Circulating Biomarkers for Prediction of Objective Response to Chemotherapy in Pancreatic Cancer Patients
Abstract
:1. Introduction
2. Results
2.1. Conventional Tumor Markers
2.1.1. Baseline CA19-9
2.1.2. Posttreatment CA19-9
2.1.3. CA19-9 Changes
2.1.4. CEA
2.1.5. SPAN-1
2.2. Genetic Markers
2.2.1. Single Nucleotide Polymorphisms
2.2.2. Circulating Tumor DNA
2.2.3. Long Non-Coding RNAs
2.3. Immunologic Markers
2.3.1. Systemic Inflammation Ratios
2.3.2. Immune Cells and Cytokines
3. Discussion
4. Materials and Methods
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the united states. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.C.; Cheung, W.Y. Evolving treatment landscape for early and advanced pancreatic cancer. World J. Gastrointest. Oncol. 2017, 9, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Christians, K.K.; Tsai, S.; Mahmoud, A.; Ritch, P.; Thomas, J.P.; Wiebe, L.; Kelly, T.; Erickson, B.; Wang, H.; Evans, D.B.; et al. Neoadjuvant folfirinox for borderline resectable pancreas cancer: A new treatment paradigm? Oncologist 2014, 19, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, L.; Vernerey, D.; Bachet, J.B.; Tuech, J.J.; Portales, F.; Michel, P.; Cunha, A.S. Resectable pancreatic adenocarcinoma neo-adjuvant folf(irin)ox-based chemotherapy—A multicenter, non-comparative, randomized, phase ii trial (panache01-prodige48 study). BMC Cancer 2018, 18, 762. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.E.; Wo, J.Y.; Ryan, D.P.; Jiang, W.; Yeap, B.Y.; Drapek, L.C.; Blaszkowsky, L.S.; Kwak, E.L.; Allen, J.N.; Clark, J.W.; et al. Total neoadjuvant therapy with folfirinox followed by individualized chemoradiotherapy for borderline resectable pancreatic adenocarcinoma: A phase 2 clinical trial. JAMA Oncol. 2018, 4, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Jang, J.Y.; Han, Y.; Lee, K.B.; Joo, I.; Lee, D.H.; Kim, J.R.; Kim, H.; Kwon, W.; Kim, S.W. Survival outcome and prognostic factors of neoadjuvant treatment followed by resection for borderline resectable pancreatic cancer. Ann. Surg. Treat. Res. 2017, 93, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Labori, K.J.; Lassen, K.; Hoem, D.; Gronbech, J.E.; Soreide, J.A.; Mortensen, K.; Smaaland, R.; Sorbye, H.; Verbeke, C.; Dueland, S. Neoadjuvant chemotherapy versus surgery first for resectable pancreatic cancer (norwegian pancreatic cancer trial—1 (norpact-1))—Study protocol for a national multicentre randomized controlled trial. BMC Surg. 2017, 17, 94. [Google Scholar] [CrossRef] [PubMed]
- Golcher, H.; Brunner, T.B.; Witzigmann, H.; Marti, L.; Bechstein, W.O.; Bruns, C.; Jungnickel, H.; Schreiber, S.; Grabenbauer, G.G.; Meyer, T.; et al. Neoadjuvant chemoradiation therapy with gemcitabine/cisplatin and surgery versus immediate surgery in resectable pancreatic cancer: Results of the first prospective randomized phase ii trial. Strahlenther. Onkol. 2015, 191, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.Y.; Han, Y.; Lee, H.; Kim, S.W.; Kwon, W.; Lee, K.H.; Oh, D.Y.; Chie, E.K.; Lee, J.M.; Heo, J.S.; et al. Oncological benefits of neoadjuvant chemoradiation with gemcitabine versus upfront surgery in patients with borderline resectable pancreatic cancer: A prospective, randomized, open-label, multicenter phase 2/3 trial. Ann. Surg. 2018, 268, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.I.; Shimokawa, T.; Hirono, S.; Kawai, M.; Sho, M.; Satoi, S.; Matsumoto, I.; Eguchi, H.; Murakami, Y.; Yamada, S.; et al. Effect of neoadjuvant nab-paclitaxel plus gemcitabine therapy on overall survival in patients with borderline resectable pancreatic cancer: A prospective multicenter phase ii trial (nac-ga trial). Oncology 2017, 93, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.L.; Gourgou-Bourgade, S.; De La Fouchardière, C.; et al. Folfirinox versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Suker, M.; Beumer, B.R.; Sadot, E.; Marthey, L.; Faris, J.E.; Mellon, E.A.; El-Rayes, B.F.; Wang-Gillam, A.; Lacy, J.; Hosein, P.J.; et al. Folfirinox for locally advanced pancreatic cancer: A systematic review and patient-level meta-analysis. Lancet Oncol. 2016, 17, 801–810. [Google Scholar] [CrossRef]
- Chan, K.; Shah, K.; Lien, K.; Coyle, D.; Lam, H.; Ko, Y.J. A bayesian meta-analysis of multiple treatment comparisons of systemic regimens for advanced pancreatic cancer. PLoS ONE 2014, 9, e108749. [Google Scholar] [CrossRef] [PubMed]
- Bilimoria, K.Y.; Bentrem, D.J.; Ko, C.Y.; Ritchey, J.; Stewart, A.K.; Winchester, D.P.; Talamonti, M.S. Validation of the 6th edition ajcc pancreatic cancer staging system: Report from the national cancer database. Cancer 2007, 110, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Chauffert, B.; Mornex, F.; Bonnetain, F.; Rougier, P.; Mariette, C.; Bouche, O.; Bosset, J.F.; Aparicio, T.; Mineur, L.; Azzedine, A.; et al. Phase iii trial comparing intensive induction chemoradiotherapy (60 gy, infusional 5-fu and intermittent cisplatin) followed by maintenance gemcitabine with gemcitabine alone for locally advanced unresectable pancreatic cancer. Definitive results of the 2000–01 ffcd/sfro study. Ann. Oncol. 2008, 19, 1592–1599. [Google Scholar] [CrossRef] [PubMed]
- Conroy, T.; Hammel, P.; Hebbar, M.; Ben Abdelghani, M.; Wei, A.C.; Raoul, J.L.; Chone, L.; Francois, E.; Artru, P.; Biagi, J.J.; et al. Unicancer gi prodige 24/cctg pa.6 trial: A multicenter international randomized phase iii trial of adjuvant mfolfirinox versus gemcitabine in patients with resected pancreatic ductal adenocarcinomas. J. Clin. Oncol. 2018. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Palmer, D.H.; Ghaneh, P.; Psarelli, E.E.; Valle, J.W.; Halloran, C.M.; Faluyi, O.; O’Reilly, D.A.; Cunningham, D.; Wadsley, J.; et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (espac-4): A multicentre, open-label, randomised, phase 3 trial. Lancet 2017, 389, 1011–1024. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised recist guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Thibodeau, S.; Voutsadakis, I.A. Folfirinox chemotherapy in metastatic pancreatic cancer: A systematic review and meta-analysis of retrospective and phase ii studies. J. Clin. Med. 2018, 7. [Google Scholar] [CrossRef]
- Muranaka, T.; Kuwatani, M.; Komatsu, Y.; Sawada, K.; Nakatsumi, H.; Kawamoto, Y.; Yuki, S.; Kubota, Y.; Kubo, K.; Kawahata, S.; et al. Comparison of efficacy and toxicity of folfirinox and gemcitabine with nab-paclitaxel in unresectable pancreatic cancer. J. Gastrointest. Oncol. 2017, 8, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.K.; Haag, G.M.; Ehmann, M.; Byl, A.; Jager, D.; Springfeld, C. Palliative chemotherapy for pancreatic adenocarcinoma: A retrospective cohort analysis of efficacy and toxicity of the folfirinox regimen focusing on the older patient. BMC Gastroenterol. 2017, 17, 143. [Google Scholar] [CrossRef] [PubMed]
- Oettle, H.; Post, S.; Neuhaus, P.; Gellert, K.; Langrehr, J.; Ridwelski, K.; Schramm, H.; Fahlke, J.; Zuelke, C.; Burkart, C.; et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: A randomized controlled trial. JAMA 2007, 297, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Neoptolemos, J.P.; Moore, M.J.; Cox, T.F.; Valle, J.W.; Palmer, D.H.; McDonald, A.C.; Carter, R.; Tebbutt, N.C.; Dervenis, C.; Smith, D.; et al. Effect of adjuvant chemotherapy with fluorouracil plus folinic acid or gemcitabine vs observation on survival in patients with resected periampullary adenocarcinoma: The espac-3 periampullary cancer randomized trial. JAMA 2012, 308, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Muenzel, D.; Engels, H.P.; Bruegel, M.; Kehl, V.; Rummeny, E.J.; Metz, S. Intra- and inter-observer variability in measurement of target lesions: Implication on response evaluation according to recist 1.1. Radiol. Oncol. 2012, 46, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Ghobrial, F.E.I.; Eldin, M.S.; Razek, A.; Atwan, N.I.; Shamaa, S.S.A. Computed tomography assessment of hepatic metastases of breast cancer with revised response evaluation criteria in solid tumors (recist) criteria (version 1.1): Inter-observer agreement. Pol. J. Radiol. 2017, 82, 593–597. [Google Scholar] [CrossRef]
- Jeon, M.Y.; Lee, H.W.; Kim, B.K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Han, K.H.; Baek, S.E.; Kim, H.S.; Kim, S.U.; et al. Reproducibility of european association for the study of the liver criteria and modified response evaluation criteria in solid tumors in patients treated with sorafenib. Liver Int. 2018, 38, 1655–1663. [Google Scholar] [CrossRef]
- Aoki, K.; Okada, S.; Moriyama, N.; Ishii, H.; Nose, H.; Yoshimori, M.; Kosuge, T.; Ozaki, H.; Wakao, F.; Takayasu, K.; et al. Accuracy of computed tomography in determining pancreatic cancer tumor size. Jpn. J. Clin. Oncol. 1994, 24, 85–87. [Google Scholar]
- Ishii, H.; Furuse, J.; Nakachi, K.; Suzuki, E.; Yoshino, M. Primary tumor of pancreatic cancer as a measurable target lesion in chemotherapy trials. Jpn. J. Clin. Oncol. 2005, 35, 601–606. [Google Scholar] [CrossRef]
- Ballman, K.V. Biomarker: Predictive or prognostic? J. Clin. Oncol. 2015, 33, 3968–3971. [Google Scholar] [CrossRef]
- Vietsch, E.E.; Graham, G.T.; McCutcheon, J.N.; Javaid, A.; Giaccone, G.; Marshall, J.L.; Wellstein, A. Circulating cell-free DNA mutation patterns in early and late stage colon and pancreatic cancer. Cancer Genet. 2017, 218–219, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Rapisuwon, S.; Vietsch, E.E.; Wellstein, A. Circulating biomarkers to monitor cancer progression and treatment. Comput. Struct. Biotechnol. J. 2016, 14, 211–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safi, F.; Roscher, R.; Beger, H.G. Tumor markers in pancreatic cancer. Sensitivity and specificity of ca 19-9. Hepatogastroenterology 1989, 36, 419–423. [Google Scholar] [PubMed]
- Koprowski, H.; Steplewski, Z.; Mitchell, K.; Herlyn, M.; Herlyn, D.; Fuhrer, P. Colorectal carcinoma antigens detected by hybridoma antibodies. Somatic Cell Genet. 1979, 5, 957–971. [Google Scholar] [CrossRef] [PubMed]
- Haglund, C.; Roberts, P.J.; Kuusela, P.; Scheinin, T.M.; Makela, O.; Jalanko, H. Evaluation of ca 19-9 as a serum tumour marker in pancreatic cancer. Br. J. Cancer 1986, 53, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Boeck, S.; Wittwer, C.; Heinemann, V.; Haas, M.; Kern, C.; Stieber, P.; Nagel, D.; Holdenrieder, S. Cytokeratin 19-fragments (cyfra 21-1) as a novel serum biomarker for response and survival in patients with advanced pancreatic cancer. Br. J. Cancer 2013, 108, 1684–1694. [Google Scholar] [CrossRef] [PubMed]
- Koom, W.S.; Seong, J.; Kim, Y.B.; Pyun, H.O.; Song, S.Y. Ca 19-9 as a predictor for response and survival in advanced pancreatic cancer patients treated with chemoradiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 1148–1154. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Li, Y.H.; Lin, X.B.; Wang, F.H.; Feng, F.; Xu, R.H.; Jiang, W.Q.; He, Y.J. Prognostic value of serum ca19-9 in patients with advanced pancreatic cancer receiving gemcitabine based chemotherapy. Chin. J. Cancer 2009, 28, 240–244. [Google Scholar]
- Yoo, T.; Lee, W.J.; Woo, S.M.; Kim, T.H.; Han, S.S.; Park, S.J.; Moon, S.H.; Shin, K.H.; Kim, S.S.; Hong, E.K.; et al. Pretreatment carbohydrate antigen 19-9 level indicates tumor response, early distant metastasis, overall survival, and therapeutic selection in localized and unresectable pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, e623–e630. [Google Scholar] [CrossRef]
- Gogas, H.; Lofts, F.J.; Evans, T.R.J.; Daryanani, S.; Mansi, J.L. Are serial measurements of ca 19-9 useful in predicting response to chemotherapy in patients with inoperable adenocarcinoma of the pancreas? Br. J. Cancer 1998, 77, 325–328. [Google Scholar] [CrossRef]
- Halm, U.; Schumann, T.; Schiefke, I.; Witzigmann, H.; Mossner, J.; Keim, V. Decrease of ca 19-9 during chemotherapy with gemcitabine predicts survival time in patients with advanced pancreatic cancer. Br. J. Cancer 2000, 82, 1013–1016. [Google Scholar] [CrossRef] [PubMed]
- Ali, C.W.; Kaye, T.F.; Adamson, D.J.; Tait, I.S.; Polignano, F.M.; Highley, M.S. Ca 19-9 and survival in advanced and unresectable pancreatic adenocarcinoma and cholangiocarcinoma. J. Gastrointest. Cancer 2007, 38, 108–114. [Google Scholar] [CrossRef]
- Stemmler, J.; Stieber, P.; Szymala, A.M.; Schalhorn, A.; Schermuly, M.M.; Wilkowski, R.; Helmberger, T.; Lamerz, R.; Stoffregen, C.; Niebler, K.; et al. Are serial ca 19-9 kinetics helpful in predicting survival in patients with advanced or metastatic pancreatic cancer treated with gemcitabine and cisplatin? Onkologie 2003, 26, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.; Ko, A.H.; Hwang, J.; Venook, A.P.; Bergsland, E.K.; Tempero, M.A. Serum ca19-9 decline compared to radiographic response as a surrogate for clinical outcomes in patients with metastatic pancreatic cancer receiving chemotherapy. Pancreas 2008, 37, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Chiorean, E.G.; Von Hoff, D.D.; Reni, M.; Arena, F.P.; Infante, J.R.; Bathini, V.G.; Wood, T.E.; Mainwaring, P.N.; Muldoon, R.T.; Clingan, P.R.; et al. Ca19-9 decrease at 8 weeks as a predictor of overall survival in a randomized phase iii trial (mpact) of weekly nab-paclitaxel plus gemcitabine versus gemcitabine alone in patients with metastatic pancreatic cancer. Ann. Oncol. 2016, 27, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, K.; Kawamoto, H.; Hirao, K.; Sakakihara, I.; Yamamoto, N.; Noma, Y.; Fujii, M.; Kato, H.; Ogawa, T.; Ishida, E.; et al. Monitoring of ca19-9 and span-1 can facilitate the earlier confirmation of progressing pancreatic cancer during chemotherapy. Pancreatology 2012, 12, 409–416. [Google Scholar] [CrossRef]
- Azzariti, A.; Brunetti, O.; Porcelli, L.; Graziano, G.; Iacobazzi, R.M.; Signorile, M.; Scarpa, A.; Lorusso, V.; Silvestris, N. Potential predictive role of chemotherapy-induced changes of soluble cd40 ligand in untreated advanced pancreatic ductal adenocarcinoma. OncoTargets Ther. 2016, 9, 4681–4686. [Google Scholar] [CrossRef]
- Robert, M.; Jarlier, M.; Conroy, T.; Gourgou, S.; Desseigne, F.; Ychou, M.; Bouche, O.; Juzyna, B.; Bennouna, J. Retrospective analysis of ca19-9 decrease in patients with metastatic pancreatic carcinoma (mpc) treated with folfirinox or gemcitabine (gem) in a randomized phase iii study (accord11/prodige4). J. Clin. Oncol. 2014, 32. [Google Scholar] [CrossRef]
- Grunnet, M.; Sorensen, J.B. Carcinoembryonic antigen (cea) as tumor marker in lung cancer. Lung Cancer 2012, 76, 138–143. [Google Scholar] [CrossRef]
- Duffy, M.J. Carcinoembryonic antigen as a marker for colorectal cancer: Is it clinically useful? Clin. Chem. 2001, 47, 624–630. [Google Scholar]
- Kiriyama, S.; Hayakawa, T.; Kondo, T.; Shibata, T.; Kitagawa, M.; Ono, H.; Sakai, Y. Usefulness of a new tumor marker, span-1, for the diagnosis of pancreatic cancer. Cancer 1990, 65, 1557–1561. [Google Scholar] [CrossRef] [Green Version]
- Frena, A. Span-1 and exocrine pancreatic carcinoma. The clinical role of a new tumor marker. Int. J. Biol. Mark. 2001, 16, 189–197. [Google Scholar] [CrossRef]
- Sachidanandam, R.; Weissman, D.; Schmidt, S.C.; Kakol, J.M.; Stein, L.D.; Marth, G.; Sherry, S.; Mullikin, J.C.; Mortimore, B.J.; Willey, D.L.; et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001, 409, 928–933. [Google Scholar] [CrossRef]
- Dong, X.; Jiao, L.; Li, Y.; Evans, D.B.; Wang, H.; Hess, K.R.; Abbruzzese, J.L.; Li, D. Significant associations of mismatch repair gene polymorphisms with clinical outcome of pancreatic cancer. J. Clin. Oncol. 2009, 27, 1592–1599. [Google Scholar] [CrossRef] [PubMed]
- Kunkel, T.A.; Erie, D.A. DNA mismatch repair. Annu. Rev. Biochem. 2005, 74, 681–710. [Google Scholar] [CrossRef]
- Tanaka, M.; Javle, M.; Dong, X.; Eng, C.; Abbruzzese, J.L.; Li, D. Gemcitabine metabolic and transporter gene polymorphisms are associated with drug toxicity and efficacy in patients with locally advanced pancreatic cancer. Cancer 2010, 116, 5325–5335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ignatiadis, M.; Lee, M.; Jeffrey, S.S. Circulating tumor cells and circulating tumor DNA: Challenges and opportunities on the path to clinical utility. Clin. Cancer Res. 2015, 21, 4786–4800. [Google Scholar] [CrossRef] [PubMed]
- Earl, J.; Garcia-Nieto, S.; Martinez-Avila, J.C.; Montans, J.; Sanjuanbenito, A.; Rodriguez-Garrote, M.; Lisa, E.; Mendia, E.; Lobo, E.; Malats, N.; et al. Circulating tumor cells (ctc) and kras mutant circulating free dna (cfdna) detection in peripheral blood as biomarkers in patients diagnosed with exocrine pancreatic cancer. BMC Cancer 2015, 15, 797. [Google Scholar] [CrossRef] [PubMed]
- Hadano, N.; Murakami, Y.; Uemura, K.; Hashimoto, Y.; Kondo, N.; Nakagawa, N.; Sueda, T.; Hiyama, E. Prognostic value of circulating tumour DNA in patients undergoing curative resection for pancreatic cancer. Br. J. Cancer 2016, 115, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, L.D.; Hruban, R.H. Pathology and molecular genetics of pancreatic neoplasms. Cancer J. 2012, 18, 492–501. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, C.; Jiang, J.; Luo, G.; Lu, Y.; Jin, K.; Guo, M.; Zhang, Z.; Xu, J.; Liu, L.; et al. Analysis of ctdna to predict prognosis and monitor treatment responses in metastatic pancreatic cancer patients. Int. J. Cancer 2017, 140, 2344–2350. [Google Scholar] [CrossRef] [PubMed]
- Perets, R.; Greenberg, O.; Shentzer, T.; Semenisty, V.; Epelbaum, R.; Bick, T.; Sarji, S.; Ben-Izhak, O.; Sabo, E.; Hershkovitz, D. Mutant kras circulating tumor DNA is an accurate tool for pancreatic cancer monitoring. Oncologist 2018, 23, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Del Re, M.; Vivaldi, C.; Rofi, E.; Vasile, E.; Miccoli, M.; Caparello, C.; d’Arienzo, P.D.; Fornaro, L.; Falcone, A.; Danesi, R. Early changes in plasma DNA levels of mutant kras as a sensitive marker of response to chemotherapy in pancreatic cancer. Sci. Rep. 2017, 7, 7931. [Google Scholar] [CrossRef] [PubMed]
- Tjensvoll, K.; Lapin, M.; Buhl, T.; Oltedal, S.; Steen-Ottosen Berry, K.; Gilje, B.; Soreide, J.A.; Javle, M.; Nordgard, O.; Smaaland, R. Clinical relevance of circulating kras mutated DNA in plasma from patients with advanced pancreatic cancer. Mol. Oncol. 2016, 10, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding rnas: Insights into functions. Nat. Rev. Genet. 2009, 10, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, X.; Zhou, Y.; Liu, Y.; Zhou, Q.; Ye, H.; Wang, Y.; Zeng, J.; Song, Y.; Gao, W.; et al. The long non-coding rna hottip promotes progression and gemcitabine resistance by regulating hoxa13 in pancreatic cancer. J. Transl. Med. 2015, 13, 84. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.J.; Shi, S.B.; Tian, J.; Xu, J.; Niu, Z.X. Lncrna malat1, hottip and pvt1 as predictors for predicting the efficacy of gem based chemotherapy in first-line treatment of pancreatic cancer patients. Oncotarget 2017, 8, 95108–95115. [Google Scholar] [CrossRef]
- You, L.; Chang, D.; Du, H.Z.; Zhao, Y.P. Genome-wide screen identifies pvt1 as a regulator of gemcitabine sensitivity in human pancreatic cancer cells. Biochem. Biophys. Res. Commun. 2011, 407. [Google Scholar] [CrossRef]
- Pang, E.J.; Yang, R.; Fu, X.B.; Liu, Y.F. Overexpression of long non-coding rna malat1 is correlated with clinical progression and unfavorable prognosis in pancreatic cancer. Tumour Biol. 2015, 36, 2403–2407. [Google Scholar] [CrossRef]
- Li, L.; Chen, H.; Gao, Y.; Wang, Y.W.; Zhang, G.Q.; Pan, S.H.; Ji, L.; Kong, R.; Wang, G.; Jia, Y.H.; et al. Long noncoding rna malat1 promotes aggressive pancreatic cancer proliferation and metastasis via the stimulation of autophagy. Mol. Cancer Ther. 2016, 15, 2232–2243. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Rho, Y.S.; Ranger, J.; Hamalova, S.; Barrera, I.; Mamo, A.; Batist, G.; Kavan, P. Prognostic value of neutrophil-lymphocyte ratio in first line treatment for metastatic pancreatic adenocarcinoma. Ann. Oncol. 2017, 28, v258. [Google Scholar] [CrossRef]
- Piciucchi, M.; Stigliano, S.; Archibugi, L.; Zerboni, G.; Signoretti, M.; Barucca, V.; Valente, R.; Fave, G.D.; Capurso, G. The neutrophil/lymphocyte ratio at diagnosis is significantly associated with survival in metastatic pancreatic cancer patients. Int. J. Mol. Sci. 2017, 18. [Google Scholar] [CrossRef]
- Aziz, M.H.; Sideras, K.; Aziz, N.A.; Mauff, K.; Haen, R.; Roos, D.; Saida, L.; Suker, M.; van der Harst, E.; Mieog, J.S.; et al. The systemic-immune-inflammation index independently predicts survival and recurrence in resectable pancreatic cancer and its prognostic value depends on bilirubin levels: A retrospective multicenter cohort study. Ann. Surg. 2018. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, W.J.; Zhi, Q.; Shen, M.; Jiang, M.; Bian, X.; Gong, F.R.; Zhou, C.; Lian, L.; Wu, M.Y.; et al. Neutrophil/lymphocyte ratio is a more sensitive systemic inflammatory response biomarker than platelet/lymphocyte ratio in the prognosis evaluation of unresectable pancreatic cancer. Oncotarget 2017, 8, 88835–88844. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.X. Dynamic behavior and function of foxp3+ regulatory t cells in tumor bearing host. Cell Mol. Immunol. 2009, 6, 3–13. [Google Scholar] [CrossRef]
- Sideras, K.; Braat, H.; Kwekkeboom, J.; van Eijck, C.H.; Peppelenbosch, M.P.; Sleijfer, S.; Bruno, M. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies. Cancer Treat. Rev. 2014, 40, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Vizio, B.; Novarino, A.; Giacobino, A.; Cristiano, C.; Prati, A.; Ciuffreda, L.; Montrucchio, G.; Bellone, G. Potential plasticity of t regulatory cells in pancreatic carcinoma in relation to disease progression and outcome. Exp. Ther. Med. 2012, 4, 70–78. [Google Scholar] [CrossRef]
- Usul Afsar, C.; Karabulut, M.; Karabulut, S.; Alis, H.; Gonenc, M.; Dagoglu, N.; Serilmez, M.; Tas, F. Circulating interleukin-18 (il-18) is a predictor of response to gemcitabine based chemotherapy in patients with pancreatic adenocarcinoma. J. Infect. Chemother. 2017, 23, 196–200. [Google Scholar] [CrossRef]
- Naor, D.; Sionov, R.V.; Ish-Shalom, D. Cd44: Structure, function, and association with the malignant process. Adv. Cancer Res. 1997, 71, 241–319. [Google Scholar]
- Li, C.; Heidt, D.G.; Dalerba, P.; Burant, C.F.; Zhang, L.; Adsay, V.; Wicha, M.; Clarke, M.F.; Simeone, D.M. Identification of pancreatic cancer stem cells. Cancer Res. 2007, 67, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Takada, M.; Yamamoto, M.; Saitoh, Y. The significance of cd44 in human pancreatic cancer: I. High expression of cd44 in human pancreatic adenocarcinoma. Pancreas 1994, 9, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.M.; AbdElbary, A.M.; Mohamed, S.Y.; Elwan, A.; Abdelhamid, M.I.; Ibrahim, A. Prognostic value of cyclin d1 and cd44 expression in gastric adenocarcinoma. J. Gastrointest. Cancer 2018. [Google Scholar] [CrossRef] [PubMed]
- Palagani, V.; El Khatib, M.; Krech, T.; Manns, M.P.; Malek, N.P.; Plentz, R.R. Decrease of cd44-positive cells correlates with tumor response to chemotherapy in patients with gastrointestinal cancer. Anticancer Res. 2012, 32, 1747–1755. [Google Scholar]
- van Kooten, C.; Banchereau, J. Cd40-cd40 ligand. J. Leukoc. Biol. 2000, 67, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Henn, V.; Slupsky, J.R.; Grafe, M.; Anagnostopoulos, I.; Forster, R.; Muller-Berghaus, G.; Kroczek, R.A. Cd40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998, 391, 591–594. [Google Scholar] [CrossRef]
- Tang, D.; Kang, R.; Zeh, H.J., 3rd; Lotze, M.T. High-mobility group box 1 and cancer. Biochim. Biophys. Acta 2010, 1799, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittwer, C.; Boeck, S.; Heinemann, V.; Haas, M.; Stieber, P.; Nagel, D.; Holdenrieder, S. Soluble receptor of advanced glycation end products (srage) indicates response to chemotherapy in pancreatic cancer patients. Int. J. Clin. Pharmacol. Ther. 2013, 51, 67–69. [Google Scholar] [CrossRef]
- Wittwer, C.; Boeck, S.; Heinemann, V.; Haas, M.; Stieber, P.; Nagel, D.; Holdenrieder, S. Circulating nucleosomes and immunogenic cell death markers hmgb1, srage and dnase in patients with advanced pancreatic cancer undergoing chemotherapy. Int. J. Cancer 2013, 133, 2619–2630. [Google Scholar] [CrossRef]
- Doherty, G.J.; Tempero, M.; Corrie, P.G. Halo-109-301: A phase iii trial of pegph20 (with gemcitabine and nab-paclitaxel) in hyaluronic acid-high stage iv pancreatic cancer. Future Oncol. 2018, 14, 13–22. [Google Scholar] [CrossRef]
- Janet Shirley, G.; Juan, W.V.; Evans, T.R.J.; Derek, B.G.; James, P.; Jamie, S.; Susie, C.; Judith, D.-H.; Hannah, W.; Sumitra, M.; et al. Primus-001: An adaptive phase ii study of folfox-a (folfox and nab-paclitaxel) versus ag (nab-paclitaxel and gemcitabine) in patients with metastatic pancreatic cancer, with integrated biomarker evaluation (isrctn75002153)—Part of precision-panc. J. Clin. Oncol. 2018, 36, TPS4158. [Google Scholar] [CrossRef]
Author | Year of Publication | Number of Patients | Stage of Disease | Treatment | Biomarker |
---|---|---|---|---|---|
Gogas [40] | 1998 | 39 | LAPC (n = 21) + metastatic (n = 18) | 5-FU + cisplatin + epirubicine | CA19-9 |
Halm [41] | 2000 | 36 | LAPC + metastatic | Gemcitabine | CA19-9 |
Stemmler [43] | 2003 | 77 | LAPC + metastatic | Gemcitabine + cisplatin | CA19-9 |
Ali [42] | 2007 | 18 | LAPC + metastatic | Gemcitabine | CA19-9 |
Wong [44] | 2008 | 75 | Metastatic | Gemcitabine + cisplatin (n = 41) Gemcitabine + cisplatin + bevacizumab (n = 34) | CA19-9 |
An [38] | 2009 | 61 | LAPC + metastatic | Gemcitabine Gemcitabine + oxaliplatin Gemcitabine + 5FU/CF | CA19-9 |
Koom [37] | 2009 | 69 | Borderline resectable + LAPC | Gemcitabine + radiation Paclitaxel + radiation | CA19-9 |
Yoo [39] | 2011 | 84 | LAPC | Radiation + 5-FU (n = 53) Radiation + capecitabine (n = 31) | CA19-9 |
Tsutsumi [46] | 2012 | 90 | LAPC + metastatic | Gemcitabine | CA19-9 SPAN-1 |
Boeck [36] | 2013 | 68 | LAPC + metastatic + recurrence | Gemcitabine Gemcitabine + erlotinib Gemcitabine + everolimus Gemcitabine + axitinib Gemcitabine + WX-671 Capecitabine Capecitabine + erlotinib Nab-paclitaxel | CA19-9 CEA |
Azzariti [47] | 2016 | 27 | Metastatic | FOLFIRINOX (n = 21) Gemcitabine + nab-paclitaxel (n = 6) | CA19-9 |
Chiorean [45] | 2016 | 454 | Metastatic | Gemcitabine (n = 202) Gemcitabine + nab-paclitaxel (n = 252) | CA19-9 |
Robert [48] | 2017 | 160 | Metastatic | FOLFIRINOX (n = 85) Gemcitabine (n = 75) | CA19-9 |
Author | Year of Publication | Number of Patients | Stage of Disease | Treatment | Biomarker |
---|---|---|---|---|---|
Dong [54] | 2009 | 131 | Resectable | Gemcitabine + radiation Gemcitabine + cisplatin + radiation | SNPs (MSH2 G322D, MSH2 IVS12-6T>C, MSH3 P231P, TREX1 Ex14-460C>T, TP73 Ex2+4G>A) |
Tanaka [56] | 2010 | 149 | LAPC | Gemcitabine (+ radiation) Gemcitabine + cisplatin (+ radiation) Gemcitabine + oxaliplatin (+ radiation) | SNPs (CDA A-76C, hENT1 A-201G) |
Tjensvoll [64] | 2016 | 14 | LAPC (n = 2) + metastatic (n = 12) | Gemcitabine (n = 6) FOLFIRINOX (n = 8) | ctDNA (KRAS) |
Cheng [61] | 2017 | 13 | Metastatic | Gemcitabine + nab-paclitaxel | ctDNA (BRCA2, KRAS 12G, KRAS G12V, KRAS G12D, ERBB2, EGFR, KDR) |
Del Re [63] | 2017 | 27 | LAPC (n = 4) + metastatic (n = 23) | FOLFIRINOX (n = 13) Gemcitabine + nab-paclitaxel (n = 14) | ctDNA (KRAS) |
Wang [67] | 2017 | 62 | LAPC (n = 21) + metastatic (n = 41) | Gemcitabine + cisplatin (n = 24) Gemcitabine + nab-paclitaxel (n = 14) Gemcitabine + oxaliplatin (n = 24) | lncRNAs (PVT1, HOTTIP, MALAT1) |
Perets [62] | 2018 | 17 | Metastatic | Unknown | ctDNA (KRAS) |
Author | Year of Publication | Number of Patients | Stage of Disease | Treatment | Biomarker |
---|---|---|---|---|---|
Palagani [84] | 2012 | 4 | Metastatic | 5-FU + oxaliplatin + irinotecan and/or avastin | CD44+ cells |
Vizio [78] | 2012 | 58 | LAPC + metastatic | Gemcitabine (n = 28) Gemcitabine + oxaliplatin (n = 23) Bevacizumab + capecitabine + radiation (n = 6) 5-FU + levofolinate calcium (n = 1) | IL-23 IL-17a TGF-β1 |
Wittwer [89] | 2013 | 68 | LAPC + metastatic + recurrence | Gemcitabine Gemcitabine + erlotinib Gemcitabine + everolimus Gemcitabine + axitinib Capecitabine Capecitabine + erlotinib Nab-paclitaxel | sRAGE |
Wittwer [88] | 2013 | 68 | LAPC (n = 9) + metastatic (n = 42) + recurrence (n = 17) | Gemcitabine Capecitabine | sRAGE |
Azzariti [47] | 2016 | 27 | Metastatic | FOLFIRINOX (21) Gemcitabine + nab-paclitaxel (6) | sCD40L |
Gao [75] | 2017 | 122 | LAPC + metastatic | Gemcitabine (n = 119) Fluorouracil (n = 1) Capecitabine (n = 1) S1 (n = 1) | NLR |
Usul Afsar [79] | 2017 | 20 | Metastatic | Gemcitabine (n = 11) Gemcitabine + platinum (n = 6) Gemcitabine + capecitabine (n = 3) | IL-18 |
Sponsor | ClinicalTrials.gov Identifier | Number of Patients | Stage of Disease | Treatment | Biomarker |
---|---|---|---|---|---|
Circulating biomarkers | |||||
Asan Medical Center | NCT02749136 | 44 | Borderline resectable, neoadjuvant treatment | FOLFIRINOX | Not mentioned |
Massachusetts General Hospital | NCT01591733 | 48 | Borderline resectable + resectable, neoadjuvant treatment | FOLFIRINOX + radiation | SNPs |
UNC Lineberger Comprehensive Cancer Center | NCT01688336 | 45 | Borderline unresectable + LAPC | FOLFIRINOX | CA19-9, CEA |
Pancreatic Cancer Research Team | NCT01488552 | 60 | Metastatic | Gemcitabine + nab-paclitaxel, followed by FOLFIRINOX | Miscellaneous, including CA19-9 |
Centre Georges Francois Leclerc | NCT03599154 | 100 | Metastatic | Gemcitabine (+ nab-paclitaxel) FOLFIRINOX | RNA gene expression (Gemcitest) |
Helse Stavanger HF | NCT02707159 | 70 | Metastatic | Gemcitabine + nab-paclitaxel | Circulating tumor cells |
National Cancer Center, Korea | NCT01333124 | 64 | Resectable, neo-adjuvant treatment | Gemcitabine + radiation | Not mentioned |
Tissue biomarkers | |||||
Seoul National University Hospital | NCT02486497 | 40 | Resectable, adjuvant treatment | Gemcitabine 5-FU | hENT1 protein expression |
AHS Cancer Control Alberta | NCT01411072 | 20 | Resectable, adjuvant treatment | Gemcitabine 5-FU | hENT1 protein expression |
Grupo Hospital de Madrid | NCT01394120 | 60 | Metastatic | FOLFIRINOX FOLFOX FOLFIRI Gemcitabine + capecitabine Gemcitabine Gemcitabine + erlotinib | Thymidilate Synthase, Thimidine Phosphorylase, ERCC1 and Topoisomerase I expression |
Emory University | NCT01188109 | 25 | Resectable, adjuvant treatment | Gemcitabine + cisplatin | ERCC1 gene expression |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Sijde, F.; Vietsch, E.E.; Mustafa, D.A.M.; Besselink, M.G.; Groot Koerkamp, B.; van Eijck, C.H.J. Circulating Biomarkers for Prediction of Objective Response to Chemotherapy in Pancreatic Cancer Patients. Cancers 2019, 11, 93. https://doi.org/10.3390/cancers11010093
van der Sijde F, Vietsch EE, Mustafa DAM, Besselink MG, Groot Koerkamp B, van Eijck CHJ. Circulating Biomarkers for Prediction of Objective Response to Chemotherapy in Pancreatic Cancer Patients. Cancers. 2019; 11(1):93. https://doi.org/10.3390/cancers11010093
Chicago/Turabian Stylevan der Sijde, Fleur, Eveline E. Vietsch, Dana A. M. Mustafa, Marc G. Besselink, Bas Groot Koerkamp, and Casper H. J. van Eijck. 2019. "Circulating Biomarkers for Prediction of Objective Response to Chemotherapy in Pancreatic Cancer Patients" Cancers 11, no. 1: 93. https://doi.org/10.3390/cancers11010093
APA Stylevan der Sijde, F., Vietsch, E. E., Mustafa, D. A. M., Besselink, M. G., Groot Koerkamp, B., & van Eijck, C. H. J. (2019). Circulating Biomarkers for Prediction of Objective Response to Chemotherapy in Pancreatic Cancer Patients. Cancers, 11(1), 93. https://doi.org/10.3390/cancers11010093