared with intensive chemotherapy in older patients with newly diagnosed acute myeloid leukemia. Blood 2012, 120, 4840–4845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, N.; Miller, A.; Gandhi, S.; Ford, L.A.; Vigil, C.E.; Griffiths, E.A.; Thompson, J.E.; Wetzler, M.; Wang, E.S. Comparison of epigenetic versus standard induction chemotherapy for newly diagnosed acute myeloid leukemia patients ≥60 years old. Am. J. Hematol. 2015, 90, 639–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller-Thomas, C.; Rudelius, M.; Rondak, I.-C.; Haferlach, T.; Schanz, J.; Huberle, C.; Schmidt, B.; Blaser, R.; Kremer, M.; Peschel, C.; et al. Response to azacitidine is independent of p53 expression in higher-risk myelodysplastic syndromes and secondary acute myeloid leukemia. Haematologica 2014, 99, e179–e181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, J.S.; Petti, A.A.; Miller, C.A.; Fronick, C.C.; O’Laughlin, M.; Fulton, R.S.; Wilson, R.K.; Baty, J.D.; Duncavage, E.J.; Tandon, B.; et al. TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. N. Engl. J. Med. 2016, 375, 2023–2036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantarjian, H.M.; Thomas, X.G.; Dmoszynska, A.; Wierzbowska, A.; Mazur, G.; Mayer, J.; Gau, J.P.; Chou, W.C.; Buckstein, R.; Cermak, J.; et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J. Clin. Oncol. 2012, 30, 2670–2677. [Google Scholar] [CrossRef] [PubMed]
- Blum, W.; Garzon, R.; Klisovic, R.B.; Schwind, S.; Walker, A.; Geyer, S.; Liu, S.; Havelange, V.; Becker, H.; Schaaf, L.; et al. Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc. Natl. Acad. Sci. USA 2010, 107, 7473–7478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lübbert, M.; Bertz, H.; Rüter, B.; Marks, R.; Claus, R.; Wäsch, R.; Finke, J. Non-intensive treatment with low-dose 5-aza-2′-deoxycytidine (DAC) prior to allogeneic blood SCT of older MDS/AML patients. Bone Marrow Transplant. 2009, 44, 585–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dombret, H.; Seymour, J.F.; Butrym, A.; Wierzbowska, A.; Selleslag, D.; Jang, J.H.; Kumar, R.; Cavenagh, J.; Schuh, A.C.; Candoni, A.; et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood 2015, 126, 291–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller-Tidow, C.; Tschanter, P.; Röllig, C.; Thiede, C.; Koschmieder, A.; Stelljes, M.; Koschmieder, S.; Dugas, M.; Gerss, J.; Butterfaß-Bahloul, T.; et al. Azacitidine in combination with intensive induction chemotherapy in older patients with acute myeloid leukemia: The AML-AZA trial of the study alliance leukemia. Leukemia 2016, 30, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Voso, M.T.; Leone, G.; Piciocchi, A.; Fianchi, L.; Santarone, S.; Candoni, A.; Criscuolo, M.; Masciulli, A.; Cerqui, E.; Molteni, A.; et al. Feasibility of allogeneic stem-cell transplantation after azacitidine bridge in higher-risk myelodysplastic syndromes and low blast count acute myeloid leukemia: Results of the BMT-AZA prospective study. Ann. Oncol. 2017, 28, 1547–1553. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Ueno, H.; Okabe, T.; Kagoo, T.; Boku, S.; Yano, T.; Yokoyama, A. Bridging-to-transplant with azacitidine for myelodysplastic syndrome and acute myeloid leukemia, reduces the incidence of acute graft-versus-host disease. Hematol. Rep. 2017, 9, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Gerds, A.T.; Gooley, T.A.; Estey, E.H.; Appelbaum, F.R.; Deeg, H.J.; Scott, B.L. Pretransplantation Therapy with Azacitidine vs Induction Chemotherapy and Posttransplantation Outcome in Patients with MDS. Biol. Blood Marrow Transplant. 2012, 18, 1211–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantarjian, H.M.; Roboz, G.J.; Kropf, P.L.; Yee, K.W.L.; O’Connell, C.L.; Tibes, R.; Walsh, K.J.; Podoltsev, N.A.; Griffiths, E.A.; Jabbour, E.; et al. Guadecitabine (SGI-110) in treatment-naive patients with acute myeloid leukaemia: Phase 2 results from a multicentre, randomised, phase 1/2 trial. Lancet. Oncol. 2017, 18, 1317–1326. [Google Scholar] [CrossRef]
- Mayer, L.D. Ratiometric dosing of anticancer drug combinations: Controlling drug ratios after systemic administration regulates therapeutic activity in tumor-bearing mice. Mol. Cancer Ther. 2006, 5, 1854–1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancet, J.E.; Cortes, J.E.; Hogge, D.E.; Tallman, M.S.; Kovacsovics, T.J.; Damon, L.E.; Komrokji, R.; Solomon, S.R.; Kolitz, J.E.; Cooper, M.; et al. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood 2014, 123, 3239–3246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortes, J.E.; Goldberg, S.L.; Feldman, E.J.; Rizzeri, D.A.; Hogge, D.E.; Larson, M.; Pigneux, A.; Recher, C.; Schiller, G.; Warzocha, K.; et al. Phase II, multicenter, randomized trial of CPX-351 (cytarabine:Daunorubicin) liposome injection versus intensive salvage therapy in adults with first relapse AML. Cancer 2015, 121, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Lancet, J.E.; Uy, G.L.; Cortes, J.E.; Newell, L.F.; Lin, T.L.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; et al. Final results of a phase III randomized trial of CPX-351 versus 7+3 in older patients with newly diagnosed high risk (secondary) AML. J. Clin. Oncol. 2016, 34, 7000. [Google Scholar] [CrossRef]
- Wei, A.; Strickland, S.A.; Roboz, G.J.; Hou, J.-Z.; Fiedler, W.; Lin, T.L.; Walter, R.B.; Enjeti, A.; Chyla, B.; Popovic, R.; et al. Phase 1/2 Study of Venetoclax with Low-Dose Cytarabine in Treatment-Naive, Elderly Patients with Acute Myeloid Leukemia Unfit for Intensive Chemotherapy: 1-Year Outcomes. Blood 2017, 130, 890. [Google Scholar]
- DiNardo, C.D.; Pratz, K.W.; Letai, A.; Jonas, B.A.; Wei, A.H.; Thirman, M.; Arellano, M.; Frattini, M.G.; Kantarjian, H.; Popovic, R.; et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: A non-randomised, open-label, phase 1b study. Lancet Oncol. 2018, 19, 216–228. [Google Scholar] [CrossRef]
- Estey, E. Acute Myeloid Leukemia and Myelodysplastic Syndromes in Older Patients. J. Clin. Oncol. 2007, 25, 1908–1915. [Google Scholar] [CrossRef] [PubMed]
- Löwenberg, B.; Suciu, S.; Archimbaud, E.; Haak, H.; Stryckmans, P.; de Cataldo, R.; Dekker, A.W.; Berneman, Z.N.; Thyss, A.; van der Lelie, J.; et al. Mitoxantrone versus daunorubicin in induction-consolidation chemotherapy—The value of low-dose cytarabine for maintenance of remission, and an assessment of prognostic factors in acute myeloid leukemia in the elderly: Final report. J. Clin. Oncol. 1998, 16, 872–881. [Google Scholar] [CrossRef] [PubMed]
- Godwin, B.J.E.; Kopecky, K.J.; Head, D.R.; Willman, C.L.; Leith, C.P.; Hynes, H.E.; Balcerzak, S.P.; Appelbaum, F.R. A Double-Blind Placebo-Controlled Trial of Granulocyte Colony-Stimulating Factor in Elderly Patients with Previously Untreated Acute Myeloid Leukemia: A Southwest Oncology Group Study (9031). Blood 1998, 91, 3607–3616. [Google Scholar] [PubMed]
- Anderson, J.E.; Kopecky, K.J.; Willman, C.L.; Head, D.; Donnell, M.R.O.; Luthardt, F.W.; Norwood, T.H.; Chen, I.; Balcerzak, S.P.; Johnson, D.B.; et al. Outcome after induction chemotherapy for older patients with acute myeloid leukemia is not improved with mitoxantrone and etoposide compared to cytarabine and daunorubicin: A Southwest Oncology Group study. Blood 2002, 100, 3869–3876. [Google Scholar] [CrossRef] [PubMed]
- Ustun, C.; Kalla, A.; Farrow, S.; Deremer, D.L.; Jillella, A. Decitabine as “bridge therapy” to a MUD transplant in relapsed AML postautologous stem cell transplantation. Am. J. Hematol. 2008, 83, 825–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaich, M.; Röllig, C.; Soucek, S.; Kramer, M.; Thiede, C.; Mohr, B.; Oelschlaegel, U.; Schmitz, N.; Stuhlmann, R.; Wandt, H.; et al. Cytarabine dose of 36 g/m2 compared with 12 g/m2 within first consolidation in acute myeloid leukemia: Results of patients enrolled onto the prospective randomized AML96 study. J. Clin. Oncol. 2011, 29, 2696–2702. [Google Scholar] [CrossRef] [PubMed]
- Miyawaki, S.; Ohtake, S.; Fujisawa, S.; Kiyoi, H.; Shinagawa, K.; Usui, N.; Sakura, T.; Miyamura, K.; Nakaseko, C.; Miyazaki, Y.; et al. A randomized comparison of 4 courses of standard-dose multiagent chemotherapy versus 3 courses of high-dose cytarabine alone in postremission therapy for acute myeloid leukemia in adults: The JALSG AML201 Study. Blood 2011, 117, 2366–2372. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Duan, C.; Chen, L.; Chen, S. Efficacy and safety of different doses of cytarabine in consolidation therapy for adult acute myeloid leukemia patients: A network meta-analysis. Sci. Rep. 2017, 7, 9509. [Google Scholar] [CrossRef] [PubMed]
- Magina, K.N.; Pregartner, G.; Zebisch, A.; Wölfler, A.; Neumeister, P.; Greinix, H.T.; Berghold, A.; Sill, H. Cytarabine dose in the consolidation treatment of AML: A systematic review and meta-analysis. Blood 2017, 130, 946–948. [Google Scholar] [CrossRef] [PubMed]
- Ramos, N.; Mo, C.; Karp, J.; Hourigan, C. Current Approaches in the Treatment of Relapsed and Refractory Acute Myeloid Leukemia. J. Clin. Med. 2015, 4, 665–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tischer, J.; Stemmler, H.J.; Engel, N.; Hubmann, M.; Fritsch, S.; Prevalsek, D.; Schulz, C.; Zoellner, A.K.; Bücklein, V.; Hill, W.; et al. Feasibility of clofarabine cytoreduction followed by haploidentical hematopoietic stem cell transplantation in patients with relapsed or refractory advanced acute leukemia. Ann. Hematol. 2013, 92, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Middeke, J.M.; Herbst, R.; Parmentier, S.; Bug, G.; Hänel, M.; Stuhler, G.; Schäfer-Eckart, K.; Rösler, W.; Klein, S.; Bethge, W.; et al. Long-Term Follow-Up and Impact of Comorbidity before Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Relapsed or Refractory Acute Myeloid Leukemia-Lessons Learned from the Prospective BRIDGE Trial. Biol. Blood Marrow Transplant. 2017, 23, 1491–1497. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, S.; Dammann, E.; Stadler, M.; Krauter, J.; Beutel, G.; Trummer, A.; Eder, M.; Ganser, A. Cytoreductive treatment with clofarabine/ara-C combined with reduced-intensity conditioning and allogeneic stem cell transplantation in patients with high-risk, relapsed, or refractory acute myeloid leukemia and advanced myelodysplastic syndrome. Eur. J. Haematol. 2012, 88, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Cefalo, M.; Mi, D.P.; Buccisano, F.; Piazza, F.; Ottaviani, L.; Maurillo, L.; Sarlo, C.; Santis, G.; Mi, C.; Angelis, D.; et al. Fludarabine, Cytarabine and Gentuzumab Ozogamicin (FLA-GO) as Salvage Therapy and Bridge to Transplant in Adult Relapsed Acute Myeloid Leukemia (AML) Patients. Ann. Hematol. Oncol. 2017, 4, 1145. [Google Scholar]
- Hills, R.K.; Castaigne, S.; Appelbaum, F.R.; Delaunay, J.; Petersdorf, S.; Othus, M.; Estey, E.H.; Dombret, H.; Chevret, S.; Ifrah, N.; et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: A meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014, 15, 986–996. [Google Scholar] [CrossRef]
- Canaani, J.; Frey, N.V.; Gill, S.; Luskin, M.R.; Hexner, E.O.; Loren, A.W.; Luger, S.M.; Mangan, J.; Porter, D.L.; Perl, A.E. Use of FLT3 Inhibitors to Bridge Relapsed/Refractory AML Patients to an Allogeneic Stem Cell Transplant. Biol. Blood Marrow Transplant. 2016, 22, S199–S200. [Google Scholar] [CrossRef]
- Cortes, J.; Perl, A.; Dombret, H.; Kayser, S.; Steffen, B.; Rousselot, P. Final results of a phase 2 open-label, monotherapy efficacy and safety study of quizartinib (AC220) in patients >= 60 years of age with FLT3 ITD positive or negative relapsed/ refractory acute myeloid leukemia. Blood 2012, 120, 48. [Google Scholar]
- Cortes, J.; Khaled, S.; Martinelli, G.; Perl, A.E.; Ganguly, S.; Russell, N.; Krämer, A.; Dombret, H.; Hogge, D.; Jonas, B.A.; et al. Levis Quizartinib significantly prolongs overall survival in Patients with FLT3-internal tandem duplication-mutated relapsed/refractory AML in the phase 3, randomized, controlled QuANTUM-R trial. EHA23 2018, LB2600. Available online: https://learningcenter.ehaweb.org/eha/2018/stockholm/218882/jorge.cortes.quizartinib.significantly.prolongs.overall.survival.in.patients.html (accessed on 10 July 2018).
- Stein, E.M.; DiNardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; DeAngelo, D.J.; Levine, R.L.; Flinn, I.W.; et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 2017, 130, 722–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chevallier, P.; Szydlo, R.M.; Blaise, D.; Tabrizi, R.; Michallet, M.; Uzunov, M.; Fegueux, N.; Guilhot, F.; Lapusan, S.; Gratecos, N.; et al. Reduced-Intensity Conditioning before Allogeneic Hematopoietic Stem Cell Transplantation in Patients Over 60 Years: A Report from the SFGM-TC. Biol. Blood Marrow Transplant. 2012, 18, 289–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashidi, A.; Ebadi, M.; Colditz, G.A.; DiPersio, J.F. Outcomes of Allogeneic Stem Cell Transplantation in Elderly Patients with Acute Myeloid Leukemia: A Systematic Review and Meta-analysis. Biol. Blood Marrow Transplant. 2016, 22, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Devine, S.M.; Owzar, K.; Blum, W.; Mulkey, F.; Stone, R.M.; Hsu, J.W.; Champlin, R.E.; Chen, Y.B.; Vij, R.; et al. Phase II study of allogeneic transplantation for older patients with acute myeloid leukemia in first complete remission using a reduced-intensity conditioning regimen: Results from Cancer and Leukemia Group B 100103 (Alliance for Clinical Trials in Oncolo). J. Clin. Oncol. 2015, 33, 4167–4175. [Google Scholar] [CrossRef] [PubMed]
- Beelen, D.W.; Trenschel, R.; Stelljes, M.; Masszi, T.; Reményi, P.; Wagner-Drouet, E.-M.M.; Dreger, P.; Bethge, W.; Ciceri, F.; Stoelzel, F.; et al. Final Results of a Prospective Randomized Multicenter Phase III Trial Comparing Treosulfan/Fludarabine to Reduced Intensity Conditioning with Busulfan/Fludarabine Prior to Allogeneic Hematopoietic Stem Cell Transplantation in Elderly or Comorbid Patients. Blood 2017, 130, 521. [Google Scholar]
- Schmid, C.; Schleuning, M.; Schwerdtfeger, R.; Hertenstein, B.; Mischak-weissinger, E.; Bunjes, D.; Harsdorf, S.; Scheid, C.; Holtick, U.; Greinix, H.; et al. Long-term survival in refractory acute myeloid leukemia after sequential treatment with chemotherapy and reduced-intensity conditioning for allogeneic stem cell transplantation. Blood 2006, 108, 1092–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtick, U.; Herling, M.; Pflug, N.; Chakupurakal, G.; Leitzke, S.; Wolf, D.; Hallek, M.; Scheid, C.; Chemnitz, J.M. Similar outcome after allogeneic stem cell transplantation with a modified FLAMSA conditioning protocol substituting 4 Gy TBI with treosulfan in an elderly population with high-risk AML. Ann. Hematol. 2017, 96, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Wei, A.H.; Tiong, I.S. Midostaurin, enasidenib, CPX-351, gemtuzumab ozogamicin, and venetoclax bring new hope to AML. Blood 2017, 130, 2469–2474. [Google Scholar] [CrossRef] [PubMed]
- Krupka, C.; Kufer, P.; Kischel, R.; Zugmaier, G.; Bögeholz, J.; Köhnke, T.; Lichtenegger, F.S.; Schneider, S.; Metzeler, K.H.; Fiegl, M.; et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood 2014, 123, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Uy, G.L.; Godwin, J.; Rettig, M.P.; Vey, N.; Foster, M.; Arellano, M.L.; Rizzieri, D.A.; Topp, M.S.; Huls, G.; Lowenberg, B.; et al. Preliminary Results of a Phase 1 Study of Flotetuzumab, a CD123 × CD3 Bispecific Dart® Protein, in Patients with Relapsed/Refractory Acute Myeloid Leukemia and Myelodysplastic Syndrome. Blood 2017, 130, 637. [Google Scholar]
HCT-CI Score, Not Age Adapted [28] | HCT-CI/Age Score for Patient Group >60 Years [34] | ||||
---|---|---|---|---|---|
Score | Two-Year NRM | Risk | Score | Two-Year NRM | Risk |
0 | 14% | Low risk | 0 | - | |
1 | 22% | Intermediate risk | 1–2 | 21% | Lower risk |
2 | 19% | 3–4 | 28% | Higher risk | |
3 | 41% | High risk | ≥5 | 39% | (p = 0.02 and p < 0.0001) |
≥4 | 40% |
Therapy | Reference | Type of Study | N | CR% | alloHCT% | PFS | OS | NRM% | Remarks |
---|---|---|---|---|---|---|---|---|---|
Azacitidine | [58] | Prospective, Phase III (Azacitidine vs. conventional care) | 488 (241 Aza vs. 247 CC) | 19.5% (+8.3% CRi) | - | 6.7 months | 10.4 months | 16.2% | Selected patients not eligible for allo-HSCT |
[61] | Retrospective (Azacitidine pretreatment before allo-HCT in HR-MDS and sAML) | 20 | 20% | 100% | 145 days | 202 days | n.d. | Incidence of grade II to IV acute GVHD was significantly lower with Azacitidine pretreatment | |
[60] | Prospective (Azacitidine followed by HSCT vs. no HSCT in MDS and AML) | 97 (19 with AML) | 24% | 56% | n.d. | HSCT: 20.9 months; No HSCT: 9.4 months | n.d. | Azacitidine responders had a significantly longer survival than non-responders | |
[62] | Retrospective (Azacitine vs. induction before allo-HCT in MDS and sAML) | 68 | n.d. | 100% | n.d. | estimated 1-year OS 57% | n.d. | Pre-HSCT azacitidine led to a 66% lower hazard of relapse than conventional induction | |
Decitabine | [57] | Retrospective (Decitabine before allo-HSCT in MDS and AML) | 15 (5 with AML) | 33% | 100% | n.d. | Longtime survival in 6 patients (40%), 2 with AML | 33% (all transplant associated) | |
[55] | Prospective (Decitabine vs. conventional care) | 485 | 27.7% (CR + CRi) | - | n.d. | 7.7 months | 24% | Selected patients not eligible for allo-HSCT | |
[56] | Prospective, Phase II | 53 | 47% | 8% | 55 weeks | 46 weeks | 15% (60 days) | CR rate of 50% in complex karyotypes | |
[54] | Prospective | 116 | 46% | n.d. | n.d. | n.d. | n.d. | CR rate of 67% in cytogenetic unfavorable risk group and 100% with TP53 mutations | |
Guadecit abine | [63] | Prospective, Phase II (5 or 10 day schedule of Guadecitabine) | 107 | 50-59% | 5% | n.d. | 10.5 / 9.5 months | 22% | Schedule of 60 mg/m2 on day 1–5 recommended |
CPX-351 | [64] | Prospective, Phase II (CPX-351 vs. 7 + 3) | 126 (85 CPX-351, 41 7 + 3) | 48,8% (+17.9% CRi) | 16.5% | 6.5 months | 14.7 months | 4.7% (60 days) | In sAML subgroup CPX-351 significantly improved OS (12.1 vs. 6.1 months) |
CPX-351 Venetoclax and LDAC | [65] | Prospective, Phase III (CPX-351 vs. 7 + 3) | 309 (153 CPX-351, 156 7 + 3) | 47.7% (CR + CRi) | n.d. | n.d. | 9.56 months | 13.7% (60 days) | |
[66] | Prospective, Phase Ib/II | 71 | 62% (CR + CRi) | 1% | n.d. | 11.4 months | 1% | ||
Venetoclax and HMA | [67] | Prospective, Phase Ib (Venetoclax + Decitabine or Azacitidine, dose escalation) | 57 | 61% (CR + CRi) | 18% | n.d. | 12.3 months | 7% | Equal response and safety profile in combination with azacitidine and decitabine |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hecker, J.; Miller, I.; Götze, K.S.; Verbeek, M. Bridging Strategies to Allogeneic Transplant for Older AML Patients. Cancers 2018, 10, 232. https://doi.org/10.3390/cancers10070232
Hecker J, Miller I, Götze KS, Verbeek M. Bridging Strategies to Allogeneic Transplant for Older AML Patients. Cancers. 2018; 10(7):232. https://doi.org/10.3390/cancers10070232
Chicago/Turabian StyleHecker, Judith, Isabella Miller, Katharina S. Götze, and Mareike Verbeek. 2018. "Bridging Strategies to Allogeneic Transplant for Older AML Patients" Cancers 10, no. 7: 232. https://doi.org/10.3390/cancers10070232
APA StyleHecker, J., Miller, I., Götze, K. S., & Verbeek, M. (2018). Bridging Strategies to Allogeneic Transplant for Older AML Patients. Cancers, 10(7), 232. https://doi.org/10.3390/cancers10070232