Three-Dimensional Conformal Radiotherapy-Based or Intensity-Modulated Radiotherapy-Based Concurrent Chemoradiotherapy in Patients with Thoracic Esophageal Squamous Cell Carcinoma
Abstract
:1. Introduction
2. Patients and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations Lis
RT | radiotherapy |
IMRT | intensity-modulated radiotherapy |
ICD-9-CM | International Classification of Diseases, Ninth Revision, Clinical Modification |
CCRT | concurrent chemoradiotherapy |
AJCC | American Joint Committee on Cancer |
HR | hazard ratio |
CI | confidence interval |
CCI | Charlson comorbidity index |
TESCC | thoracic esophageal squamous cell carcinoma |
ESCC | esophageal squamous cell carcinoma |
SCC | squamous cell carcinoma |
3D-CRT | three-dimensional conformal radiation therapy |
NCCN | National Comprehensive Cancer Network |
TCRD | Taiwan Cancer Registry Database |
References
- National Health Insurance Administration. Ministry of Health and Welfare: Taipei, China (2015). 2017. Available online: http://nhird.nhri.org.tw/en/Data_Subsets.html#S3 and http://nhis.nhri.org.tw/point.html. (accessed on 31 December 2016).
- Lin, W.C.; Ding, Y.F.; Hsu, H.L.; Chang, J.H.; Yuan, K.S.; Wu, A.T.H.; Chow, J.M.; Chang, C.L.; Chen, S.U.; Wu, S.Y. Value and application of trimodality therapy or definitive concurrent chemoradiotherapy in thoracic esophageal squamous cell carcinoma. Cancer 2017, 123, 3904–3915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, Y.C.; Chang, J.H.; Lin, W.C.; Chiou, J.F.; Chang, Y.C.; Chang, C.L.; Hsu, H.L.; Chow, J.M.; Yuan, K.S.; Wu, A.T.H.; et al. Effectiveness of esophagectomy in patients with thoracic esophageal squamous cell carcinoma receiving definitive radiotherapy or concurrent chemoradiotherapy through intensity-modulated radiation therapy techniques. Cancer 2017, 123, 2043–2053. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.L.; Tsai, H.C.; Lin, W.C.; Chang, J.H.; Hsu, H.L.; Chow, J.M.; Yuan, K.S.; Wu, A.T.H.; Wu, S.Y. Dose escalation intensity-modulated radiotherapy-based concurrent chemoradiotherapy is effective for advanced-stage thoracic esophageal squamous cell carcinoma. Radiother. Oncol. 2017, 125, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Pennathur, A.; Gibson, M.K.; Jobe, B.A.; Luketich, J.D. Oesophageal carcinoma. Lancet 2013, 12, 381–400. [Google Scholar] [CrossRef]
- Domper Arnal, M.J.; Ferrandez Arenas, A.; Lanas Arbeloa, A. Esophageal cancer: Risk factors, screening and endoscopic treatment in Western and Eastern countries. World J. Gastroenterol. 2015, 21, 7933–7943. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology; NCCN: Plymouth Meeting, PA, USA, 2019. [Google Scholar]
- Minsky, B.D.; Pajak, T.F.; Ginsberg, R.J.; Pisansky, T.M.; Martenson, J.; Komaki, R.; Okawara, G.; Rosenthal, S.A.; Kelsen, D.P. INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer: High-dose versus standard-dose radiation therapy. J. Clin. Oncol. 2002, 20, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, A.; Shibamoto, Y.; Miyakawa, A.; Murai, T.; Otsuka, S.; Iwaya, H.; Sugie, C.; Yanggi, t.; Ogino, H.; Ishikura, S. Definitive Concurrent Chemotherapy and High-dose (60-70 Gy) Radiotherapy for Esophageal Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, S325. [Google Scholar] [CrossRef]
- Kondo, T.; Shibamoto, Y.; Hayashi, A.; Takaoka, T.; Murai, T.; Miyakawa, A.; Sugie, C.; Yanagi, T.; Matsuo, M. Definitive Concurrent Chemotherapy and High Dose (60-70Gy) Radiation Therapy for Esophageal Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, E131–E132. [Google Scholar] [CrossRef]
- Lieberman, M.D.; Shriver, C.D.; Bleckner, S.; Burt, M. Carcinoma of the esophagus. Carcinoma of the esophagus. Prognostic significance of histologic type. J. Thorac. Cardiovasc. Surg. 1995, 109, 130–139. [Google Scholar] [CrossRef]
- Siewert, J.R.; Ott, K. Are squamous and adenocarcinomas of the esophagus the same disease? Semin. Radiat. Oncol. 2007, 17, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Bollschweiler, E.; Metzger, R.; Drebber, U.; Baldus, S.; Vallbohmer, D.; Kocher, M.; Holscher, A.H. Histological type of esophageal cancer might affect response to neo-adjuvant radiochemotherapy and subsequent prognosis. Ann. Oncol. 2009, 20, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Hölscher, A.H.; Bollschweiler, E.; Schneider, P.M.; Siewert, J.R. Prognosis of early esophageal cancer. Comparison between adeno-and squamous cell carcinoma. Cancer 1995, 76, 178–816. [Google Scholar] [CrossRef]
- Siewert, J.R.; Stein, H.J.; Feith, M.; Bruecher, B.L.; Bartels, H.; Fink, U. Histologic tumor type is an independent prognostic parameter in esophageal cancer: Lessons from more than 1,000 consecutive resections at a single center in the Western world. Ann. Surg. 2001, 234, 360. [Google Scholar] [CrossRef] [PubMed]
- Hermanto, U.; Frija, E.K.; Lii, M.J.; Chang, E.L.; Mahajan, A.; Woo, S.Y. Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: Does IMRT increase the integral dose to normal brain? Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Boyle, J.; Ackerson, B.; Gu, L.; Kelsey, C.R. Dosimetric advantages of intensity modulated radiation therapy in locally advanced lung cancer. Adv. Radiat. Oncol. 2017, 2, 6–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakiu, E.; Telhaj, E.; Kozma, E.; Ruci, F.; Malkaj, P. Comparison of 3D CRT and IMRT Tratment Plans. Acta Inform. Med. 2013, 21, 211. [Google Scholar] [CrossRef] [PubMed]
- Haefner, M.F.; Lang, K.; Verma, V.; Koerber, S.A.; Uhlmann, L.; Debus, J.; Sterzing, F. Intensity-modulated versus 3-dimensional conformal radiotherapy in the definitive treatment of esophageal cancer: Comparison of outcomes and acute toxicity. Radiat. Oncol. 2017, 12, 131. [Google Scholar] [CrossRef]
- Aoyama, H.; Westerly, D.C.; Mackie, T.R.; Olivera, G.H.; Bentzen, S.M.; Patel, R.R.; Jaradat, H.; Tome, W.A.; Ritter, M.A.; Mehta, M.P. Integral radiation dose to normal structures with conformal external beam radiation. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 962–967. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.J.; Wuu, C.S. Radiation-induced second cancers: The impact of 3D-CRT and IMRT. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 83–88. [Google Scholar] [CrossRef]
- Hsu, F.M.; Lee, Y.C.; Lee, J.M.; Hsu, C.H.; Lin, C.C.; Tsai, Y.C.; Wu, J.K.; Cheng, J.C. Association of clinical and dosimetric factors with postoperative pulmonary complications in esophageal cancer patients receiving intensity-modulated radiation therapy and concurrent chemotherapy followed by thoracic esophagectomy. Ann. Surg. Oncol. 2009, 16, 1669–1677. [Google Scholar] [CrossRef]
- Yaremko, B.P.; Palma, D.A.; Erickson, A.L.; Pierce, G.; Malthaner, R.A.; Inculet, R.I.; Dar, A.R.; Rodrigues, G.B.; Yu, E. Adjuvant concurrent chemoradiation using intensity-modulated radiotherapy and simultaneous integrated boost for resected high-risk adenocarcinoma of the distal esophagus and gastro-esophageal junction. Radiat. Oncol. 2013, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Berman, A.T. Radiation Pneumonitis: Old Problem, New Tricks. Cancers 2018, 10, 222. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, S.; Chang, B.W. Current strategies in chemoradiation for esophageal cancer. J. Gastrointest. Oncol. 2014, 5, 156–165. [Google Scholar] [PubMed]
- Macomber, M.W.; Bowen, S.R.; Gopan, O.; Yeung, R.; Apisarnthanarax, S.; Zeng, J.; Patel, S. Heart Dose and Outcomes in Radiation Treatment for Esophageal Cancer. Cureus 2018, 10, e2378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Liao, Z.; Chen, Y.; Chang, J.Y.; Jeter, M.; Guerrero, T.; Ajani, J.; Phan, A.; Swisher, S.; Allen, P.; et al. Esophageal cancer located at the neck and upper thorax treated with concurrent chemoradiation: A single-institution experience. J. Thorac. Oncol. 2006, 1, 252–259. [Google Scholar] [CrossRef]
- Hoeben, A.; Polak, J.; Van De Voorde, L.; Hoebers, F.; Grabsch, H.I.; de Vos-Geelen, J. Cervical esophageal cancer: A gap in cancer knowledge. Ann. Oncol. 2016, 27, 1664–1674. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Xia, P.; Quivey, J.M.; Sultanem, K.; Poon, I.; Akazawa, C.; Akazawa, P.; Weinberg, V.; Fu, K.K. Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: An update of the UCSF experience. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 12–22. [Google Scholar] [CrossRef]
- Nutting, C.M.; Morden, J.P.; Harrington, K.J.; Urbano, T.G.; Bhide, S.A.; Clark, C.; Miles, E.A.; Miah, A.B.; Newbold, K.; Tanay, M.; et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): A phase 3 multicentre randomised controlled trial. Lancet Oncol. 2011, 12, 127–136. [Google Scholar] [CrossRef]
- Chen, J.H.; Yen, Y.C.; Chen, T.M.; Yuan, K.S.; Lee, F.P.; Lin, K.C.; Lai, M.T.; Wu, C.C.; Chang, C.L.; Wu, S.Y. Survival prognostic factors for metachronous second primary head and neck squamous cell carcinoma. Cancer Med. 2017, 6, 142–153. [Google Scholar] [CrossRef]
- Chen, T.M.; Lin, K.C.; Yuan, K.S.; Chang, C.L.; Chow, J.M.; Wu, S.Y. Treatment of advanced nasopharyngeal cancer using low-or high-dose concurrent chemoradiotherapy with intensity-modulated radiotherapy: A propensity score-matched, nationwide, population-based cohort study. Radiother. Oncol. 2017, 123, 23–29. [Google Scholar] [CrossRef]
- Lin, Y.K.; Hsieh, M.C.; Chang, C.L.; Chow, J.M.; Yuan, K.S.; Wu, A.T.H.; Wu, S.Y. Intensity-modulated radiotherapy with systemic chemotherapy improves survival in patients with nonmetastatic unresectable pancreatic adenocarcinoma: A propensity score-matched, nationwide, population-based cohort study. Radiother. Oncol. 2018, 129, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.J.; Bosch, W.R.; Chang, D.T.; Hong, T.S.; Jabbour, S.K.; Kleinberg, L.R.; Mamon, H.J.; Thomas, C.R., Jr.; Goodman, K.A. Expert Consensus Contouring Guidelines for Intensity Modulated Radiation Therapy in Esophageal and Gastroesophageal Junction Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 911–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Health Insurance Administration. Ministry of Health and Welfare, Taiwan, R.O.C. (2014)., National Health Insurance Annual Report 2014–2015. 2016. Available online: http://tcr.cph.ntu.edu.tw/main.php?Page=A6 (accessed on 4 March 2019).
- Charlson, M.; Szatrowski, T.P.; Peterson, J.; Gold, J. Validation of a combined comorbidity index. J. Clin. Epidemiol. 1994, 47, 1245–1251. [Google Scholar] [CrossRef]
- Chen, J.H.; Yen, Y.C.; Yang, H.C.; Liu, S.H.; Yuan, S.P.; Wu, L.L.; Lee, F.P.; Lin, K.C.; Lai, M.T.; Wu, C.C.; et al. Curative-Intent Aggressive Treatment Improves Survival in Elderly Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma and High Comorbidity Index. Medicine 2016, 95, e3268. [Google Scholar] [CrossRef] [PubMed]
- Darby, S.C.; Ewertz, M.; McGale, P.; Bennet, A.M.; Blom-Goldman, U.; Bronnum, D.; Correa, C.; Cutter, D.; Gagliardi, G.; Gigante, B.; et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N. Engl. J. Med. 2013, 368, 987–998. [Google Scholar] [CrossRef] [PubMed]
- Byhardt, R.W.; Martin, L.; Pajak, T.F.; Shin, K.H.; Emami, B.; Cox, J.D. The influence of field size and other treatment factors on pulmonary toxicity following hyperfractionated irradiation for inoperable non-small cell lung cancer (NSCLC)-analysis of a Radiation Therapy Oncology Group (RTOG) protocol. Int. J. Radiat. Oncol. Biol. Phys. 1993, 27, 537–544. [Google Scholar] [CrossRef]
- Lin, S.H.; Wang, L.; Myles, B.; Thall, P.F.; Hofstetter, W.L.; Swisher, S.G.; Ajani, J.A.; Cox, J.D.; Komaki, R.; Liao, Z. Propensity score-based comparison of long-term outcomes with 3-dimensional conformal radiotherapy vs. intensity-modulated radiotherapy for esophageal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Zenda, S.; Kojima, T.; Kato, K.; Izumi, S.; Ozawa, T.; Kiyota, N.; Katada, C.; Tsushima, T.; Ito, Y.; Akimoto, T.; et al. Multicenter Phase 2 Study of Cisplatin and 5-Fluorouracil With Concurrent Radiation Therapy as an Organ Preservation Approach in Patients With Squamous Cell Carcinoma of the Cervical Esophagus. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 976–984. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.N.; Luo, J.W.; Gao, L.; Xu, G.Z.; Yi, J.L.; Huang, X.D.; Li, S.Y.; Xiao, J.P.; Liu, S.Y.; Xu, Z.G.; et al. Primary radiotherapy compared with primary surgery in cervical esophageal cancer. JAMA Otolaryngol. Head Neck Surg. 2014, 140, 918–926. [Google Scholar] [CrossRef]
- Zhang, P.; Xi, M.; Zhao, L.; Qiu, B.; Liu, H.; Hu, Y.H.; Liu, M.Z. Clinical efficacy and failure pattern in patients with cervical esophageal cancer treated with definitive chemoradiotherapy. Radiother. Oncol. 2015, 116, 257–261. [Google Scholar] [CrossRef]
- Cunningham, D.; Allum, W.H.; Stenning, S.P.; Thompson, J.N.; Van de Velde, C.J.; Nicolson, M.; Scarffe, J.H.; Lofts, F.J.; Falk, S.J.; Iveson, T.J.; et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl. J. Med. 2006, 355, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Sjoquist, K.M.; Burmeister, B.H.; Smithers, B.M.; Zalcberg, J.R.; Simes, R.J.; Barbour, A.; Gebski, V. Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: An updated meta-analysis. Lancet Oncol. 2011, 12, 681–692. [Google Scholar] [CrossRef]
- Fenkell, L.; Kaminsky, I.; Breen, S.; Huang, S.; Van Prooijen, M.; Ringash, J. Dosimetric comparison of IMRT vs. 3D conformal radiotherapy in the treatment of cancer of the cervical esophagus. Radiother. Oncol. 2008, 89, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Chandra, A.; Guerrero, T.M.; Liu, H.H.; Tucker, S.L.; Liao, Z.; Wang, X.; Murshed, H.; Bonnen, M.D.; Garg, A.K.; Stevens, C.W.; et al. Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer. Radiother. Oncol. 2005, 77, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, G.; Ghosh-Laskar, S.; Shrivastava, S.K.; Banerjee, S.; Chaudhary, S.; Agarwal, J.P.; Munshi, A.; Clivio, A.; Fogliata, A.; Mancosu, P.; et al. Volumetric modulation arc radiotherapy with flattening filter-free beams compared with static gantry IMRT and 3D conformal radiotherapy for advanced esophageal cancer: A feasibility study. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 553–560. [Google Scholar] [CrossRef]
- Wu, V.W.; Kwong, D.L.; Sham, J.S. Target dose conformity in 3-dimensional conformal radiotherapy and intensity modulated radiotherapy. Radiother. Oncol. 2004, 71, 201–206. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Y.; Zhu, J.; Li, B.; Chen, J.; Yin, Y. 3D-conformal RT, fixed-field IMRT and RapidArc, which one is better for esophageal carcinoma treated with elective nodal irradiation. Technol. Cancer Res. Treat. 2011, 10, 487–494. [Google Scholar] [CrossRef]
- Graham, M.V.; Purdy, J.A.; Emami, B.; Harms, W.; Bosch, W.; Lockett, M.A.; Perez, C.A. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int. J. Radiat. Oncol. Biol. Phys. 1999, 45, 323–329. [Google Scholar] [CrossRef]
- Hernando, M.L.; Marks, L.B.; Bentel, G.C.; Zhou, S.M.; Hollis, D.; Das, S.K.; Fan, M.; Munley, M.T.; Shafman, T.D.; Anscher, M.S.; et al. Radiation-induced pulmonary toxicity: A dose-volume histogram analysis in 201 patients with lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2001, 51, 650–659. [Google Scholar] [CrossRef]
- Kwa, S.L.; Lebesque, J.V.; Theuws, J.C.; Marks, L.B.; Munley, M.T.; Bentel, G.; Oetzel, D.; Spahn, U.; Graham, M.V.; Drzymala, R.E.; et al. Radiation pneumonitis as a function of mean lung dose: An analysis of pooled data of 540 patients. Int. J. Radiat. Oncol. Biol. Phys. 1998, 42, 1–9. [Google Scholar] [CrossRef]
- Seppenwoolde, Y.; Lebesque, J.V.; de Jaeger, K.; Belderbos, J.S.; Boersma, L.J.; Schilstra, C.; Henning, G.T.; Hayman, J.A.; Martel, M.K.; Ten Haken, R.K. Comparing different NTCP models that predict the incidence of radiation pneumonitis. Normal tissue complication probability. Int. J. Radiat. Oncol. Biol. Phys. 2003, 55, 724–735. [Google Scholar] [CrossRef]
- Chen, Y.J.; Liu, A.; Han, C.; Tsai, P.T.; Schultheiss, T.E.; Pezner, R.D.; Vora, N.; Lim, D.; Shibata, S.; Kernstine, K.H.; et al. Helical tomotherapy for radiotherapy in esophageal cancer: A preferred plan with better conformal target coverage and more homogeneous dose distribution. Med. Dosim. 2007, 32, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Kwa, S.L.; Theuws, J.C.; Wagenaar, A.; Damen, E.M.; Boersma, L.J.; Baas, P.; Muller, S.H.; Lebesque, J.V. Evaluation of two dose-volume histogram reduction models for the prediction of radiation pneumonitis. Radiother. Oncol. 1998, 48, 61–69. [Google Scholar] [CrossRef]
- Kole, T.P.; Aghayere, O.; Kwah, J.; Yorke, E.D.; Goodman, K.A. Comparison of heart and coronary artery doses associated with intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy for distal esophageal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 1580–1586. [Google Scholar] [CrossRef]
- Kinsman, K.J.; DeGregorio, B.T.; Katon, R.M.; Morrison, K.; Saxon, R.R.; Keller, F.S.; Rosch, J. Prior radiation and chemotherapy increase the risk of life-threatening complications after insertion of metallic stents for esophagogastric malignancy. Gastrointest. Endosc. 1996, 43, 196–203. [Google Scholar] [CrossRef]
- Zhou, Z.G.; Zhen, C.J.; Bai, W.W.; Zhang, P.; Qiao, X.Y.; Liang, J.L.; Gao, X.S.; Wang, S.S. Salvage radiotherapy in patients with local recurrent esophageal cancer after radical radiochemotherapy. Radiat. Oncol. 2015, 10, 54. [Google Scholar] [CrossRef]
- Hsu, P.K.; Wu, Y.C.; Chou, T.Y.; Huang, C.S.; Hsu, W.H. Comparison of the 6th and 7th editions of the American Joint Committee on Cancer tumor-node-metastasis staging system in patients with resected esophageal carcinoma. Ann. Thorac. Surg. 2010, 89, 1024–1031. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Chen, H.S.; Wu, S.C.; Chen, H.C.; Hung, W.H.; Lin, C.H.; Wang, B.Y. Esophageal squamous cell carcinoma and prognosis in Taiwan. Cancer Med. 2018, 7, 4193–4201. [Google Scholar] [CrossRef]
- Berry, S.D.; Ngo, L.; Samelson, E.J.; Kiel, D.P. Competing risk of death: An important consideration in studies of older adults. J. Am. Geriatr. Soc. 2010, 58, 783–787. [Google Scholar] [CrossRef]
Variable | All | IMRT | 3D-CRT | ||||
---|---|---|---|---|---|---|---|
n = 2062 | (%) | n = 1524 | (%) | n = 538 | (%) | p Value | |
Age | |||||||
SD | 57.92 | 11.00 | 57.85 | 10.86 | 58.44 | 11.37 | 0.1342 |
0.5096 | |||||||
20–29 | 6 | (0.29) | 4 | (0.26) | 2 | (0.37) | |
30–39 | 55 | (2.67) | 40 | (2.62) | 15 | (2.79) | |
40–49 | 472 | (23.09) | 345 | (22.64) | 127 | (23.61) | |
50–59 | 714 | (34.82) | 545 | (35.76) | 169 | (31.41) | |
60–69 | 500 | (23.97) | 367 | (24.08) | 133 | (24.72) | |
70–79 | 240 | (11.45) | 168 | (11.02) | 72 | (13.38) | |
80–89 | 72 | (3.52) | 52 | (3.41) | 20 | (3.72) | |
90–100 | 3 | (0.14) | 3 | (0.20) | 0 | (0.00) | |
Sex | 0.4189 | ||||||
Male | 1960 | (95.05) | 1447 | (94.95) | 513 | (95.35) | |
Female | 102 | (4.95) | 77 | (5.05) | 25 | (4.65) | |
Follow-up time (year) | 0.1848 | ||||||
Median, IQR | 2.02 | 1.15 | 2.02 | 1.15 | 2.00 | 1.14 | |
(q1, q3) | (0.92, | 2.77) | (0.93, | 2.78) | (0.99, | 2.74) | |
(min, max) | (0.09, | 7.29) | (0.09, | 7.29) | (0.12, | 6.96) | |
CCI score | |||||||
SD | 1.25 | 1.39 | 1.25 | 1.40 | 1.29 | 1.34 | 0.4568 |
0 | 697 | (34.03) | 533 | (34.97) | 164 | (30.48) | 0.2443 |
1 | 721 | (35.10) | 525 | (34.45) | 196 | (36.43) | |
2 | 353 | (16.78) | 253 | (16.60) | 100 | (18.59) | |
>3 | 291 | (14.09) | 213 | (13.98) | 78 | (14.50) | |
Radiation dose (Gy) | 0.9617 | ||||||
Median, IQR | 50.40 | 0.30 | 50.40 | 0.31 | 50.40 | 0.22 | |
Cumulative cisplatin dose (mg/m2) | 0.1152 | ||||||
Mean (SD) | 255.57 | 57.65 | 255.57 | 58.61 | 253.56 | 59.16 | |
AJCC clinical stages | 0.0017 | ||||||
Early stage (IA-IIB) | 336 | (16.78) | 232 | (15.22) | 104 | (19.33) | |
Advanced stage (IIIA-IIIC) | 1726 | (83.22) | 1292 | (84.78) | 434 | (80.67) | |
AJCC clinical stages | <0.0001 | ||||||
IA | 5 | (0.42) | 5 | (0.33) | 0 | (0.00) | |
IB | 31 | (1.62) | 24 | (1.57) | 7 | (1.30) | |
IIA | 126 | (6.31) | 79 | (5.18) | 47 | (8.74) | |
IIB | 174 | (8.44) | 124 | (8.14) | 50 | (9.29) | |
IIIA | 397 | (19.19) | 319 | (20.93) | 78 | (14.50) | |
IIIB | 661 | (31.80) | 439 | (28.81) | 219 | (40.71) | |
IIIC | 671 | (32.22) | 534 | (35.04) | 137 | (25.46) | |
Year of diagnosis | <0.0001 | ||||||
2006–2010 | 798 | (39.08) | 450 | (29.53) | 348 | (64.68) | |
2011–2014 | 1264 | (60.92) | 1074 | (70.47) | 190 | (35.32) | |
Toxicity profile | 0.5687 | ||||||
Major heart events | 58 | (2.81) | 41 | (2.69) | 17 | (3.16) | |
Radiation pneumonitis grade 2 | 465 | (22.55 | 334 | (21.92) | 122 | (22.67) | |
Death | <0.0001 | ||||||
No | 454 | (21.84) | 372 | (24.41) | 82 | (15.24) | |
Yes | 1608 | (78.16) | 1152 | (75.59) | 456 | (84.76) |
Variable | Univariate Analysis | Multivariate Analysis | ||||||
---|---|---|---|---|---|---|---|---|
HR | 95% CI | p | aHR * | 95% CI | p | |||
RT Modalities | ||||||||
3D-CRT (ref) | 1 | 1 | ||||||
IMRT | 0.89 | (0.80, | 0.99) | 0.0372 | 0.88 | (0.78, | 0.98) | 0.0223 |
Sex | ||||||||
Female (ref) | 1 | 1 | ||||||
Male | 1.12 | (0.89, | 1.40) | 0.3378 | 1.06 | (0.84, | 1.33) | 0.6274 |
Age | ||||||||
20–29 (ref) | 1 | 1 | ||||||
30–39 | 2.07 | (0.29, | 14.86) | 0.4680 | 2.30 | (0.32, | 16.71) | 0.4098 |
40–49 | 2.25 | (0.32, | 15.88) | 0.4149 | 2.44 | (0.34, | 17.42) | 0.3735 |
50–59 | 1.79 | (0.25, | 12.59) | 0.5600 | 1.98 | (0.28, | 14.12) | 0.4958 |
60–69 | 1.65 | (0.23, | 11.65) | 0.6141 | 1.78 | (0.25, | 12.72) | 0.5649 |
70–79 | 1.62 | (0.23, | 11.42) | 0.6311 | 1.89 | (0.26, | 13.57) | 0.5251 |
80–89 | 1.92 | (0.27, | 13.76) | 0.5144 | 2.17 | (0.30, | 15.73) | 0.4433 |
90– | 2.14 | (0.23, | 20.44) | 0.5075 | 3.09 | (0.32, | 29.79) | 0.3295 |
CCI score | ||||||||
0 (ref) | 1 | 1 | ||||||
1 | 0.98 | (0.87, | 1.11) | 0.7628 | 1.02 | (0.91, | 1.15) | 0.7646 |
2 | 0.94 | (0.81, | 1.08) | 0.3725 | 1.02 | (0.88, | 1.18) | 0.7948 |
>3 | 0.96 | (0.83, | 1.12) | 0.6291 | 1.14 | (0.97, | 1.33) | 0.1176 |
Year of diagnosis | ||||||||
2006–2010 (ref) | 1 | 1 | ||||||
2011–2014 | 0.96 | (0.87, | 1.07) | 0.4678 | 0.96 | (0.87, | 1.07) | 0.4741 |
AJCC clinical stages | ||||||||
Early stage (ref) | 1 | 1 | ||||||
Advanced stage | 1.84 | (1.59, | 2.12) | <0.0001 | 1.89 | (1.63, | 2.19) | <.0001 |
Treatment | n | Death | Death Rate (%) | Univariate Analysis | Multivariate Analysis | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p Value | aHR * | 95% CI | p Value | ||||||
All stage | 2062 | 1608 | |||||||||
3D-CRT | 538 | 456 | 84.76 | 1 | 1 | ||||||
IMRT | 1524 | 1152 | 75.59 | 0.89 | (0.80, | 0.99) | 0.0372 | 0.88 | (0.78, | 0.98) | 0.0223 |
Early stage (IA~IIB) | 336 | 218 | |||||||||
3D-CRT | 104 | 77 | 74.04 | 1 | 1 | ||||||
IMRT | 232 | 141 | 60.78 | 0.89 | (0.68, | 1.18) | 0.4344 | 0.91 | (0.67, | 1.25) | 0.5746 |
Advanced stage (IIIA-IIIC) | 1726 | 1390 | |||||||||
3D-CRT | 434 | 379 | 87.33 | 1 | 1 | ||||||
IMRT | 1292 | 1011 | 78.25 | 0.85 | (0.76, | 0.96) | 0.0091 | 0.88 | (0.77, | 0.99) | 0.0368 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.-C.; Chang, C.-L.; Hsu, H.-L.; Yuan, K.S.-P.; Wu, A.T.H.; Wu, S.-Y. Three-Dimensional Conformal Radiotherapy-Based or Intensity-Modulated Radiotherapy-Based Concurrent Chemoradiotherapy in Patients with Thoracic Esophageal Squamous Cell Carcinoma. Cancers 2019, 11, 1529. https://doi.org/10.3390/cancers11101529
Lin W-C, Chang C-L, Hsu H-L, Yuan KS-P, Wu ATH, Wu S-Y. Three-Dimensional Conformal Radiotherapy-Based or Intensity-Modulated Radiotherapy-Based Concurrent Chemoradiotherapy in Patients with Thoracic Esophageal Squamous Cell Carcinoma. Cancers. 2019; 11(10):1529. https://doi.org/10.3390/cancers11101529
Chicago/Turabian StyleLin, Wei-Cheng, Chia-Lun Chang, Han-Lin Hsu, Kevin Sheng-Po Yuan, Alexander T. H. Wu, and Szu-Yuan Wu. 2019. "Three-Dimensional Conformal Radiotherapy-Based or Intensity-Modulated Radiotherapy-Based Concurrent Chemoradiotherapy in Patients with Thoracic Esophageal Squamous Cell Carcinoma" Cancers 11, no. 10: 1529. https://doi.org/10.3390/cancers11101529
APA StyleLin, W.-C., Chang, C.-L., Hsu, H.-L., Yuan, K. S.-P., Wu, A. T. H., & Wu, S.-Y. (2019). Three-Dimensional Conformal Radiotherapy-Based or Intensity-Modulated Radiotherapy-Based Concurrent Chemoradiotherapy in Patients with Thoracic Esophageal Squamous Cell Carcinoma. Cancers, 11(10), 1529. https://doi.org/10.3390/cancers11101529