BRCA2 and Other DDR Genes in Prostate Cancer
Abstract
:1. Introduction
2. Alterations in DNA Repair Genes Are Common in Prostate Cancer
3. Impact of BRCA Mutations on Clinical Outcomes and Response to Treatment in Prostate Cancer
3.1. Management of Localized Disease
3.2. Management of Metastatic Prostate Cancer
4. Mutations in BRCA and Other DNA Repair Genes as a Potential Target for Platinum-Based Chemotherapy and PARP Inhibitors in Prostate Cancer
5. Implications for Hereditary Cancer and Germline Testing
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Robinson, D.; Van Allen, E.M.; Wu, Y.M.; Schultz, N.; Lonigro, R.J.; Mosquera, J.M.; Montgomery, B.; Taplin, M.E.; Pritchard, C.C.; Attard, G.; et al. Integrative Clinical Genomics of Advanced Prostate Cancer. Cell 2015, 161, 1215–1228. [Google Scholar] [CrossRef]
- Armenia, J.; Wankowicz, S.A.M.; Liu, D.; Gao, J.; Kundra, R.; Reznik, E.; Chatila, W.K.; Chakravarty, D.; Han, G.C.; Coleman, I.; et al. The long tail of oncogenic drivers in prostate cancer. Nat. Genet. 2018, 50, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, C.C.; Mateo, J.; Walsh, M.F.; De Sarkar, N.; Abida, W.; Beltran, H.; Garofalo, A.; Gulati, R.; Carreira, S.; Eeles, R.; et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N. Engl. J. Med. 2016, 375, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Castro, E.; Romero-Laorden, N.; Del Pozo, A.; Lozano, R.; Medina, A.; Puente, J.; Piulats, J.M.; Lorente, D.; Saez, M.I.; Morales-Barrera, R.; et al. PROREPAIR-B: A Prospective Cohort Study of the Impact of Germline DNA Repair Mutations on the Outcomes of Patients With Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2019. [Google Scholar] [CrossRef]
- Narod, S.A.; Neuhausen, S.; Vichodez, G.; Armel, S.; Lynch, H.T.; Ghadirian, P.; Cummings, S.; Olopade, O.; Stoppa-Lyonnet, D.; Couch, F.; et al. Rapid progression of prostate cancer in men with a BRCA2 mutation. Br. J. Cancer 2008, 99, 371–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, D.J.; Gaudet, M.M.; Pal, P.; Kirchhoff, T.; Balistreri, L.; Vora, K.; Bhatia, J.; Stadler, Z.; Fine, S.W.; Reuter, V.; et al. Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin. Cancer Res. 2010, 16, 2115–2121. [Google Scholar] [CrossRef]
- Thorne, H.; Willems, A.J.; Niedermayr, E.; Hoh, I.M.; Li, J.; Clouston, D.; Mitchell, G.; Fox, S.; Hopper, J.L.; Kathleen Cunningham Consortium for Research in Familial Breast Cancer Consortium; et al. Decreased prostate cancer-specific survival of men with BRCA2 mutations from multiple breast cancer families. Cancer Prev. Res. 2011, 4, 1002–1010. [Google Scholar] [CrossRef]
- Castro, E.; Goh, C.; Olmos, D.; Saunders, E.; Leongamornlert, D.; Tymrakiewicz, M.; Mahmud, N.; Dadaev, T.; Govindasami, K.; Guy, M.; et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J. Clin. Oncol. 2013, 31, 1748–1757. [Google Scholar] [CrossRef] [PubMed]
- Castro, E.; Goh, C.; Leongamornlert, D.; Saunders, E.; Tymrakiewicz, M.; Dadaev, T.; Govindasami, K.; Guy, M.; Ellis, S.; Frost, D.; et al. Effect of BRCA Mutations on Metastatic Relapse and Cause-specific Survival After Radical Treatment for Localised Prostate Cancer. Eur. Urol. 2015, 68, 186–193. [Google Scholar] [CrossRef]
- Cheng, H.H.; Pritchard, C.C.; Boyd, T.; Nelson, P.S.; Montgomery, B. Biallelic Inactivation of BRCA2 in Platinum-sensitive Metastatic Castration-resistant Prostate Cancer. Eur. Urol. 2016, 69, 992–995. [Google Scholar] [CrossRef]
- Zafeiriou, Z.; Bianchini, D.; Chandler, R.; Rescigno, P.; Yuan, W.; Carreira, S.; Barrero, M.; Petremolo, A.; Miranda, S.; Riisnaes, R.; et al. Genomic Analysis of Three Metastatic Prostate Cancer Patients with Exceptional Responses to Carboplatin Indicating Different Types of DNA Repair Deficiency. Eur. Urol. 2019, 75, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Pomerantz, M.M.; Spisak, S.; Jia, L.; Cronin, A.M.; Csabai, I.; Ledet, E.; Sartor, A.O.; Rainville, I.; O’Connor, E.P.; Herbert, Z.T.; et al. The association between germline BRCA2 variants and sensitivity to platinum-based chemotherapy among men with metastatic prostate cancer. Cancer 2017, 123, 3532–3539. [Google Scholar] [CrossRef] [PubMed]
- Mateo, J.; Carreira, S.; Sandhu, S.; Miranda, S.; Mossop, H.; Perez-Lopez, R.; Nava Rodrigues, D.; Robinson, D.; Omlin, A.; Tunariu, N.; et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N. Engl. J. Med. 2015, 373, 1697–1708. [Google Scholar] [CrossRef] [Green Version]
- Grasso, C.S.; Wu, Y.M.; Robinson, D.R.; Cao, X.; Dhanasekaran, S.M.; Khan, A.P.; Quist, M.J.; Jing, X.; Lonigro, R.J.; Brenner, J.C.; et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012, 487, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Beltran, H.; Yelensky, R.; Frampton, G.M.; Park, K.; Downing, S.R.; MacDonald, T.Y.; Jarosz, M.; Lipson, D.; Tagawa, S.T.; Nanus, D.M.; et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur. Urol. 2013, 63, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research, N. The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015, 163, 1011–1025. [Google Scholar]
- Kumar, A.; Coleman, I.; Morrissey, C.; Zhang, X.; True, L.D.; Gulati, R.; Etzioni, R.; Bolouri, H.; Montgomery, B.; White, T.; et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat. Med. 2016, 22, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Janavicius, R. Founder BRCA1/2 mutations in the Europe: Implications for hereditary breast-ovarian cancer prevention and control. EPMA J. 2010, 1, 397–412. [Google Scholar] [CrossRef]
- Osorio, A.; Rodriguez-Lopez, R.; Diez, O.; de la Hoya, M.; Ignacio Martinez, J.; Vega, A.; Esteban-Cardenosa, E.; Alonso, C.; Caldes, T.; Benitez, J. The breast cancer low-penetrance allele 1100delC in the CHEK2 gene is not present in Spanish familial breast cancer population. Int. J. Cancer 2004, 108, 54–56. [Google Scholar] [CrossRef]
- Mateo, J.; Cheng, H.H.; Beltran, H.; Dolling, D.; Xu, W.; Pritchard, C.C.; Mossop, H.; Rescigno, P.; Perez-Lopez, R.; Sailer, V.; et al. Clinical Outcome of Prostate Cancer Patients with Germline DNA Repair Mutations: Retrospective Analysis from an International Study. Eur. Urol. 2018, 73, 687–693. [Google Scholar] [CrossRef]
- Antonarakis, E.S.; Lu, C.; Luber, B.; Liang, C.; Wang, H.; Chen, Y.; Silberstein, J.L.; Piana, D.; Lai, Z.; Chen, Y.; et al. Germline DNA-repair Gene Mutations and Outcomes in Men with Metastatic Castration-resistant Prostate Cancer Receiving First-line Abiraterone and Enzalutamide. Eur. Urol. 2018, 74, 218–225. [Google Scholar] [CrossRef]
- Annala, M.; Struss, W.J.; Warner, E.W.; Beja, K.; Vandekerkhove, G.; Wong, A.; Khalaf, D.; Seppala, I.L.; So, A.; Lo, G.; et al. Treatment Outcomes and Tumor Loss of Heterozygosity in Germline DNA Repair-deficient Prostate Cancer. Eur. Urol. 2017, 72, 34–42. [Google Scholar] [CrossRef]
- Parker, C.; Gillessen, S.; Heidenreich, A.; Horwich, A.; Committee, E.G. Cancer of the prostate: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26, v69–v77. [Google Scholar] [CrossRef] [Green Version]
- National Comprehensive Cancer Network. Prostate Cancer (Version 1). 2018. Available online: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (accessed on 18 August 2018).
- Carter, H.B.; Helfand, B.; Mamawala, M.; Wu, Y.; Landis, P.; Yu, H.; Wiley, K.; Na, R.; Shi, Z.; Petkewicz, J.; et al. Germline Mutations in ATM and BRCA1/2 Are Associated with Grade Reclassification in Men on Active Surveillance for Prostate Cancer. Eur. Urol. 2018. [Google Scholar] [CrossRef]
- Polkinghorn, W.R.; Parker, J.S.; Lee, M.X.; Kass, E.M.; Spratt, D.E.; Iaquinta, P.J.; Arora, V.K.; Yen, W.F.; Cai, L.; Zheng, D.; et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov. 2013, 3, 1245–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodwin, J.F.; Schiewer, M.J.; Dean, J.L.; Schrecengost, R.S.; de Leeuw, R.; Han, S.; Ma, T.; Den, R.B.; Dicker, A.P.; Feng, F.Y.; et al. A hormone-DNA repair circuit governs the response to genotoxic insult. Cancer Discov. 2013, 3, 1254–1271. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, J.F.; Kothari, V.; Drake, J.M.; Zhao, S.; Dylgjeri, E.; Dean, J.L.; Schiewer, M.J.; McNair, C.; Jones, J.K.; Aytes, A.; et al. DNA-PKcs-Mediated Transcriptional Regulation Drives Prostate Cancer Progression and Metastasis. Cancer Cell 2015, 28, 97–113. [Google Scholar] [CrossRef] [Green Version]
- Tosco, L.; Briganti, A.; D’Amico, A.V.; Eastham, J.; Eisenberger, M.; Gleave, M.; Haustermans, K.; Logothetis, C.J.; Saad, F.; Sweeney, C.; et al. Systematic Review of Systemic Therapies and Therapeutic Combinations with Local Treatments for High-risk Localized Prostate Cancer. Eur. Urol. 2019, 75, 44–60. [Google Scholar] [CrossRef]
- Lozano, R.; Romero-Laorden, N.; del Pozo, A.; Medina, A.; Mendez Vidal, M.J.; Morales-Barrera, R.; Gonzalez Del Alba, A.; Rodriguez-Vida, A.; Hernandez, A.; Silla-Castro, J.C.; et al. Comparative assessment of abiraterone and enzalutamide activity in the PROREPAIR-B study. J. Clin. Oncol. 2018, 36, 164. [Google Scholar] [CrossRef]
- Byrski, T.; Gronwald, J.; Huzarski, T.; Grzybowska, E.; Budryk, M.; Stawicka, M.; Mierzwa, T.; Szwiec, M.; Wisniowski, R.; Siolek, M.; et al. Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J. Clin. Oncol. 2010, 28, 375–379. [Google Scholar] [CrossRef]
- Von Minckwitz, G.; Schneeweiss, A.; Loibl, S.; Salat, C.; Denkert, C.; Rezai, M.; Blohmer, J.U.; Jackisch, C.; Paepke, S.; Gerber, B.; et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): A randomised phase 2 trial. Lancet Oncol. 2014, 15, 747–756. [Google Scholar] [CrossRef]
- Yang, D.; Khan, S.; Sun, Y.; Hess, K.; Shmulevich, I.; Sood, A.K.; Zhang, W. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 2011, 306, 1557–1565. [Google Scholar] [CrossRef]
- Hager, S.; Ackermann, C.J.; Joerger, M.; Gillessen, S.; Omlin, A. Anti-tumour activity of platinum compounds in advanced prostate cancer-a systematic literature review. Ann. Oncol. 2016, 27, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.J.; Tutt, A.N.; Ashworth, A. Synthetic lethality and cancer therapy: Lessons learned from the development of PARP inhibitors. Annu. Rev. Med. 2015, 66, 455–470. [Google Scholar] [CrossRef] [PubMed]
- Murai, J.; Huang, S.Y.; Das, B.B.; Renaud, A.; Zhang, Y.; Doroshow, J.H.; Ji, J.; Takeda, S.; Pommier, Y. Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Res. 2012, 72, 5588–5599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fong, P.C.; Boss, D.S.; Yap, T.A.; Tutt, A.; Wu, P.; Mergui-Roelvink, M.; Mortimer, P.; Swaisland, H.; Lau, A.; O’Connor, M.J.; et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 2009, 361, 123–134. [Google Scholar] [CrossRef]
- De Bono, J.; Ramanathan, R.K.; Mina, L.; Chugh, R.; Glaspy, J.; Rafii, S.; Kaye, S.; Sachdev, J.; Heymach, J.; Smith, D.C.; et al. Phase I, Dose-Escalation, Two-Part Trial of the PARP Inhibitor Talazoparib in Patients with Advanced Germline BRCA1/2 Mutations and Selected Sporadic Cancers. Cancer Discov. 2017, 7, 620–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandhu, S.K.; Schelman, W.R.; Wilding, G.; Moreno, V.; Baird, R.D.; Miranda, S.; Hylands, L.; Riisnaes, R.; Forster, M.; Omlin, A.; et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: A phase 1 dose-escalation trial. Lancet Oncol. 2013, 14, 882–892. [Google Scholar] [CrossRef]
- Kaufman, B.; Shapira-Frommer, R.; Schmutzler, R.K.; Audeh, M.W.; Friedlander, M.; Balmana, J.; Mitchell, G.; Fried, G.; Stemmer, S.M.; Hubert, A.; et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 2015, 33, 244–250. [Google Scholar] [CrossRef]
- Abida, W.; Bryce, A.H.; Vogelzang, N.J.; Amato, R.J.; Percent, I.; Shapiro, J.D.; McDermott, R.; Hussain, M.; Patnaik, A.; Petrylak, D.; et al. Preliminary results from TRITON2: A phase 2 study of rucaparib in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) associated with homologous recombination repair (HRR) gene alterations. Ann. Oncol. 2018, 29, viii271–viii302. [Google Scholar] [CrossRef]
- Asim, M.; Tarish, F.; Zecchini, H.I.; Sanjiv, K.; Gelali, E.; Massie, C.E.; Baridi, A.; Warren, A.Y.; Zhao, W.; Ogris, C.; et al. Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer. Nat. Commun. 2017, 8, 374. [Google Scholar] [CrossRef]
- Schiewer, M.J.; Goodwin, J.F.; Han, S.; Brenner, J.C.; Augello, M.A.; Dean, J.L.; Liu, F.; Planck, J.L.; Ravindranathan, P.; Chinnaiyan, A.M.; et al. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov. 2012, 2, 1134–1149. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Daignault-Newton, S.; Twardowski, P.W.; Albany, C.; Stein, M.N.; Kunju, L.P.; Siddiqui, J.; Wu, Y.M.; Robinson, D.; Lonigro, R.J.; et al. Targeting Androgen Receptor and DNA Repair in Metastatic Castration-Resistant Prostate Cancer: Results From NCI 9012. J. Clin. Oncol. 2018, 36, 991–999. [Google Scholar] [CrossRef]
- Clarke, N.; Wiechno, P.; Alekseev, B.; Sala, N.; Jones, R.; Kocak, I.; Chiuri, V.E.; Jassem, J.; Flechon, A.; Redfern, C.; et al. Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2018, 19, 975–986. [Google Scholar] [CrossRef]
- Quigley, D.; Alumkal, J.J.; Wyatt, A.W.; Kothari, V.; Foye, A.; Lloyd, P.; Aggarwal, R.; Kim, W.; Lu, E.; Schwartzman, J.; et al. Analysis of Circulating Cell-Free DNA Identifies Multiclonal Heterogeneity of BRCA2 Reversion Mutations Associated with Resistance to PARP Inhibitors. Cancer Discov. 2017, 7, 999–1005. [Google Scholar] [CrossRef]
- Goodall, J.; Mateo, J.; Yuan, W.; Mossop, H.; Porta, N.; Miranda, S.; Perez-Lopez, R.; Dolling, D.; Robinson, D.R.; Sandhu, S.; et al. Circulating Cell-Free DNA to Guide Prostate Cancer Treatment with PARP Inhibition. Cancer Discov. 2017, 7, 1006–1017. [Google Scholar] [CrossRef]
- Cheng, H.H.; Salipante, S.J.; Nelson, P.S.; Montgomery, B.; Pritchard, C.C. Polyclonal BRCA2 Reversion Mutations Detected in Circulating Tumor DNA After Platinum Chemotherapy in a Patient With Metastatic Prostate Cancer. JCO Precision Oncol. 2018, 2, 1–5. [Google Scholar] [CrossRef]
- Mucci, L.A.; Hjelmborg, J.B.; Harris, J.R.; Czene, K.; Havelick, D.J.; Scheike, T.; Graff, R.E.; Holst, K.; Moller, S.; Unger, R.H.; et al. Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. JAMA 2016, 315, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Lecarpentier, J.; Silvestri, V.; Kuchenbaecker, K.B.; Barrowdale, D.; Dennis, J.; McGuffog, L.; Soucy, P.; Leslie, G.; Rizzolo, P.; Navazio, A.S.; et al. Prediction of Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 Mutation Carriers Using Polygenic Risk Scores. J. Clin. Oncol. 2017, 35, 2240–2250. [Google Scholar] [CrossRef] [Green Version]
- Carroll, P.H.; Mohler, J.L. NCCN Guidelines Updates: Prostate Cancer and Prostate Cancer Early Detection. J. Natl. Compr. Canc. Netw. 2018, 16, 620–623. [Google Scholar] [CrossRef]
- Bancroft, E.K.; Page, E.C.; Castro, E.; Lilja, H.; Vickers, A.; Sjoberg, D.; Assel, M.; Foster, C.S.; Mitchell, G.; Drew, K.; et al. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: Results from the initial screening round of the IMPACT study. Eur. Urol. 2014, 66, 489–499. [Google Scholar] [CrossRef]
- Kasivisvanathan, V.; Rannikko, A.S.; Borghi, M.; Panebianco, V.; Mynderse, L.A.; Vaarala, M.H.; Briganti, A.; Budaus, L.; Hellawell, G.; Hindley, R.G.; et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N. Engl. J. Med. 2018, 378, 1767–1777. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.C.; van Overeem Hansen, T.; Sorensen, C.S. Hereditary breast and ovarian cancer: New genes in confined pathways. Nat. Rev. Cancer 2016, 16, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.A.; Fraser, M.; Livingstone, J.; Espiritu, S.M.; Thorne, H.; Huang, V.; Lo, W.; Shiah, Y.J.; Yamaguchi, T.N.; Sliwinski, A.; et al. Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nat. Commun. 2017, 8, 13671. [Google Scholar] [CrossRef]
- Isaacsson Velho, P.; Silberstein, J.L.; Markowski, M.C.; Luo, J.; Lotan, T.L.; Isaacs, W.B.; Antonarakis, E.S. Intraductal/ductal histology and lymphovascular invasion are associated with germline DNA-repair gene mutations in prostate cancer. Prostate 2018, 78, 401–407. [Google Scholar] [CrossRef]
- Giri, V.N.; Knudsen, K.E.; Kelly, W.K.; Abida, W.; Andriole, G.L.; Bangma, C.H.; Bekelman, J.E.; Benson, M.C.; Blanco, A.; Burnett, A.; et al. Role of Genetic Testing for Inherited Prostate Cancer Risk: Philadelphia Prostate Cancer Consensus Conference 2017. J. Clin. Oncol. 2018, 36, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef]
- Cheng, H.; Powers, J.; Schaffer, K.; Sartor, O. Practical Methods for Integrating Genetic Testing Into Clinical Practice for Advanced Prostate Cancer. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 372–381. [Google Scholar] [CrossRef]
- Colombo, N.; Huang, G.; Scambia, G.; Chalas, E.; Pignata, S.; Fiorica, J.; Van Le, L.; Ghamande, S.; Gonzalez-Santiago, S.; Bover, I.; et al. Evaluation of a Streamlined Oncologist-Led BRCA Mutation Testing and Counseling Model for Patients With Ovarian Cancer. J. Clin. Oncol. 2018, 36, 1300–1307. [Google Scholar] [CrossRef] [PubMed]
- Torga, G.; Pienta, K.J. Patient-Paired Sample Congruence Between 2 Commercial Liquid Biopsy Tests. JAMA Oncol. 2018, 4, 868–870. [Google Scholar] [CrossRef]
Pritchard et al. [3] and Mateo et al. [20] | ||||
ATM | ATR | BAP1 | BARD1 | BRCA1 |
BRCA2 | BRIP1 | CHEK2 | FAM175A | GEN1 |
MLH1 | MRE11A | MSH2 | MSH6 | NBN |
PALB2 | PMS2 | RAD51C | RAD51D | XRCC2 |
Castro et al. [4] | ||||
APEX1 | ERCC4 | GTF2H5 | NTHL1 | RBBP8 |
APEX2 | ERCC5 | KIAA0415 | OGG1 | RPA1 |
APLF | ERCC6 | LIG4 | PALB2 | RPA2 |
ATM | ERCC8 | MBD4 | PARP1 | RPA3 |
ATR | FAAP20 | MLH1 | PARP2 | SLX1A |
BARD1 | FAAP24 | MLH3 | PARP3 | SLX1B |
BRCA1 | FAM175B | MMS19 | PMS1 | SLX4 |
BRCA2 | FANCA | MNAT1 | PMS2 | SMUG1 |
BRIP1 | FANCB | MPG | PNKP | TDG |
CDK7 | FANCC | MRE11A | PRKDC | UNG |
CDK12 | FANCD2 | MSH2 | RAD9A | XAB2 |
CHEK1 | FANCE | MSH3 | RAD17 | XPA |
CHEK2 | FANCF | MSH4 | RAD23A | XPC |
DCLRE1C | FANCG | MSH5 | RAD23B | XRCC1 |
DDB1 | FANCI | MSH6 | RAD50 | XRCC2 |
DMC1 | FANCL | MUS81 | RAD51 | XRCC3 |
EME1 | FANCM | MUTYH | RAD51B | XRCC4 |
EME2 | GEN1 | NBN | RAD51C | XRCC5 |
EPCAM | GTF2H1 | NEIL1 | RAD51D | XRCC6 |
ERCC1 | GTF2H2 | NEIL2 | RAD52 | |
ERCC2 | GTF2H3 | NEIL3 | RAD54B | |
ERCC3 | GTF2H4 | NHEJ1 | RAD54L | |
Antonarakis et al. [21] | ||||
ATM | CDK12 | FAM175A | GEN1 | PIF1 |
ATR | CENPQ | FAM175B | HDAC2 | PMS2 |
BAP1 | CHEK1 | FANCA | MLH1 | RAD51 |
BARD1 | CHEK2 | FANCC | MLH3 | RAD51B |
BLM | EPCAM1 | FANCD2 | MRE11A | RAD51C |
BRAP | ERCC1 | FANCE | MSH2 | RAD51D |
BRCA1 | ERCC2 | FANCF | MSH6 | RAD54L |
BRCA2 | ERCC3 | FNCG | MUTYH | RDM1 |
BRIP1 | ERCC4 | FANCI | NBN | TP53 |
CDH1 | ERCC6 | FANCL | PALB2 | XRCC2 |
Annala et al. [22] | ||||
ATM | ERCC1 | FANCA | FANCG | RAD51B |
ATR | ERCC2 | FANCC | MLH1 | RAD51C |
BRCA1 | ERCC3 | FANCD2 | MSH2 | |
BRCA2 | ERCC4 | FANCE | MSH6 | |
CDK12 | ERCC5 | FANCF | PALB2 |
Clinical Trial | Phase | PARP Inhibitor | Study Population | DDR Defects Screening | Strategy | Primary Endpoint |
---|---|---|---|---|---|---|
NCT02324998 (CaNCaP03) | I | Olaparib | Intermediate/High Risk PCa | ✗ | Olaparib +/− Degarelix before radical prostatectomy | Determination of PARP inhibition |
NCT02861573 (KEYNOTE-365) | I | Olaparib | mCRPC | ✗ | Cohort A: Pembrolizumab + Olaparib in post-docetaxel setting | PSA50 response rate |
NCT03317392 | I/II | Olaparib | mCRPC | ✗ | Ra223 +/− Olaparib in mCRPC patients with bone metastases | MTD of combination and rPFS |
NCT03787680 (TRAP trial) | II | Olaparib | mCRPC | ✓ | Olaparib + ATR inhibitor (AZD6738) in second-line setting | Response Rate |
NCT03432897 (BrUOG 337) | II | Olaparib | Locally advanced Prostate Cancer | ✓ | Olaparib prior to radical prostatectomy | PSA response rate |
NCT03012321 | II | Olaparib | mCRPC | ✓ | Olaparib +/− Abiraterone/Prednisone in first-line setting | PFS |
NCT03434158 (IMANOL) | II | Olaparib | mCRPC | ✗ | Olaparib for patients who are responding after docetaxel-chemotherapy | rPFS |
NCT03263650 | II | Olaparib | AVPC | ✗ | Olaparib for patients who are responding after cabazitaxel plus carboplatin | PFS |
NCT03570476 | II | Olaparib | Localized PCa | ✓ | Olaparib before radical prostatectomy | pCR rate |
NCT03047135 | II | Olaparib | Biochemically-recurrent High-Risk PCa | ✓ | Olaparib in biochemically-recurrent prostate cancer | PSA response rate |
NCT03516812 | II | Olaparib | mCRPC | ✓ | Olaparib + Testoterone Enanthate in post-abiraterone/enzalutamide setting | PSA50 response rate |
NCT01682772 (TOPARP) | II | Olaparib | mCRPC | ✓ | Olaparib in post-docetaxel setting | Response Rate |
NCT02893917 | II | Olaparib | mCRPC | ✗ | Olaparib +/− Cediranib in second-line setting | rPFS |
NCT02987543 (PROfound) | III | Olaparib | mCRPC | ✓ | Olaparib vs. Abiraterone or Enzalutamide in post-ASI setting | rPFS |
NCT03732820 | III | Olaparib | mCRPC | ✗ | Abiraterone/Prednisone +/− Olaparib in first-line setting | rPFS |
NCT03076203 (NiraRad) | I | Niraparib | mCRPC | ✗ | Niraparib + Radium-223 | MTD |
NCT03431350 (QUEST) | I/II | Niraparib | mCRPC | ✓ | Niraparib + Abiraterone/Prednisone or JNJ-63723283 in post-ARSI setting | Incidence of toxicities and ORR |
NCT02854436 (Galahad) | II | Niraparib | mCRPC | ✗ | Niraparib in Post-docetaxel and post-ARSI setting | ORR |
NCT03748641 | III | Niraparib | mCRPC | ✓ | Abiraterone/Prednisone +/− Niraparib in first-line setting | rPFS |
NCT03413995 (TRIUMPH) | II | Rucaparib | mHSPC | ✓ | Rucaparib without ADT (mHSPC without large lymph nodes and visceral disease) | PSA response rate |
NCT02952534 (TRITON2) | II | Rucaparib | mCRPC | ✓ | Rucaparib in Post-docetaxel and post-ARSI setting | ORR |
NCT03533946 (ROAR) | II | Rucaparib | nmHSPC | ✓ | Rucaparib in nmHSPC with PSADT <10 months | PSA50 response rate |
NCT03338790 (CheckMate 9KD) | II | Rucaparib | mCRPC | ✗ | Nivolumab + Rucaparib or Docetaxel or Enzalutamide | ORR |
NCT03442556 | II | Rucaparib | mCRPC | ✓ | Rucaparib for patients who are responding after docetaxel plus carboplatin | rPFS |
NCT02975934 (TRITON3) | III | Rucaparib | mCRPC | ✓ | Rucaparib vs. Abiraterone/Enzalutamide/Docetaxel in second-line setting | rPFS |
NCT03330405 (Javelin PARP Medley) | II | Talazoparib | Locally advanced or metastatic tumors | ✗ | Avelumab plus Talazoparib in advanced solid tumors | DLT |
NCT03148795 (TALAPRO-1) | II | Talazoparib | mCRPC | ✓ | Talazoparib in post-docetaxel and post-abiraterone/enzalutamide setting | ORR |
NCT03395197 (TALAPRO-2) | III | Talazoparib | mCRPC | ✓ | Enzalutamide +/− Talazoparib in first-line setting | rPFS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nombela, P.; Lozano, R.; Aytes, A.; Mateo, J.; Olmos, D.; Castro, E. BRCA2 and Other DDR Genes in Prostate Cancer. Cancers 2019, 11, 352. https://doi.org/10.3390/cancers11030352
Nombela P, Lozano R, Aytes A, Mateo J, Olmos D, Castro E. BRCA2 and Other DDR Genes in Prostate Cancer. Cancers. 2019; 11(3):352. https://doi.org/10.3390/cancers11030352
Chicago/Turabian StyleNombela, Paz, Rebeca Lozano, Alvaro Aytes, Joaquin Mateo, David Olmos, and Elena Castro. 2019. "BRCA2 and Other DDR Genes in Prostate Cancer" Cancers 11, no. 3: 352. https://doi.org/10.3390/cancers11030352