Chimeric Antigen Receptor T-cell (CAR T) Therapy for Hematologic and Solid Malignancies: Efficacy and Safety—A Systematic Review with Meta-Analysis
Abstract
:1. Introduction
2. Results
2.1. Research Results and Quality Assessment
2.2. Characteristics of Studies
2.3. Meta-Analysis of ORR of CAR T Therapy in Patients with Different Malignancies
2.4. Meta-Analysis of CRR of CAR T Therapy in Patients with Different Malignancies
2.5. Meta-Analysis of CSER of CAR T Therapy in Patients with Different Malignancies
2.6. Meta-Analysis of RR of CAR T Therapy in Patients with Solid and Hematologic Malignancies
2.7. Sources of Heterogeneity
3. Discussion
4. Materials and Methods
4.1. Search Strategy
4.2. Selection Criteria for Considering Studies for This Review
4.3. Initial Review of Studies
4.4. Data Abstraction
4.5. Assessment of Study Quality and Risk of Bias
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maus, M.V.; Grupp, S.A.; Porter, D.L.; June, C.H. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 2014, 123, 2625–2635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Cao, L.; Xie, J.; Shi, N.; Zhang, Z.; Luo, Z.; Yue, D.; Zhang, Z.; Wang, L.; Han, W.; et al. Efficiency of CD19 chimeric antigen receptor-modified T cells for treatment of B cell malignancies in phase I clinical trials: A meta-analysis. Oncotarget 2015, 6, 33961–33971. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Wolchok, J.D.; Chan, T.A.; Mellman, I.; Palucka, K.; Banchereau, J.; Rosenberg, S.A.; Dane Wittrup, K. Immunotherapy: The path to win the war on cancer? Cell 2015, 161, 185–186. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.J.; Sun, X.Y.; Huang, K.M.; Zhang, L.; Yang, Z.S.; Zou, D.D.; Wang, B.; Warnock, G.L.; Dai, L.J.; Luo, J. Therapeutic potential of CAR-T cell-derived exosomes: A cell-free modality for targeted cancer therapy. Oncotarget 2015, 6, 44179–44190. [Google Scholar] [CrossRef] [PubMed]
- Magee, M.S.; Snook, A.E. Challenges to chimeric antigen receptor (CAR)-T cell therapy for cancer. Discov. Med. 2014, 18, 265–271. [Google Scholar] [PubMed]
- Kochenderfer, J.N.; Wilson, W.H.; Janik, J.E.; Dudley, M.E.; Stetler-Stevenson, M.; Feldman, S.A.; Maric, I.; Raffeld, M.; Nathan, D.A.; Lanier, B.J.; et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010, 116, 4099–4102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpenito, C.; Milone, M.C.; Hassan, R.; Simonet, J.C.; Lakhal, M.; Suhoski, M.M.; Varela-Rohena, A.; Haines, K.M.; Heitjan, D.F.; Albelda, S.M.; et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl. Acad. Sci. USA 2009, 106, 3360–3365. [Google Scholar] [CrossRef] [Green Version]
- Van der Stegen, S.J.; Hamieh, M.; Sadelain, M. The pharmacology of second-generation chimeric antigen receptors. Nat. Rev. Drug Discov. 2015, 14, 499–509. [Google Scholar] [CrossRef]
- Allegra, A.; Innao, V.; Gerace, D.; Vaddinelli, D.; Musolino, C. Adoptive immunotherapy for hematological malignancies: Current status and new insights in chimeric antigen receptor T cells. Blood Cells Mol. Dis. 2016, 62, 49–63. [Google Scholar] [CrossRef]
- Yeku, O.O.; Brentjens, R.J. Armored CAR T-cells: Utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem. Soc. Trans. 2016, 44, 412–418. [Google Scholar] [CrossRef]
- Smith, L.; Venella, K. Cytokine Release Syndrome: Inpatient Care for Side Effects of CAR T-Cell Therapy. Clin. J. Oncol. Nurs. 2017, 21, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, Z.; Peng, M.; Fu, S.; Xue, Z.; Zhang, R. CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: From bench to bedside. Oncoimmunology 2016, 5, e1251539. [Google Scholar] [CrossRef]
- Fesnak, A.; Lin, C.; Siegel, D.L.; Maus, M.V. CAR-T Cell Therapies From the Transfusion Medicine Perspective. Transfus. Med. Rev. 2016, 30, 139–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Rourke, D.M.; Nasrallah, M.P.; Desai, A.; Melenhorst, J.J.; Mansfield, K.; Morrissette, J.J.D.; Martinez-Lage, M.; Brem, S.; Maloney, E.; Shen, A.; et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 2017, 9, eaaa0984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louis, C.U.; Savoldo, B.; Dotti, G.; Pule, M.; Yvon, E.; Myers, G.D.; Rossig, C.; Russell, H.V.; Diouf, O.; Liu, E.; et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 2011, 118, 6050–6056. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.E.; Badie, B.; Barish, M.E.; Weng, L.; Ostberg, J.R.; Chang, W.C.; Naranjo, A.; Starr, R.; Wagner, J.; Wright, C.; et al. Bioactivity and Safety of IL13Rα2-Redirected Chimeric Antigen Receptor CD8+ T Cells in Patients with Recurrent Glioblastoma. Clin. Cancer Res. 2015, 21, 4062–4072. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Guo, Y.; Dai, H.; Wang, Y.; Li, X.; Jia, H.; Han, W. Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Sci. China Life Sci. 2016, 59, 468–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargett, T.; Yu, W.; Dotti, G.; Yvon, E.S.; Christo, S.N.; Hayball, J.D.; Lewis, I.D.; Brenner, M.K.; Brown, M.P. GD2-specific CAR T Cells Undergo Potent Activation and Deletion Following Antigen Encounter but can be Protected From Activation-induced Cell Death by PD-1 Blockade. Mol. Ther. 2016, 24, 1135–1149. [Google Scholar] [CrossRef]
- Ahmed, N.; Brawley, V.S.; Hegde, M.; Robertson, C.; Ghazi, A.; Gerken, C.; Liu, E.; Dakhova, O.; Ashoori, A.; Corder, A.; et al. Human Epidermal Growth Factor Receptor 2 (HER2) -Specific Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. J. Clin. Oncol. 2015, 33, 1688–1696. [Google Scholar] [CrossRef]
- Lamers, C.H.; Willemsen, R.; van Elzakker, P.; van Steenbergen-Langeveld, S.; Broertjes, M.; Oosterwijk-Wakka, J.; Oosterwijk, E.; Sleijfer, S.; Debets, R.; Gratama, J.W. Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells. Blood 2011, 117, 72–82. [Google Scholar] [CrossRef]
- Beatty, G.L.; Haas, A.R.; Maus, M.V.; Torigian, D.A.; Soulen, M.C.; Plesa, G.; Chew, A.; Zhao, Y.; Levine, B.L.; Albelda, S.M.; et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol. Res. 2014, 2, 112–120. [Google Scholar] [CrossRef] [PubMed]
- You, F.; Jiang, L.; Zhang, B.; Lu, Q.; Zhou, Q.; Liao, X.; Wu, H.; Du, K.; Zhu, Y.; Meng, H.; et al. Phase 1 clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified Anti-MUC1 chimeric antigen receptor transduced T cells. Sci. China Life Sci. 2016, 59, 386–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Wang, Z.; Yang, Z.; Wang, M.; Li, S.; Li, Y.; Zhang, R.; Xiong, Z.; Wei, Z.; Shen, J.; et al. Phase I Escalating-Dose Trial of CAR-T Therapy Targeting CEA+ Metastatic Colorectal Cancers. Mol. Ther. 2017, 25, 1248–1258. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.C.; Burga, R.A.; McCormack, E.; Wang, L.J.; Mooring, W.; Point, G.R.; Khare, P.D.; Thorn, M.; Ma, Q.; Stainken, B.F.; et al. Phase I Hepatic Immunotherapy for Metastases Study of Intra-Arterial Chimeric Antigen Receptor-Modified T-cell Therapy for CEA+ Liver Metastases. Clin. Cancer Res. 2015, 21, 3149–3159. [Google Scholar] [CrossRef] [PubMed]
- Junghans, R.P.; Ma, Q.; Rathore, R.; Gomes, E.M.; Bais, A.J.; Lo, A.S.; Abedi, M.; Davies, R.A.; Cabral, H.J.; Al-Homsi, A.S.; et al. Phase I Trial of Anti-PSMA Designer CAR-T Cells in Prostate Cancer: Possible Role for Interacting Interleukin 2-T Cell Pharmacodynamics as a Determinant of Clinical Response. Prostate 2016, 76, 1257–1270. [Google Scholar] [CrossRef] [PubMed]
- Tanyi, J.L.; Stashwick, C.; Plesa, G.; Morgan, M.A.; Porter, D.; Maus, M.V.; June, C.H. Possible Compartmental Cytokine Release Syndrome in a Patient with Recurrent Ovarian Cancer After Treatment With Mesothelin-targeted CAR-T Cells. J. Immunother. 2017, 40, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.E.; Alizadeh, D.; Starr, R.; Weng, L.; Wagner, J.R.; Naranjo, A.; Ostberg, J.R.; Blanchard, M.S.; Kilpatrick, J.; Simpson, J.; et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. N. Engl. J. Med. 2016, 375, 2561–2569. [Google Scholar] [CrossRef] [Green Version]
- Tchou, J.; Zhao, Y.; Levine, B.L.; Zhang, P.J.; Davis, M.M.; Melenhorst, J.J.; Kulikovskaya, I.; Brennan, A.L.; Liu, X.; Lacey, S.F.; et al. Safety and Efficacy of Intratumoral Injections of Chimeric Antigen Receptor (CAR) T Cells in Metastatic Breast Cancer. Cancer Immunol. Res. 2017, 5, 1152–1161. [Google Scholar] [CrossRef] [Green Version]
- Hege, K.M.; Bergsland, E.K.; Fisher, G.A.; Nemunaitis, J.J.; Warren, R.S.; McArthur, J.G.; Lin, A.A.; Schlom, J.; June, C.H.; Sherwin, S.A. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. J. Immunother. Cancer 2017, 5, 22. [Google Scholar] [CrossRef]
- Ali, S.A.; Shi, V.; Maric, I.; Wang, M.; Stroncek, D.F.; Rose, J.J.; Brudno, J.N.; Stetler-Stevenson, M.; Feldman, S.A.; Hansen, B.G.; et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 2016, 128, 1688–1700. [Google Scholar] [CrossRef] [Green Version]
- Maus, M.V.; Haas, A.R.; Beatty, G.L.; Albelda, S.M.; Levine, B.L.; Liu, X.; Zhao, Y.; Kalos, M.; June, C.H. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol. Res. 2013, 1, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Thistlethwaite, F.C.; Gilham, D.E.; Guest, R.D.; Rothwell, D.G.; Pillai, M.; Burt, D.J.; Byatte, A.J.; Kirillova, N.; Valle, J.W.; Sharma, S.K.; et al. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol. Immunother. 2017, 66, 1425–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamers, C.H.; Sleijfer, S.; van Steenbergen, S.; van Elzakker, P.; van Krimpen, B.; Groot, C.; Vulto, A.; den Bakker, M.; Oosterwijk, E.; Debets, R.; et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: Clinical evaluation and management of on-target toxicity. Mol. Ther. 2013, 21, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.; Lai, P.; Qin, L.; Lai, Y.; Jiang, Z.; Luo, C.; Huang, X.; Wu, S.; Shao, D.; Deng, C.; et al. A novel generation 1928zT2 CAR T cells induce remission in extramedullary relapse of acute lymphoblastic leukemia. J. Hematol. Oncol. 2018, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.; Wu, D.; Cherian, S.; Fang, M.; Hanafi, L.A.; Finney, O.; Smithers, H.; Jensen, M.C.; Riddell, S.R.; Maloney, D.G.; et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T cell therapy. Blood 2016, 127, 2406–2410. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.M.; Wu, Z.; Tan, Y.P.; Du, Y.Y.; Liu, Z.; Ou, R.M.; Liu, S.; Pu, C.F.; Jiang, J.; Wang, J.P.; et al. Anti-CD19 chimeric antigen receptor T-cell therapy for adult Philadelphia chromosome-positive acute lymphoblastic leukemia: Two case reports. Medicine 2016, 95, e5676. [Google Scholar] [CrossRef]
- Wang, C.M.; Wu, Z.Q.; Wang, Y.; Guo, Y.L.; Dai, H.R.; Wang, X.H.; Li, X.; Zhang, Y.J.; Zhang, W.Y.; Chen, M.X.; et al. Autologous T Cells Expressing CD30 Chimeric Antigen Receptors for Relapsed or Refractory Hodgkin Lymphoma: An Open-Label Phase I Trial. Clin. Cancer Res. 2017, 23, 1156–1166. [Google Scholar] [CrossRef]
- Callahan, C.; Baniewicz, D.; Ely, B. CAR T-Cell Therapy: Pediatric Patients With Relapsed and Refractory Acute Lymphoblastic Leukemia. Clin. J. Oncol. Nurs. 2017, 21, 22–28. [Google Scholar] [CrossRef]
- Turtle, C.J.; Hanafi, L.A.; Berger, C.; Gooley, T.A.; Cherian, S.; Hudecek, M.; Sommermeyer, D.; Melville, K.; Pender, B.; Budiarto, T.M.; et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Investig. 2016, 126, 2123–2138. [Google Scholar] [CrossRef]
- Wei, G.; Hu, Y.; Pu, C.; Yu, J.; Luo, Y.; Shi, J.; Cui, Q.; Wu, W.; Wang, J.; Xiao, L.; et al. CD19 targeted CAR-T therapy versus chemotherapy in re-induction treatment of refractory/relapsed acute lymphoblastic leukemia: Results of a case-controlled study. Ann. Hematol. 2018, 97, 781–789. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Shi, X.D.; Li, J.H.; Zhang, X.X.; Li, J.J.; Feng, S.Q. Clinical Observation of CD19 CAR T Cell Therapy in Children Relapse B Lymphocytic Leukemia/Lymphoma. J. Inn. Mong. Med. Univ. 2017, 39, 112–116. [Google Scholar] [CrossRef]
- Fry, T.J.; Shah, N.N.; Orentas, R.J.; Stetler-Stevenson, M.; Yuan, C.M.; Ramakrishna, S.; Wolters, P.; Martin, S.; Delbrook, C.; Yates, B.; et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 2018, 24, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Kochenderfer, J.N.; Dudley, M.E.; Kassim, S.H.; Somerville, R.P.; Carpenter, R.O.; Stetler-Stevenson, M.; Yang, J.C.; Phan, G.Q.; Hughes, M.S.; Sherry, R.M.; et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 2015, 33, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Porter, D.L.; Hwang, W.T.; Frey, N.V.; Lacey, S.F.; Shaw, P.A.; Loren, A.W.; Bagg, A.; Marcucci, K.T.; Shen, A.; Gonzalez, V.; et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med. 2015, 7, 303ra139. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.A.; Ballard, B.; Zhang, H.; Dakhova, O.; Gee, A.P.; Mei, Z.; Bilgi, M.; Wu, M.F.; Liu, H.; Grilley, B.; et al. Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J. Clin. Investig. 2017, 127, 3462–3471. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, Y.; Suo, P.; Yan, C.; Wang, Y.; Chen, Y.; Han, W.; Xu, L.; Zhang, X.; Liu, K.; et al. Donor-derived CD19-targeted T cell infusion induces minimal residual disease-negative remission in relapsed B-cell acute lymphoblastic leukaemia with no response to donor lymphocyte infusions after haploidentical haematopoietic stem cell transplantation. Br. J. Haematol. 2017, 179, 598–605. [Google Scholar] [CrossRef]
- Kochenderfer, J.N.; Dudley, M.E.; Carpenter, R.O.; Kassim, S.H.; Rose, J.J.; Telford, W.G.; Hakim, F.T.; Halverson, D.C.; Fowler, D.H.; Hardy, N.M.; et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 2013, 122, 4129–4139. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, W.Y.; Han, Q.W.; Liu, Y.; Dai, H.R.; Guo, Y.L.; Bo, J.; Fan, H.; Zhang, Y.; Zhang, Y.J.; et al. Effective response and delayed toxicities of refractory advanced diffuse large B-cell lymphoma treated by CD20-directed chimeric antigen receptor-modified T cells. Clin. Immunol. 2014, 155, 160–175. [Google Scholar] [CrossRef]
- Davila, M.L.; Riviere, I.; Wang, X.; Bartido, S.; Park, J.; Curran, K.; Chung, S.S.; Stefanski, J.; Borquez-Ojeda, O.; Olszewska, M.; et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 2014, 6, 224ra25. [Google Scholar] [CrossRef]
- Pan, J.; Yang, J.F.; Deng, B.P.; Zhao, X.J.; Zhang, X.; Lin, Y.H.; Wu, Y.N.; Deng, Z.L.; Zhang, Y.L.; Liu, S.H.; et al. High efficacy and safety of low-dose CD19-directed CAR-T cell therapy in 51 refractory or relapsed B acute lymphoblastic leukemia patients. Leukemia 2017, 31, 2587–2593. [Google Scholar] [CrossRef] [PubMed]
- Fraietta, J.A.; Beckwith, K.A.; Patel, P.R.; Ruella, M.; Zheng, Z.; Barrett, D.M.; Lacey, S.F.; Melenhorst, J.J.; McGettigan, S.E.; Cook, D.R.; et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood 2016, 127, 1117–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turtle, C.J.; Hanafi, L.A.; Berger, C.; Hudecek, M.; Pender, B.; Robinson, E.; Hawkins, R.; Chaney, C.; Cherian, S.; Chen, X.; et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl. Med. 2016, 8, 355ra116. [Google Scholar] [CrossRef] [PubMed]
- Cruz, C.R.; Micklethwaite, K.P.; Savoldo, B.; Ramos, C.A.; Lam, S.; Ku, S.; Diouf, O.; Liu, E.; Barrett, A.J.; Ito, S.; et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: A phase 1 study. Blood 2013, 122, 2965–2973. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.A.; Finney, O.; Annesley, C.; Brakke, H.; Summers, C.; Leger, K.; Bleakley, M.; Brown, C.; Mgebroff, S.; Kelly-Spratt, K.S.; et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 2017, 129, 3322–3331. [Google Scholar] [CrossRef] [PubMed]
- Hay, K.A.; Hanafi, L.A.; Li, D.; Gust, J.; Liles, W.C.; Wurfel, M.M.; López, J.A.; Chen, J.; Chung, D.; Harju-Baker, S.; et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 2017, 130, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Rivière, I.; Gonen, M.; Wang, X.; Sénéchal, B.; Curran, K.J.; Sauter, C.; Wang, Y.; Santomasso, B.; Mead, E.; et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 449–459. [Google Scholar] [CrossRef]
- Qasim, W.; Zhan, H.; Samarasinghe, S.; Adams, S.; Amrolia, P.; Stafford, S.; Butler, K.; Rivat, C.; Wright, G.; Somana, K.; et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci. Transl. Med. 2017, 9. [Google Scholar] [CrossRef]
- Ritchie, D.S.; Neeson, P.J.; Khot, A.; Peinert, S.; Tai, T.; Tainton, K.; Chen, K.; Shin, M.; Wall, D.M.; Hönemann, D.; et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol. Ther. 2013, 21, 2122–2129. [Google Scholar] [CrossRef]
- Locke, F.L.; Neelapu, S.S.; Bartlett, N.L.; Siddiqi, T.; Chavez, J.C.; Hosing, C.M.; Ghobadi, A.; Budde, L.E.; Bot, A.; Rossi, J.M.; et al. Phase 1 Results of ZUMA-1: A Multicenter Study of KTE-C19 Anti-CD19 CAR T Cell Therapy in Refractory Aggressive Lymphoma. Mol. Ther. 2017, 25, 285–295. [Google Scholar] [CrossRef]
- Lee, D.W.; Kochenderfer, J.N.; Stetler-Stevenson, M.; Cui, Y.K.; Delbrook, C.; Feldman, S.A.; Fry, T.J.; Orentas, R.; Sabatino, M.; Shah, N.N.; et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet 2015, 385, 517–528. [Google Scholar] [CrossRef]
- Kalos, M.; Levine, B.L.; Porter, D.L.; Katz, S.; Grupp, S.A.; Bagg, A.; June, C.H. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 2011, 3, 95ra73. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, H.; Zhang, W.; Li, X.; Han, Q.; Guo, Y.; Zhang, Y.; Wang, Y.; Wang, C.; Shi, F.; Zhang, Y.; et al. Tolerance and efficacy of autologous or donor-derived T cells expressing CD19 chimeric antigen receptors in adult B-ALL with extramedullary leukemia. Oncoimmunology 2015, 4, e1027469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef] [PubMed]
- Priceman, S.J.; Forman, S.J.; Brown, C.E. Smart CARs engineered for cancer immunotherapy. Curr. Opin. Oncol. 2015, 27, 466–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakarla, S.; Gottschalk, S. CAR T cells for solid tumors: Armed and ready to go? Cancer J. 2014, 20, 151–155. [Google Scholar] [CrossRef]
- Yu, W.L.; Hua, Z.C. Evaluation of effectiveness of granulocyte-macrophage colony-stimulating factor therapy to cancer patients after chemotherapy: A meta-analysis. Oncotarget 2018, 9, 28226–28239. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- QUADAS-2 Manual. Available online: http://www.bris.ac.uk/quadas/quadas-2/ (accessed on 19 April 2018).
Author, Year (Ref.) | Age * (Years Old) | Sex | QUADAS | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
O’Rourke et al. 2017 [14] | 59.5 (45–76) | 5M/5F | |||||
Louis et al. 2016 [15] | 7 (3–20) | 10M/9F | |||||
Brown et al. 2015 [16] | 50 (36–57) | 1M/2F | |||||
Feng et al. 2016 [17] | 58 (40–66) | 5M/6F | |||||
Gargett et al. 2016 [18] | NS | NS | |||||
Ahmed et al. 2015 [19] | 17 (7–29) | 9M/10F | |||||
Lamers et al. 2018 [20] | NS | NS | |||||
Beatty et al. 2013 [21] | 78 (81 and 75) | 2M | |||||
You et al. 2016 [22] | NS | NS | |||||
Zhang et al. 2017 [23] | 58 (48–67) | 7M/3F | |||||
Katz et al. 2015 [24] | 57 (51–66) | 6M/2F | |||||
Junghans et al. 2016 [25] | 61(51–75) | 5M | |||||
Tanyi et al. 2017 [26] | 52 | 1F | |||||
Brown et al. 2016 [27] | 50 | 1M | |||||
Tchou et al. 2017 [28] | 55.3 (44–64) | 6F | |||||
Hege et al. 2017 [29] | 56 | 9M/5F | |||||
Ali et al. 2016 [30] | NS | NS | |||||
Maus et al. 2013 [31] | NS | NS | |||||
Thistlethwaite et al. 2017 [32] | 47.4 (36–66) | 8M/6F | |||||
Lamers et al. 2013 [33] | 60.8 (46–74) | 8M/4F | |||||
Weng et al. 2018 [34] | 23.3 (16–34) | 2M/1F | |||||
Gardner et al. 2018 [35] | NS | NS | |||||
Zhu et al. 2016 [36] | 34 (29–39) | 1M/1F | |||||
Wang et al. 2016 [37] | 33 (13–77) | 13M/5F | |||||
Callahan et al. 2017 [38] | (1–14) | NS | |||||
Turtle et al. 2016 [39] | 40 (20–73) | NS | |||||
Wei et al. 2018 [40] | 35.8 (8–57) | 10M/13F | |||||
Wang et al. 2017 [41] | 7 (5–9) | 5M/1F | |||||
Fry et al. 2018 [42] | 19 (7–30) | 13M/8F | |||||
Kochenderfer et al. 2015 [43] | 51.7(30–68) | 8M/7F | |||||
Maude et al. 2014 [44] | 14 (5–60) | 18M/12F | |||||
Porter et al. 2015 [45] | 66 (51–78) | 12M/2F | |||||
Ramos et al. 2017 [46] | 34.7 (20–65) | 6M/3F | |||||
Chen et al. 2017 [47] | 26.5 (8–44) | 1M/5F | |||||
Kochenderfer et al. 2016 [48] | 52.4 (44–66) | 8M/2F | |||||
Wang et al. 2014 [49] | 62.4 (37–85) | 6M/1F | |||||
Davila et al. 2014 [50] | 50(18–59) | 12M/4F | |||||
Pan et al. 2017 [51] | 13.3 (2–68) | 32M/19F | |||||
Fraietta et al. 2018 [52] | 62 (57–68) | 3M | |||||
Turtle et al. 2016 [53] | 57 (22–70) | 27M/5F | |||||
Cruz et al. 2016 [54] | 51 (9–59) | 5M/3F | |||||
Gardner et al. 2018 [55] | 12.2 (1–25) | 23M/22F | |||||
Hay et al. 2018 [56] | 54 (20–73) | 93M/40F | |||||
Park et al. 2018 [57] | 44 (23–74) | NS | |||||
Qasim et al. 2017 [58] | 13.5 † (11 † and 16 †) | 2F | |||||
Ritchie et al. 2013 [59] | 70.6 (64–78) | 1M/3F | |||||
Locke et al. 2017 [60] | 52.3 (29–69) | 5M/2F | |||||
Lee et al. 2015 [61] | 14.7 (5–27) | 14M/7F | |||||
Kalos et al. 2018 [62] | 68.7 (64–77) | 3M | |||||
Maude et al. 2018 [63] | 11 (3–23) | NS | |||||
Dai et al. 2015 [64] | 38.9 (15–65) | 4M/5F | |||||
Neelapu et al. 2017 [65] | 58 (23–76) | 68M/43F |
Yes | |
No | |
Unclear |
No a | CAR T Type | Vector | T Cell Origin | Cell Culture | Transfection Method | T Cell Treatment | CAR T Cell Persistence | Diagnosis | Lympho-depletion | Dose b | Responses | Side Effects d | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | CART-EGFRvIII | CD8+4-1BB+CD3 | Autologous | 10 days | Lentivirus | CD3/28 beads | <30 days | GBM | Temozolomide, radiation | 5 × 108 cells | 2 PD, 1 SD, 7 Died | Seizure, headache, weakness, cerebral edema | [14] |
19 | GD2-specific CAR T | Zeta5+Zeta6 | Autologous | 6 weeks | Retroviral | OKT3+IL-2 | 96–192 weeks | NB | No c | 2 × 107 cells/m2, 5 × 107 cells/m2, 1 × 108 cells/m2 | 3 CR, 1 PR, 8 NED, 4 PD, 1 SD, 2 Tumor necrosis, 1 Relapse | Localized pain | [15] |
3 | IL13Rα2-specific CD8 + CAR T | IL-13+ CD4+CD3 | Autologous | 14 days | Electroporation | OKT3+IL-2+irradiated feeders | 14 weeks | GBM | NI | 9.6 × 108 cells, 10.6 × 108 cells, 10.6 × 108 cells | 2 PR, 1 Relapse | Headaches, neurologic-shuffling gait | [16] |
11 | CAR T- EGFR | CD8+4-1BB+CD3 | Autologous | 10 to 13 days | Lentiviral | CD3+GT-T551+IL2 | >4 weeks | NSCLC | CY, pemetrexed, CDDP, docetaxel | 9.7 × 106 cells/kg | 2 PR, 4 PD, 5 SD | Rash, acne, dry skin, nausea, vomiting dyspnea, hypotension, serum amylase elevation, serum lipase elevation | [17] |
4 | GD2-specific CAR T | CD28+OX40 | Autologous | 13–17 days | Retroviral | CD3/28 beads | 42 days | Metastatic melanoma | FLU, CY | 1 × 107 cells/m2, 2 × 107 cells/m2 | 4 PR | NI | [18] |
19 | HER2-CAR T | HER2+CD28 | Autologous | 10–21 days | Retroviral particles | CD3/CD3+CD8+IL2 | <18 months | OS, EWS, PNET, DSRCT | Chemotherapy radiation | 1 × 104 cells/m2, 1 × 108 cells/m2 | 1 PR, 12 PD, 4 SD, 2 NE | Fever | [19] |
11 | CAIX-CAR T | SFG-derived | Autologous | 5 weeks | Retroviral | IL-2/anti-CAIX mab cg250 | <29 days | RCC | No c | 3 × 108–2.1×109 IU/m2 | NI | Liver toxicities | [20] |
2 | CART-meso | 4-1BB | Autologous | 8–12 days | Electroporation | CD3/28 beads | 1 weeks or 13 days | MPM, PDA | Chemotherapy | 4.4 × 109 cells, 3 × 108 cells/m2 | 2 SD | Cardiac arrest, respiratory failure, disseminated intravenous coagulation, CRS, jejunal obstruction, abdominal pain, lymphocytosis | [21] |
1 | anti-MUC1 CAR T | CD28+4-1BB+CD3z | Autologous | 12 days | Lentiviral | IL-2+IL-21 | NI | SVL | No c | 5 × 105 cells | 1 PR | Mild headache, muscle pain, nasal congestion, mild abdominal bloating discomfort | [22] |
10 | CEA CAR T | CD28-CD28+CD3 | Autologous | 2 weeks | Lentiviral | IL-2 | 6 weeks | mCRC | CY+FLU | 2.5 × 107–1.5 × 1010 cells | 2 PD, 7 SD, 1 NE | Fever | [23] |
6 | CEA CAR T | CD28+CD3 | Autologous | 10–14 days | Retroviral | CD3+OKT3+IL-2 | 1 months | Liver metastases | NI | 1.11 × 1010 cells, 3 × 1010 cells | 5 PD, 1 SD | Fever, mylagias, abdomnal pain, nausea, emesis, tachycardia, abdominal wall muscle spasm, ALT↑, AST↑, alk phos↑, ascites, edema, thrombo-cytopenia, leukopenia, dyspnea, pleural effusion, anorexia, rash, subscapular liver hematoma, eosinophilia, chills, bilirubin up, diarrhea, dehydration, colitis | [24] |
5 | PSMA designer CAR T | NI | Autologous | 20 days | Retrovirus | CD3+IL-2 | NI | PCa | Non-myeloablative chemo-therapy+IL-2 | 1 × 109 cells, 1 × 1010 cells | 2 PR, 1 Minor response, 2 NR | Fever, amemia, hypocalcemia, hypophosphatemia, appendicitis | [25] |
1 | CART-meso | 4-1BB+ TCR-zeta | Autologous | 10 days | Lentiviral | NI | 26 days | Ovarian cancer | No c | 3 × 107 cells/m2 | 1 CR | Fever, high volume pleural fluid | [26] |
1 | IL13Rα2-specific CD8 + CAR T | CD4+4-1BB+CD3 | Autologous | 18 days | Lentiviral | CD3/CD28 beads | At least 7 days | GBM | No c | 5.2 × 107 cells | 1 CR, 1 Relapse | Headaches, generalized fatigue, myalgia, olfactory auras | [27] |
6 | mRNA c-Met-CAR T | 4-1BB+TCR | Autologous | 21 days | Electroporation | CD3/28 beads | 7 days | Breast cancer | No c | 3 × 107 cells, 3 × 108 cells | 2 PD, 1 SD, 3 Died | No side effect | [28] |
16 | CART72 | Igg1+CH3+CD4+CD3 | Autologous | 10–17 days | Retroviral | OKT3+CD28+IL-2 beads | Most ≤14 weeks and one 48 weeks | CRC | No c | 3 × 109–4 × 109 cells | 3 PD | Chills, fever, dizziness, paresthesia, headache, tachycardia, myalgia, hypoxia, low grade CRS, IFN toxicity | [29] |
12 | CAR-BCMA T | CD28+CD3 | Autologous | 9 days | Retroviral | NI | <14 weeks | MM | CY+FLU | 3 × 105–9 × 106 cells/kg | 1 Stringent CR, 1 PR, 8 SD, 2 VGPR | Hypophosphatemia, anemia, nausea, headache, hypocalcemia, upper respiratory infection, fever, atrial fibrillation, thromboembolic event, rash, dyspnea, delirium, epistaxis | [30] |
4 | CART-meso | 4-1BB+TCR | Autologous | 10 days | Electroporation | CD3/28 beads | NI | PAC, MPM | No c | 1.1 × 109 cells | 1 CR, 1 PD, 2 SD, 1 Died | NI | [31] |
14 | CEA CAR T | CD3+pmp71 | Autologous | 9 days | Retroviral vector | OKT3+IL-2 | <14 days | Adeno-carcinoma, PMP | FLU+CY | 1 × 109–5 × 1010 cells | 7 SD, 7 PD | Pelvic pain, neutropaenia, general deterioration, hypocalcaemia, leukopenia, hypophosphataemia, lymphopenia, left side pain, abdominal pain, anaemia, thrombocytopenia, vomiting, hypotension, hyperbilirubinaemia, hyoialbuminaemia, epistaxis, hyponatraemia, intermittent pyrexia, haematemesis, jaundice, neutropenic sepsis, intermittent anaemia, intermittent increased respiratory rate | [32] |
12 | CAIX-CAR T | G250-CD4 | Autologous | 15 days | Retroviral | CD3+OKT, CD3+CD28, HPA | <37 days | RCC | No c | 6 × 108–4 × 109 cells | NI | Liver enzyme disturbances | [33] |
3 | 1928zT2 CAR T | CD28+CD3+TIR | Autologous | 14 days | Lentiviral | CD3/CD28 beads | <92 days | B-ALL | FLU+CY | 5 × 104–1 × 106 cells/kg | 3 CR, 2 Relapse | Fever, left breast pain, transient neutropenia, bone pain, IL-6↑, PCT↓, IL-6↑and↓ | [34] |
7 | CD19 CAR T | NI | Autologous | NI | NI | NI | 22 or 30 days | B-ALL | Chemotherapy | 2 × 106 cells/kg, 1 × 107 cells/kg | 7 CR, 2 Relapse | NI | [35] |
2 | CD19 CAR T | 4-1BB+CD3 | Autologous | 7 days | Lentivirus | CD3/CD28 beads | 4 weeks | B-ALL | FLU+CY | 1.19 × 106 cells/kg, 1.0 × 106 cells/kg | 2 CR | Fever, hypotension, cytokine levels↑, CRP, ferritin | [36] |
18 | CAR T30 | 4-1BB+CD3 | Autologous | 12 days | Lentiviral | NI | 3 months | HL | FLU+CY | 1.56 × 107 cells/kg | 7 PR, 6 SD | Febrile syndrome, vomiting, urticarial-like rash, breathlessness, psychiatric abnormalities, joint swelling, dizziness, pneumonitis, ALT↑, AST↑, γ-GGT↑, triglyceride, abnormalities of aminotransferase, left ventricular systolic function | [37] |
59 | CD19 CAR T | NI | Autologous | 3 weeks | Lentiviral and retroviral | NI | NI | B-ALL | Chemotherapy | NI | 55 CR, 20 Relapse | NI | [38] |
30 | CD19 CAR T | Igg4+CD28+4-1BB+CD3 | Autologous | 15–20 days | Lentiviral | CD3/CD28 beads | 90 days | B-ALL | CE, CY, CY+FLU5, CY+FLU3 | 2 × 105 cells/kg, 2 × 106 cells/kg, 2 × 107 cells/kg | 5 Died in CR, 13 Alive in CR, 2 MRD, 1 NE, 11 Relapse | CRS, severe neurotoxicity, generalized eizures, transient disseminated intravascular coagulation | [39] |
22 | CD19 CAR T | CD8+4-1BB+CD3 | Autologous | 11 days | Lentiviral | IL-2 | NI | B-ALL | FLU+CY | 3.0 × 107–10 × 107 cells/kg | 20 CR, 2 SD, 1 Died, 8 Relapse | Blood bilirubin increased, hypotension, APTT prolonged, fibrinogen decreased, diarrhea, vomit, CRS, aspartate aminotransferase increased, alanine aminotransferase increased, hypoalbuminemia, neurologic event, infusion reaction | [40] |
6 | CD19 CAR T | NI | Autologous | NI | NI | NI | <21 days | B-ALL | CY+BU+FLU | 1.2 × 106–8.5 × 106 cells/kg | 3 CR, 1 Died, 2 NR, 2 Relapse | CRS | [41] |
21 | CD22-CAR T | CD8+CD3+4-1BB | Autologous | 14 days | Lentiviral | NI | 2 months | B-ALL | FLU+CY | 3 × 105 cells/kg 1 × 106 cells/kg 3 × 106 cells/kg | 12 CR, 9 MRD, 8 Relapse | CRS, self-limited, noninfectious diarrhea, hypoxia, transient visual hallucinations, mild unresponsiveness, mild disorientation, mild–moderate pain | [42] |
15 | CD19 CAR T | CD28+CD3 | Autologous | 10 days | Gamma-retroviral | CD3+OKT3+IL2 | <75 days | SMZL, PMBCL, CLL, DLBCL, NHL | FLU+CY | 1 × 106–5 × 106 cells/kg | 8 CR, 4 PR, 1 SD, 2 Died | Hypotension, serum interferon gamma and/or IL-6↑, neurologic abnormalities, intermittent aphasia, confusion, severe generalized myoclonus, | [43] |
30 | CD19 CAR T | CD3+CD28+4-1BB | Autologous | 8–12 days | Lentiviral | CD3/CD28 beads | 2 years | B-ALL | CY+VP, FLU+CY, Clofarabine, CVDA-B, CVDA-A | 7.6 × 105–2.06 × 107 cells/kg | 27 CR, 3 NR, 2 Relapse | CRS, neurologic toxic effects, delayed encephalopathy, seizures | [44] |
14 | CD19 CAR T | CD3+4-1BB | Autologous | 10–12 days | Lentiviral | CD3/CD28 beads | 4 years | CLL | Bendamustine, FLU+CY, Pentostatin+CY | 1.4 × 107–11 × 108 cells | 4 CR, 4 PR, 6 NR | Tumor lysis syndrome, CRS | [45] |
9 | CART-30 | Igg1.CH2-CH3+CD28 | Autologous | 1–3 months | Retroviral | OKT3/CD3+CD28+IL2 | >6 months | HL | No c | 2 × 107–2 × 108 cells/m2 | 2 CR, 1 CCR, 3 SD, 3 NR, 7 Relapse | No side effects | [46] |
6 | CD19 CAR T | CD28/CD27+caspase 9 | Autologous | 5–15 days | Lentiviral | NI | <2 months | B-ALL | CY+FLU | 3.8 × 107–4.1 × 108 cells/kg | 5 MRD-negative CR, 1 NR, 4 Relapse | Agvhd, fever, dysfunctional blood coagulation, rash, diarrhoea, hypotension, hypoxia | [47] |
10 | CD19 CAR T | CD28+CD3 | Autologous | 8 days | Gamma-retroviruses | OKT3+IL-2 | About 1 month | CLL, DLBCL, MCL | No c | 1 × 106–5.9 × 107 cells/kg | 2 PD, 6 SD, 2 PR | Tumor lysis syndrome, fatigue, cardiac, ventricular dysfunction, fever, tachycardia, troponin increase, anemia, neutropenia, pneumonitis, hypoxia, dyspnea, hypophosphatemia, hypotension, headache | [48] |
7 | anti-CD20 CART | CD20+4-1BB+CD3 | Autologous | 13 days | Lentiviral | NI | 10 weeks | DLBCL | CY, VCR, VP, DEX, ADM, MPN, CBP, ARA-C | 4.1 × 106 –1.46 × 107 cells/kg | 1 CR, 3 PR, 2 PD, 1 NE | CRS, alimentary tract hemorrhage, sudden tumor lysis syndrome, capillary leak syndrome, acute alimentary tract hemorrhage, lung dysfunction, glossopharyngeal mucusdamage, serous cavity effusion | [49] |
16 | 19-28z CAR T | CD28+CD3 | Autologous | 14 days | Lentiviral | CD3/CD28 beads | 2–3 months | B-ALL | CY | 3 × 106 cells/kg | 10 CR, 4 CRi, 2 NR | NI | [50] |
51 | CD19 CAR T | CD8+4-1BB+CD3 | Autologous | 7–8 days | Lentiviral | CD3/CD28 beads | <60 days | B-ALL | CY+FLU | 5 × 103–1.4 × 107 cells/kg, 1 × 105 cells/kg | 36 CR, 9 MRD, 3 NR, 3 Died, 2 Relapse | Seizure, short time coma, severe coagulation disorders, intracranial hemorrhage, heart failure | [51] |
3 | CD19 CAR T | CD8+4-1BB+CD3 | Autologous | NI | Lentiviral | CD3/CD28 beads | NI | CLL | NI | 1 × 108–1 × 109 cells | 1 CR, 2 PR, 1 Relapse | NI | [52] |
32 | CD19 CAR T | Igg4+CD28+4-1BB+CD3 | Autologous | 15 days | Lentiviral | CD3/CD28 beads | NI | NHL | CY+FLU, CY, CY+VP | 8.8 × 106 cells/kg 7.0 × 106 cells/kg | 1 Relapse | Concentrations of serum cytokines↑, fever, and/or hypotension consistent with CRS, severe neurotoxicity, encephalopathy alone, tremor, speech disturbance | [53] |
8 | CD19 CAR T | CD28 | Autologous | 5–6 weeks | Retroviral | Ad5f35pp65+IL-2 | <12 weeks | CLL, B-ALL | No c | 1.9 × 107-1.13 × 108 cells | 1 CR, 2 CCR, 1 PR, 3 PD, 1 SD, | NI | [54] |
43 | CD19 CAR T | 4-1BB | Autologous | 20–22 days | Lentiviral | CD3/CD28 beads | 2–28 months | B-ALL | FLU+CY, CY | 5 × 105–1 × 107 cells/kg | 40 MRD-CR, 3 NC, 18 Relapse | CRS, sCRS, neurotoxicity, neurotoxicity | [55] |
133 | CD19 CAR T | Igg4+CD28+4-1BB+CD3 | Autologous | 15 days | Lentiviral | CD3/CD28 beads | NI | B-ALL, CLL, NHL | FLU+CY | 2 × 105-2 × 106 cells/kg | NI | CRS, fever | [56] |
53 | CD19 CAR T | CD28+CD3 | Autologous | NI | Retrovirus | CD3/CD28 beads | 7–138 days | B-ALL | Chemotherapy | 1 × 106 cells/kg | 44 CR, 8 NR, 1 Died, 25 Relapse | CRS, sCRS, neurotoxic effects | [57] |
2 | CD19 CAR T | 4g7+4-1BB+CD3 | Autologous | 18 days | Lentiviral | CD3/CD28 beads | 9 weeks | B-ALL | FLU+CY, FLU+CY+, alemtuzumab | 4.6 × 106 cells/kg, 4.0 × 106 cells/kg | 1 CR, 1 Remains clinically well | Transient erythematous rash | [58] |
4 | LeY CAR T | CD8+CD28+CD3 | Autologous | 12 days | Retroviral | OKT-3+IL-2 | 10 months | AML | FLU+CY | 5 × 108–1.3 × 109 cells | 1 Cytogenetic remission, 3 Protracted remission, 1 Relapse | Transient neutropenia | [59] |
7 | CD19 CAR T | CD3+CD28 | Autologous | 8–9 days | Retroviral | CD3+IL-2 | 12 months | DLBCL | FLU+CY | 2 × 106 cells/kg | 4 CR, 2 NR, 4 Relapse | CRS, neurotoxicity, febrile neutropenia, encephalopathy, neutropenia, anemia, hypoxia, somnolence, oral herpes, thrombocytopenia, acute kidney injury, agitation, ascites, increased aspartate aminotransferase. cardiac failure, delirium, fatigue, hemorrhage intracranial, hypocalcemia, hyponatremia, metabolic acidosis, hypo-phosphatemia, hypo-tension, pseudomonal sepsis, pyrexia, restlessness, tremor, urinary tract infection | [60] |
21 | CD19 CAR T | MSVG-FMC63-28z | Autologous | NI | Retroviral | CD3/CD28 beads | Most <28 days | B-ALL | FLU+CY | 1 × 106 cells/kg | 13 CR, 1 CRi, 4 PD, 3 SD | Acute kidney injury, cardiac arrest, CRS, qtc prolongation, febrile neutropenia, fever, hypertension, hypotension, hypoxia, dysfunction, multi-organ failure, pulmonary oedema, respiratory failure, prolonged activated partial thromboplastin time, anaemia, ALT↑, AST↓, blood bilirubin↑, cpk↑, hyperglycaemia, hypo-kalaemia, hyponatraemia, hypophosphataemia, ataxia, dysphasia, headache, tremor | [61] |
3 | CD19 CAR T | 4-1BB+CD3 | Autologous | 4 weeks | Lentiviral | CD3/CD28 beads | >6 months | CLL | Bendamustine, bendamustine+rituximab, pentostatin+CY | 1.46 × 105–1.1 × 109 cells/kg | 2 CR, 1 PR | Transient febrile reaction, rigors, dyspnea, transient cardiac dysfunction, transient hypotension | [62] |
75 | CD19 CAR T | 4-1BB+CD3 | Autologous | NI | Lentiviral | NI | 20–617 days | CLL | Chemotherapy | 2 × 105–5.4 × 106 cells/kg | 45 CR, 16 CRi, 20 Relapse | CRS, hypotension, lymphocyte count↓, hypoxia, increase in blood bilirubin, increase in aspartate aminotransferase, pyrexia, acute kidney injury, hypophosphatemia, hypokalemia, pulmonary edema, thrombocytopenia, encephalopathy, alanine aminotransferase↑, fluid overload | [63] |
9 | CD19 CAR T | 4-1BB+CD3 | Autologous and donor-derived | 10–12 days | Lentiviral | OKT3+IL-2 | 3 months | B-ALL | NI | 3 × 106–1 × 107 cells/kg | 6 CR, 3 PR | Chills, fever, CRS, neurological symptoms, gvhd, acute capillary leaking, syndrome, lung and pancreas injuries, tumor lysis syndrome, oral and genital mucosa ulcers | [64] |
111 | CD19 CAR T | CD8+CD28+4-1BB | Autologous | 20–24 | Retroviral | CD3+OKT3+IL-2 | >30 days, <90 days | DLBCL, PMBCL or TFL | FLU+CY | 2 × 106 cells/kg | 54 CR, 28 PR, 11 SD, 5 PD, 2 NE | Pyrexia, neutropenia, anemia, hypotension, thrombocytopenia, nausea, fatigue, decreased appetite, headache, diarrhea, hypoalbuminemia, hypocalcemia, chills, tachycardia, febrile neutropenia, encephalopathy, thrombocytopenia, vomiting, hypokalemia, hyponatremia, constipation, white-cell count↓, CRS, neurologic event | [65] |
Variable | p | ||||
---|---|---|---|---|---|
Overall Response | Complete Response | CRS | NS | Relapse | |
Generation of CAR | 0.2949 | 0.4523 | 0.5202 | - | 0.9884 |
Vector | 0.9289 | 0.8990 | 0.0748 | 0.2253 | 0.2467 |
Cell culture time | 0.8076 | 0.7688 | 0.1466 | 0.2253 | 0.8455 |
Transfection method | 0.5534 | 0.1119 | 0.4349 | 0.2253 | 0.6129 |
IL-2 addition | 0.0176 | 0.1119 | 0.7218 | 0.2253 | 0.6129 |
Persistence | 0.4836 | 0.5633 | 0.2279 | - | 0.8455 |
Lymphodepletion | 0.9053 | 0.9938 | 0.3513 | - | 0.6129 |
Total administration dose | 0.2022 | 0.0067 | 0.1466 | 0.1573 | 0.6129 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.-L.; Hua, Z.-C. Chimeric Antigen Receptor T-cell (CAR T) Therapy for Hematologic and Solid Malignancies: Efficacy and Safety—A Systematic Review with Meta-Analysis. Cancers 2019, 11, 47. https://doi.org/10.3390/cancers11010047
Yu W-L, Hua Z-C. Chimeric Antigen Receptor T-cell (CAR T) Therapy for Hematologic and Solid Malignancies: Efficacy and Safety—A Systematic Review with Meta-Analysis. Cancers. 2019; 11(1):47. https://doi.org/10.3390/cancers11010047
Chicago/Turabian StyleYu, Wen-Liang, and Zi-Chun Hua. 2019. "Chimeric Antigen Receptor T-cell (CAR T) Therapy for Hematologic and Solid Malignancies: Efficacy and Safety—A Systematic Review with Meta-Analysis" Cancers 11, no. 1: 47. https://doi.org/10.3390/cancers11010047
APA StyleYu, W. -L., & Hua, Z. -C. (2019). Chimeric Antigen Receptor T-cell (CAR T) Therapy for Hematologic and Solid Malignancies: Efficacy and Safety—A Systematic Review with Meta-Analysis. Cancers, 11(1), 47. https://doi.org/10.3390/cancers11010047